Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Gut-Skin Axis: Unravelling the Link Between Gut Microbiome and Chronic Kidney Disease-Related Skin Lesions

Author(s): Xiaomei Qiao, Kaili Kong, Ting Liu, Yanyan Jia, Jingai Fang and Xiaodong Zhang*

Volume 24, Issue 1, 2024

Published on: 31 July, 2023

Page: [39 - 49] Pages: 11

DOI: 10.2174/1871530323666230511140514

Price: $65

Abstract

It is well known that skin lesions are among the most common complications of chronic kidney disease (CKD), which significantly impact the patient's quality of life. Research has demonstrated that gut and skin lesions are closely interconnected and affect each other. This interaction is referred to as the "gut-skin axis" and the intestinal microbiota plays a critical role in this interaction. Changes in gut microbiota composition and function are associated with the development of skin diseases, which are part of the "gut-skin axis". Presently, preliminary results have been demonstrated in basic and clinical research on CKD skin lesions. With further research, the "gut-skin axis" theory can provide new ideas for treating CKD skin lesions and may become a potential treatment target.

Graphical Abstract

[1]
Picó,, M.R.; Lugo-Somolinos,, A.; Sánchez,, J.L.; Burgos-Caldfrón,, R. Cutaneous alterations in patients with chronic renal failure. Int. J. Dermatol., 1992, 31(12), 860-863.
[http://dx.doi.org/10.1111/j.1365-4362.1992.tb03543.x] [PMID: 1478764]
[2]
Yeh, N.L.; Hsu, C.Y.; Tsai, T.F.; Chiu, H.Y. Gut microbiome in psoriasis is perturbed differently during secukinumab and ustekinumab therapy and associated with response to treatment. Clin. Drug Investig., 2019, 39(12), 1195-1203.
[http://dx.doi.org/10.1007/s40261-019-00849-7] [PMID: 31549347]
[3]
Kim, J.; Kim, H. Microbiome of the skin and gut in atopic dermatitis (AD): Understanding the pathophysiology and finding novel management strategies. J. Clin. Med., 2019, 8(4), 444.
[http://dx.doi.org/10.3390/jcm8040444] [PMID: 30987008]
[4]
Pinto, D; Calabrese, F.M.; De Angelis, M.; Celano, G.; Giuliani, G.; Gobbetti, M.; Rinaldi, F. Predictive metagenomic profiling, urine metabolomics, and human marker gene expression as an integrated approach to study alopecia areata. Front. Cell. Infect. Microbiol., 2020, 10, 146.
[http://dx.doi.org/10.3389/fcimb.2020.00146] [PMID: 32411613]
[5]
Gueniche, A.; Philippe, D.; Bastien, P.; Reuteler, G.; Blum, S.; Castiel-Higounenc, I.; Breton, L.; Benyacoub, J. Randomised double-blind placebo-controlled study of the effect of Lactobacillus paracasei NCC 2461 on skin reactivity. Benef. Microbes, 2014, 5(2), 137-145.
[http://dx.doi.org/10.3920/BM2013.0001] [PMID: 24322879]
[6]
Floch, M.H.; Walker, W.A.; Madsen, K.; Sanders, M.E.; Macfarlane, G.T.; Flint, H.J.; Dieleman, L.A.; Ringel, Y.; Guandalini, S.; Kelly, C.P.; Brandt, L.J. Recommendations for probiotic use-2011 update. J. Clin. Gastroenterol., 2011, 45(Suppl.), S168-S171.
[http://dx.doi.org/10.1097/MCG.0b013e318230928b] [PMID: 21992958]
[7]
Rysz, J.; Franczyk, B.; Ławiński, J.; Olszewski, R.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. The impact of CKD on uremic toxins and gut microbiota. Toxins, 2021, 13(4), 252.
[http://dx.doi.org/10.3390/toxins13040252] [PMID: 33807343]
[8]
Plata, C.; Cruz, C.; Cervantes, L.G.; Ramírez, V. The gut microbiota and its relationship with chronic kidney disease. Int. Urol. Nephrol., 2019, 51(12), 2209-2226.
[http://dx.doi.org/10.1007/s11255-019-02291-2] [PMID: 31576489]
[9]
O’Neill, C.A.; Monteleone, G.; McLaughlin, J.T.; Paus, R. The gut-skin axis in health and disease: A paradigm with therapeutic implications. BioEssays, 2016, 38(11), 1167-1176.
[http://dx.doi.org/10.1002/bies.201600008] [PMID: 27554239]
[10]
Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The gut microbiome as a major regulator of the gut-skin axis. Front. Microbiol., 2018, 9, 1459.
[http://dx.doi.org/10.3389/fmicb.2018.01459] [PMID: 30042740]
[11]
Sikora, M.; Stec, A.; Chrabaszcz, M.; Knot, A.; Waskiel-Burnat, A.; Rakowska, A.; Olszewska, M.; Rudnicka, L. Gut microbiome in psoriasis: An updated review. Pathogens, 2020, 9(6), 463.
[http://dx.doi.org/10.3390/pathogens9060463] [PMID: 32545459]
[12]
Arck, P.; Handjiski, B.; Hagen, E.; Pincus, M.; Bruenahl, C.; Bienenstock, J.; Paus, R. Is there a ‘gut-brain-skin axis’? Exp. Dermatol., 2010, 19(5), 401-405.
[http://dx.doi.org/10.1111/j.1600-0625.2009.01060.x] [PMID: 20113345]
[13]
De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut–Skin Axis: Current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms, 2021, 9(2), 353.
[http://dx.doi.org/10.3390/microorganisms9020353] [PMID: 33670115]
[14]
Guarner, F.; Malagelada, J.R. Gut flora in health and disease. Lancet, 2003, 361(9356), 512-519.
[http://dx.doi.org/10.1016/S0140-6736(03)12489-0] [PMID: 12583961]
[15]
Kosiewicz, M.M.; Dryden, G.W.; Chhabra, A.; Alard, P. Relationship between gut microbiota and development of T cell associated disease. FEBS Lett., 2014, 588(22), 4195-4206.
[http://dx.doi.org/10.1016/j.febslet.2014.03.019] [PMID: 24681103]
[16]
Khan, S.; Imran, A.; Malik, A.; Chaudhary, A.A.; Rub, A.; Jan, A.T.; Syed, J.B.; Rolfo, C. Bacterial imbalance and gut pathologies: Association and contribution of E. coli in inflammatory bowel disease. Crit. Rev. Clin. Lab. Sci., 2019, 56(1), 1-17.
[http://dx.doi.org/10.1080/10408363.2018.1517144] [PMID: 30373492]
[17]
Scher, J.U.; Ubeda, C.; Artacho, A.; Attur, M.; Isaac, S.; Reddy, S.M.; Marmon, S.; Neimann, A.; Brusca, S.; Patel, T.; Manasson, J.; Pamer, E.G.; Littman, D.R.; Abramson, S.B. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol., 2015, 67(1), 128-139.
[http://dx.doi.org/10.1002/art.38892] [PMID: 25319745]
[18]
Eppinga, H.; Sperna Weiland, C.J.; Thio, H.B.; van der Woude, C.J.; Nijsten, T.E.C.; Peppelenbosch, M.P.; Konstantinov, S.R. Similar depletion of protective Faecalibacterium prausnitzii in Psoriasis and inflammatory bowel disease, but not in Hidradenitis suppurativa. J. Crohn’s Colitis, 2016, 10(9), 1067-1075.
[http://dx.doi.org/10.1093/ecco-jcc/jjw070] [PMID: 26971052]
[19]
Song, H.; Yoo, Y.; Hwang, J.; Na, Y.C.; Kim, H.S. Faecalibacterium prausnitzii subspecies–level dysbiosis in the human gut microbiome underlying atopic dermatitis. J. Allergy Clin. Immunol., 2016, 137(3), 852-860.
[http://dx.doi.org/10.1016/j.jaci.2015.08.021] [PMID: 26431583]
[20]
Brown, E.M.; Kenny, D.J.; Xavier, R.J. Gut Microbiota regulation of T cells during inflammation and autoimmunity. Annu. Rev. Immunol., 2019, 37(1), 599-624.
[http://dx.doi.org/10.1146/annurev-immunol-042718-041841] [PMID: 31026411]
[21]
Alvarez-Payares, J.C.; Ramírez-Urrea, S.; Correa-Parra, L.; Salazar-Uribe, D.; Velásquez-López, M. Mucocutaneous manifestations of inflammatory bowel disease. Cureus, 2021, 13(8), e17191.
[http://dx.doi.org/10.7759/cureus.17191] [PMID: 34548985]
[22]
Abhishek, S. Palamadai krishnan, S. Epidermal differentiation complex: A review on its epigenetic regulation and potential drug targets. Cell J., 2016, 18(1), 1-6.
[http://dx.doi.org/10.22074/cellj.2016.3980] [PMID: 27054112]
[23]
Levkovich, T.; Poutahidis, T.; Smillie, C.; Varian, B.J.; Ibrahim, Y.M.; Lakritz, J.R.; Alm, E.J.; Erdman, S.E. Probiotic bacteria induce a ‘glow of health’. PLoS One, 2013, 8(1), e53867.
[http://dx.doi.org/10.1371/journal.pone.0053867] [PMID: 23342023]
[24]
Poutahidis, T.; Kearney, S.M.; Levkovich, T.; Qi, P.; Varian, B.J.; Lakritz, J.R.; Ibrahim, Y.M.; Chatzigiagkos, A.; Alm, E.J.; Erdman, S.E. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One, 2013, 8(10), e78898.
[http://dx.doi.org/10.1371/journal.pone.0078898] [PMID: 24205344]
[25]
Gueniche, A.; Benyacoub, J.; Philippe, D.; Bastien, P.; Kusy, N.; Breton, L.; Blum, S.; Castiel-Higounenc, I. Lactobacillus paracasei CNCM I-2116 (ST11) inhibits substance P-induced skin inflammation and accelerates skin barrier function recovery in vitro. Eur. J. Dermatol., 2010, 20(6), 731-737.
[http://dx.doi.org/10.1684/ejd.2010.1108] [PMID: 20965806]
[26]
Ogawa, M.; Saiki, A.; Matsui, Y.; Tsuchimoto, N.; Nakakita, Y.; Takata, Y.; Nakamura, T. Effects of oral intake of heat-killed Lactobacillus brevis SBC8803 (SBL88™) on dry skin conditions: A randomized, double-blind, placebo-controlled study. Exp. Ther. Med., 2016, 12(6), 3863-3872.
[http://dx.doi.org/10.3892/etm.2016.3862] [PMID: 28105118]
[27]
Catinean, A.; Neag, M.A.; Mitre, A.O.; Bocsan, C.I.; Buzoianu, A.D. Microbiota and immune-mediated skin diseases—an overview. Microorganisms, 2019, 7(9), 279.
[http://dx.doi.org/10.3390/microorganisms7090279] [PMID: 31438634]
[28]
van Beelen, A.J.; Teunissen, M.B.M.; Kapsenberg, M.L.; de Jong, E.C. Interleukin-17 in inflammatory skin disorders. Curr. Opin. Allergy Clin. Immunol., 2007, 7(5), 374-381.
[http://dx.doi.org/10.1097/ACI.0b013e3282ef869e] [PMID: 17873575]
[29]
van der Fits, L.; Mourits, S.; Voerman, J.S.A.; Kant, M.; Boon, L.; Laman, J.D.; Cornelissen, F.; Mus, A.M.; Florencia, E.; Prens, E.P.; Lubberts, E. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol., 2009, 182(9), 5836-5845.
[http://dx.doi.org/10.4049/jimmunol.0802999] [PMID: 19380832]
[30]
Hamzaoui, K.; Bouali, E.; Ghorbel, I.; Khanfir, M.; Houman, H.; Hamzaoui, A. Expression of Th-17 and RORgammat mRNA in Behçet’s disease. Med. Sci. Monit., 2011, 17(4), CR227-CR234.
[http://dx.doi.org/10.12659/MSM.881720] [PMID: 21455110]
[31]
Chi, W.; Zhu, X.; Yang, P.; Liu, X.; Lin, X.; Zhou, H.; Huang, X.; Kijlstra, A. Upregulated IL-23 and IL-17 in Behçet patients with active uveitis. Invest. Ophthalmol. Vis. Sci., 2008, 49(7), 3058-3064.
[http://dx.doi.org/10.1167/iovs.07-1390] [PMID: 18579762]
[32]
Kolls, J.K.; Lindén, A. Interleukin-17 family members and inflammation. Immunity, 2004, 21(4), 467-476.
[http://dx.doi.org/10.1016/j.immuni.2004.08.018] [PMID: 15485625]
[33]
Esplugues, E.; Huber, S.; Gagliani, N.; Hauser, A.E.; Town, T.; Wan, Y.Y.; O’Connor, W., Jr; Rongvaux, A.; Van Rooijen, N.; Haberman, A.M.; Iwakura, Y.; Kuchroo, V.K.; Kolls, J.K.; Bluestone, J.A.; Herold, K.C.; Flavell, R.A. Control of TH17 cells occurs in the small intestine. Nature, 2011, 475(7357), 514-518.
[http://dx.doi.org/10.1038/nature10228] [PMID: 21765430]
[34]
Szántó, M.; Dózsa, A.; Antal, D.; Szabó, K.; Kemény, L.; Bai, P. Targeting the gut-skin axis—Probiotics as new tools for skin disorder management? Exp. Dermatol., 2019, 28(11), 1210-1218.
[http://dx.doi.org/10.1111/exd.14016] [PMID: 31386766]
[35]
Minton, K. Scratching out a skin–gut pathway. Nat. Rev. Immunol., 2019, 19(6), 350-351.
[http://dx.doi.org/10.1038/s41577-019-0172-1] [PMID: 31048790]
[36]
Ramírez-Boscá, A.; Navarro-López, V.; Martínez-Andrés, A.; Such, J.; Francés, R.; Horga de la Parte, J.; Asín-Llorca, M. Identification of bacterial DNA in the peripheral blood of patients with active psoriasis. JAMA Dermatol., 2015, 151(6), 670-671.
[http://dx.doi.org/10.1001/jamadermatol.2014.5585] [PMID: 25760018]
[37]
Miyazaki, K.; Masuoka, N.; Kano, M.; Iizuka, R. Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota. Benef. Microbes, 2014, 5(2), 121-128.
[http://dx.doi.org/10.3920/BM2012.0066] [PMID: 23685373]
[38]
Dawson, L.F.; Donahue, E.H.; Cartman, S.T.; Barton, R.H.; Bundy, J.; McNerney, R.; Minton, N.P.; Wren, B.W. The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains. BMC Microbiol., 2011, 11(1), 86.
[http://dx.doi.org/10.1186/1471-2180-11-86] [PMID: 21527013]
[39]
Schricker, S.; Kimmel, M. Unravelling the pathophysiology of chronic kidney disease-associated pruritus. Clin. Kidney J., 2021, 14(Suppl. 3), i23-i31.
[http://dx.doi.org/10.1093/ckj/sfab200] [PMID: 34987780]
[40]
Mistik, S.; Utas, S.; Ferahbas, A.; Tokgoz, B.; Unsal, G.; Sahan, H.; Ozturk, A.; Utas, C. An epidemiology study of patients with uremic pruritus. J. Eur. Acad. Dermatol. Venereol., 2006, 20(6), 672-678.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01570.x] [PMID: 16836494]
[41]
Rayner, H.C.; Larkina, M.; Wang, M.; Graham-Brown, M.; van der Veer, S.N.; Ecder, T.; Hasegawa, T.; Kleophas, W.; Bieber, B.A.; Tentori, F.; Robinson, B.M.; Pisoni, R.L. International comparisons of prevalence, awareness, and treatment of pruritus in people on hemodialysis. Clin. J. Am. Soc. Nephrol., 2017, 12(12), 2000-2007.
[http://dx.doi.org/10.2215/CJN.03280317] [PMID: 28923831]
[42]
Pisoni, R.L.; Wikström, B.; Elder, S.J.; Akizawa, T.; Asano, Y.; Keen, M.L.; Saran, R.; Mendelssohn, D.C.; Young, E.W.; Port, F.K. Pruritus in haemodialysis patients: International results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transplant., 2006, 21(12), 3495-3505.
[http://dx.doi.org/10.1093/ndt/gfl461] [PMID: 16968725]
[43]
Agarwal, P.; Garg, V.; Karagaiah, P.; Szepietowski, J.C.; Grabbe, S.; Goldust, M. Chronic kidney disease-associated pruritus. Toxins, 2021, 13(8), 527.
[http://dx.doi.org/10.3390/toxins13080527] [PMID: 34437400]
[44]
Lin, Y.T.; Wu, P.H.; Liang, S.S.; Mubanga, M.; Yang, Y.H.; Hsu, Y.L.; Kuo, M.C.; Hwang, S.J.; Kuo, P.L. Protein-bound uremic toxins are associated with cognitive function among patients undergoing maintenance hemodialysis. Sci. Rep., 2019, 9(1), 20388.
[http://dx.doi.org/10.1038/s41598-019-57004-7] [PMID: 31892730]
[45]
Mollanazar, N.K.; Smith, P.K.; Yosipovitch, G. Mediators of chronic pruritus in atopic dermatitis: Getting the itch out? Clin. Rev. Allergy Immunol., 2016, 51(3), 263-292.
[http://dx.doi.org/10.1007/s12016-015-8488-5] [PMID: 25931325]
[46]
Briot, A.; Deraison, C.; Lacroix, M.; Bonnart, C.; Robin, A.; Besson, C.; Dubus, P.; Hovnanian, A. Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med., 2009, 206(5), 1135-1147.
[http://dx.doi.org/10.1084/jem.20082242] [PMID: 19414552]
[47]
Moon, S.J.; Kim, H.J.; Cho, S.B.; Lee, S.H.; Choi, H.Y.; Park, H.C.; Ha, S.K. Epidermal Proteinase-Activated Receptor-2 expression is increased in end-stage renal disease patients with pruritus: A pilot study. Electrolyte Blood Press., 2014, 12(2), 74-79.
[http://dx.doi.org/10.5049/EBP.2014.12.2.74] [PMID: 25606046]
[48]
Huang, W.H.; Lin, J.H.; Weng, C.H.; Hsu, C.W.; Yen, T.H. Environmental NO2 and CO exposure: Ignored factors associated with uremic pruritus in patients undergoing hemodialysis. Sci. Rep., 2016, 6(1), 31168.
[http://dx.doi.org/10.1038/srep31168] [PMID: 27507591]
[49]
Steinhoff, M.; Neisius, U.; Ikoma, A.; Fartasch, M.; Heyer, G.; Skov, P.S.; Luger, T.A.; Schmelz, M. Proteinase-activated receptor-2 mediates itch: A novel pathway for pruritus in human skin. J. Neurosci., 2003, 23(15), 6176-6180.
[http://dx.doi.org/10.1523/JNEUROSCI.23-15-06176.2003] [PMID: 12867500]
[50]
Hu, T.; Wang, B.; Liao, X.; Wang, S. Clinical features and risk factors of pruritus in patients with chronic renal failure. Exp. Ther. Med., 2019, 18(2), 964-971.
[http://dx.doi.org/10.3892/etm.2019.7588] [PMID: 31384331]
[51]
Momose, A.; Shiraiwa, Y.; Narita, S.; Kusumi, T.; Goto, S.; Sera, K. Total calcium and albumin are decreased in the deeper epidermis of patients with chronic kidney disease-associated pruritus. Nephron J., 2017, 136(2), 103-110.
[http://dx.doi.org/10.1159/000458417] [PMID: 28183080]
[52]
Chou, F.F.; Ho, J.C.; Huang, S.C.; Sheen-Chen, S.M. A study on pruritus after parathyroidectomy for secondary hyperparathyroidism1. J. Am. Coll. Surg., 2000, 190(1), 65-70.
[http://dx.doi.org/10.1016/S1072-7515(99)00212-4] [PMID: 10625234]
[53]
Rea, K.; Dinan, T.G.; Cryan, J.F. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol. Stress, 2016, 4, 23-33.
[http://dx.doi.org/10.1016/j.ynstr.2016.03.001] [PMID: 27981187]
[54]
Collins, S.; Verdu, E.; Denou, E.; Bercik, P. The role of pathogenic microbes and commensal bacteria in irritable bowel syndrome. Dig. Dis., 2009, 27(Suppl. 1), 85-89.
[http://dx.doi.org/10.1159/000268126] [PMID: 20203502]
[55]
Slominski, A.; Wortsman, J.; Paus, R.; Elias, P.M.; Tobin, D.J.; Feingold, K.R. Skin as an endocrine organ: Implications for its function. Drug Discov. Today Dis. Mech., 2008, 5(2), e137-e144.
[http://dx.doi.org/10.1016/j.ddmec.2008.04.004] [PMID: 19492070]
[56]
Brandenburg, V.M.; Evenepoel, P.; Floege, J.; Goldsmith, D.; Kramann, R.; Massy, Z.; Mazzaferro, S.; Schurgers, L.J.; Sinha, S.; Torregrosa, V.; Ureña-Torres, P.; Vervloet, M.; Cozzolino, M. Lack of evidence does not justify neglect: How can we address unmet medical needs in calciphylaxis? Nephrol. Dial. Transplant., 2016, 31(8), 1211-1219.
[http://dx.doi.org/10.1093/ndt/gfw025] [PMID: 27005994]
[57]
Russo, D.; Capuano, A.; Cozzolino, M.; Napolitano, P.; Mosella, F.; Russo, L.; Saviano, C.; Zoccali, C. Multimodal treatment of calcific uraemic arteriolopathy (calciphylaxis): A case series. Clin. Kidney J., 2016, 9(1), 108-112.
[http://dx.doi.org/10.1093/ckj/sfv120] [PMID: 26798470]
[58]
Ahmed, M.M.; Zakir, A.; Ahsraf, M.F.; Ejaz, A.; Ashraf, A.; Namburu, L.; Farooqi, M.S.; Ahmed, M.; Raza, I. Chronic kidney disease and calciphylaxis: A literature review. Cureus, 2018, 10(9), e3334.
[http://dx.doi.org/10.7759/cureus.3334] [PMID: 30473967]
[59]
Rogers, N.M.; Coates, P.T.H. Calcific uraemic arteriolopathy: An update. Curr. Opin. Nephrol. Hypertens., 2008, 17(6), 629-634.
[http://dx.doi.org/10.1097/MNH.0b013e32830f4566] [PMID: 18941358]
[60]
Peng, T.; Zhuo, L.; Wang, Y.; Jun, M.; Li, G.; Wang, L.; Hong, D. Systematic review of sodium thiosulfate in treating calciphylaxis in chronic kidney disease patients. Nephrology, 2018, 23(7), 669-675.
[http://dx.doi.org/10.1111/nep.13081] [PMID: 28603903]
[61]
Nigwekar, S.U.; Solid, C.A.; Ankers, E.; Malhotra, R.; Eggert, W.; Turchin, A.; Thadhani, R.I.; Herzog, C.A. Quantifying a rare disease in administrative data: The example of calciphylaxis. J. Gen. Intern. Med., 2014, S724-S731.
[http://dx.doi.org/10.1007/s11606-014-2910-1]
[62]
Lopes, R.C.S.O.; Balbino, K.P.; Jorge, M.P.; Ribeiro, A.Q.; Martino, H.S.D.; Alfenas, R.C.G. Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: A systematic review. Nutr. Hosp., 2018, 35(3), 722-730.
[http://dx.doi.org/10.20960/nh.1642] [PMID: 29974784]
[63]
Nigwekar, S.U.; Kroshinsky, D.; Nazarian, R.M.; Goverman, J.; Malhotra, R.; Jackson, V.A.; Kamdar, M.M.; Steele, D.J.R.; Thadhani, R.I. Calciphylaxis: Risk factors, diagnosis, and treatment. Am. J. Kidney Dis., 2015, 66(1), 133-146.
[http://dx.doi.org/10.1053/j.ajkd.2015.01.034] [PMID: 25960299]
[64]
Singh, P.; Rawat, A.; Alwakeel, M.; Sharif, E.; Al Khodor, S. The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals. Sci. Rep., 2020, 10(1), 21641.
[http://dx.doi.org/10.1038/s41598-020-77806-4] [PMID: 33303854]
[65]
Cucchiari, D.; Torregrosa, J.V. Calciphylaxis in patients with chronic kidney disease: A disease which is still bewildering and potentially fatal. Nefrologia, 2018, 38(6), 579-586.
[http://dx.doi.org/10.1016/j.nefroe.2018.09.001] [PMID: 30415999]
[66]
Amatya, B.; Agrawal, S.; Dhali, T.; Sharma, S.; Pandey, S.S. Pattern of skin and nail changes in chronic renal failure in Nepal: A hospital-based study. J. Dermatol., 2008, 35(3), 140-145.
[http://dx.doi.org/10.1111/j.1346-8138.2008.00433.x] [PMID: 18346256]
[67]
Abdelbaqi-Salhab, M.; Shalhub, S.; Morgan, M.B. A current review of the cutaneous manifestations of renal disease. J. Cutan. Pathol., 2003, 30(9), 527-538.
[http://dx.doi.org/10.1034/j.1600-0560.2003.00109.x] [PMID: 14507400]
[68]
Portolés, J.; Martín, L.; Broseta, J.J.; Cases, A. Anemia in chronic kidney disease: From pathophysiology and current treatments, to future agents. Front. Med., 2021, 8, 642296.
[http://dx.doi.org/10.3389/fmed.2021.642296] [PMID: 33842503]
[69]
Ogawa, C.; Tsuchiya, K.; Maeda, K.; Nitta, K. Renal anemia and iron metabolism. Contrib. Nephrol., 2018, 195, 62-73.
[http://dx.doi.org/10.1159/000486936] [PMID: 29734151]
[70]
Locatelli, F.; Fishbane, S.; Block, G.A.; Macdougall, I.C. Targeting hypoxia-inducible factors for the treatment of anemia in chronic kidney disease patients. Am. J. Nephrol., 2017, 45(3), 187-199.
[http://dx.doi.org/10.1159/000455166] [PMID: 28118622]
[71]
Das, N.K.; Schwartz, A.J.; Barthel, G.; Inohara, N.; Liu, Q.; Sankar, A.; Hill, D.R.; Ma, X.; Lamberg, O.; Schnizlein, M.K.; Arqués, J.L.; Spence, J.R.; Nunez, G.; Patterson, A.D.; Sun, D.; Young, V.B.; Shah, Y.M. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab., 2020, 31(1), 115-130.e6.
[http://dx.doi.org/10.1016/j.cmet.2019.10.005] [PMID: 31708445]
[72]
Tajbakhsh, R.; Dehghan, M.; Azarhoosh, R.; Haghighi, A.; Sadani, S.; Zadeh, S.; Kabootari, M.; Qorbani, M. Mucocutaneous manifestations and nail changes in patients with end-stage renal disease on hemodialysis. Saudi J. Kidney Dis. Transpl., 2013, 24(1), 36-40.
[http://dx.doi.org/10.4103/1319-2442.106236] [PMID: 23354189]
[73]
Blaha, T.; Nigwekar, S.; Combs, S.; Kaw, U.; Krishnappa, V.; Raina, R. Dermatologic manifestations in end stage renal disease. Hemodial. Int., 2019, 23(1), 3-18.
[http://dx.doi.org/10.1111/hdi.12689] [PMID: 30520561]
[74]
Galperin, T.A.; Cronin, A.J.; Leslie, K.S. Cutaneous Manifestations of ESRD. Clin. J. Am. Soc. Nephrol., 2014, 9(1), 201-218.
[http://dx.doi.org/10.2215/CJN.05900513] [PMID: 24115194]
[75]
Szepietowski, J.C.; Reich, A.; Schwartz, R.A. Uraemic xerosis. Nephrol. Dial. Transplant., 2004, 19(11), 2709-2712.
[http://dx.doi.org/10.1093/ndt/gfh480] [PMID: 15328388]
[76]
Codoñer, F.M.; Ramírez-Bosca, A.; Climent, E.; Carrión-Gutierrez, M.; Guerrero, M.; Pérez-Orquín, J.M.; Horga de la Parte, J.; Genovés, S.; Ramón, D.; Navarro-López, V.; Chenoll, E. Gut microbial composition in patients with psoriasis. Sci. Rep., 2018, 8(1), 3812.
[http://dx.doi.org/10.1038/s41598-018-22125-y] [PMID: 29491401]
[77]
Simonsen, E.; Komenda, P.; Lerner, B.; Askin, N.; Bohm, C.; Shaw, J.; Tangri, N.; Rigatto, C. Treatment of uremic pruritus: A systematic review. Am. J. Kidney Dis., 2017, 70(5), 638-655.
[http://dx.doi.org/10.1053/j.ajkd.2017.05.018] [PMID: 28720208]
[78]
Basavaiah, R.; Gurudutt, P.S. Prebiotic carbohydrates for therapeutics. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(2), 230-245.
[http://dx.doi.org/10.2174/1871530320666200929140522] [PMID: 32990546]
[79]
Collins, S.; Reid, G. Distant site effects of ingested prebiotics. Nutrients, 2016, 8(9), 523.
[http://dx.doi.org/10.3390/nu8090523] [PMID: 27571098]
[80]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[81]
Anania, C.; Brindisi, G.; Martinelli, I.; Bonucci, E.; D’Orsi, M.; Ialongo, S.; Nyffenegger, A.; Raso, T.; Spatuzzo, M.; De Castro, G.; Zicari, A.M.; Carraro, C.; Piccioni, M.G.; Olivero, F. Probiotics function in preventing atopic dermatitis in children. Int. J. Mol. Sci., 2022, 23(10), 5409.
[http://dx.doi.org/10.3390/ijms23105409] [PMID: 35628229]
[82]
Pagnini, C.; Saeed, R.; Bamias, G.; Arseneau, K.O.; Pizarro, T.T.; Cominelli, F. Probiotics promote gut health through stimulation of epithelial innate immunity. Proc. Natl. Acad. Sci., 2010, 107(1), 454-459.
[http://dx.doi.org/10.1073/pnas.0910307107] [PMID: 20018654]
[83]
Atabati, H.; Esmaeili, S.A.; Saburi, E.; Akhlaghi, M.; Raoofi, A.; Rezaei, N.; Momtazi-Borojeni, A.A. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: Evidence from experimental and clinical studies. J. Cell. Physiol., 2020, 235(12), 8925-8937.
[http://dx.doi.org/10.1002/jcp.29737] [PMID: 32346892]
[84]
Szöllősi, A.G.; Gueniche, A.; Jammayrac, O.; Szabó-Papp, J.; Blanchard, C.; Vasas, N.; Andrási, M.; Juhász, I.; Breton, L.; Bíró, T. Bifidobacterium longum extract exerts pro-differentiating effects on human epidermal keratinocytes, in vitro. Exp. Dermatol., 2017, 26(1), 92-94.
[http://dx.doi.org/10.1111/exd.13130] [PMID: 27315170]
[85]
Fuchs-Tarlovsky, V.; Marquez-Barba, M.F.; Sriram, K. Probiotics in dermatologic practice. Nutrition, 2016, 32(3), 289-295.
[http://dx.doi.org/10.1016/j.nut.2015.09.001] [PMID: 26707956]
[86]
Hobby, G.P.; Karaduta, O.; Dusio, G.F.; Singh, M.; Zybailov, B.L.; Arthur, J.M. Chronic kidney disease and the gut microbiome. Am. J. Physiol. Renal Physiol., 2019, 316(6), F1211-F1217.
[http://dx.doi.org/10.1152/ajprenal.00298.2018] [PMID: 30864840]
[87]
Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; Marsland, B.J. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med., 2014, 20(2), 159-166.
[http://dx.doi.org/10.1038/nm.3444] [PMID: 24390308]
[88]
Trompette, A.; Gollwitzer, E.S.; Pattaroni, C.; Lopez-Mejia, I.C.; Riva, E.; Pernot, J.; Ubags, N.; Fajas, L.; Nicod, L.P.; Marsland, B.J. Dietary fiber confers protection against flu by shaping Ly6c- Patrolling Monocyte Hematopoiesis and CD8+ T Cell Metabolism. Immunity, 2018, 48(5), 992-1005.e8.
[http://dx.doi.org/10.1016/j.immuni.2018.04.022] [PMID: 29768180]
[89]
Bachem, A.; Makhlouf, C.; Binger, K.J.; de Souza, D.P.; Tull, D.; Hochheiser, K.; Whitney, P.G.; Fernandez-Ruiz, D.; Dähling, S.; Kastenmüller, W.; Jönsson, J.; Gressier, E.; Lew, A.M.; Perdomo, C.; Kupz, A.; Figgett, W.; Mackay, F.; Oleshansky, M.; Russ, B.E.; Parish, I.A.; Kallies, A.; McConville, M.J.; Turner, S.J.; Gebhardt, T.; Bedoui, S. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity, 2019, 51(2), 285-297.e5.
[http://dx.doi.org/10.1016/j.immuni.2019.06.002] [PMID: 31272808]
[90]
Balmer, M.L.; Ma, E.H.; Bantug, G.R.; Grählert, J.; Pfister, S.; Glatter, T.; Jauch, A.; Dimeloe, S.; Slack, E.; Dehio, P.; Krzyzaniak, M.A.; King, C.G.; Burgener, A.V.; Fischer, M.; Develioglu, L.; Belle, R.; Recher, M.; Bonilla, W.V.; Macpherson, A.J.; Hapfelmeier, S.; Jones, R.G.; Hess, C. Memory CD8 + T Cells require increased concentrations of acetate induced by stress for optimal function. Immunity, 2016, 44(6), 1312-1324.
[http://dx.doi.org/10.1016/j.immuni.2016.03.016] [PMID: 27212436]
[91]
Schwarz, A.; Bruhs, A.; Schwarz, T. The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. J. Invest. Dermatol., 2017, 137(4), 855-864.
[http://dx.doi.org/10.1016/j.jid.2016.11.014] [PMID: 27887954]
[92]
Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Di Yu; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; Xavier, R.J.; Teixeira, M.M.; Mackay, C.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 2009, 461(7268), 1282-1286.
[http://dx.doi.org/10.1038/nature08530] [PMID: 19865172]
[93]
Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc., 2021, 80(1), 37-49.
[http://dx.doi.org/10.1017/S0029665120006916] [PMID: 32238208]
[94]
Samuelson, D.R.; Welsh, D.A.; Shellito, J.E. Regulation of lung immunity and host defense by the intestinal microbiota. Front. Microbiol., 2015, 6, 1085.
[http://dx.doi.org/10.3389/fmicb.2015.01085] [PMID: 26500629]
[95]
Zhao, Y.; Chen, F.; Wu, W.; Sun, M.; Bilotta, A.J.; Yao, S.; Xiao, Y.; Huang, X.; Eaves-Pyles, T.D.; Golovko, G.; Fofanov, Y.; D’Souza, W.; Zhao, Q.; Liu, Z.; Cong, Y. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol., 2018, 11(3), 752-762.
[http://dx.doi.org/10.1038/mi.2017.118] [PMID: 29411774]
[96]
Takeuchi, T.; Ohno, H. Reciprocal regulation of IgA and the gut microbiota: A key mutualism in the intestine. Int. Immunol., 2021, 33(12), 781-786.
[http://dx.doi.org/10.1093/intimm/dxab049] [PMID: 34346497]
[97]
Macia, L.; Tan, J.; Vieira, A.T.; Leach, K.; Stanley, D.; Luong, S.; Maruya, M.; Ian McKenzie, C.; Hijikata, A.; Wong, C.; Binge, L.; Thorburn, A.N.; Chevalier, N.; Ang, C.; Marino, E.; Robert, R.; Offermanns, S.; Teixeira, M.M.; Moore, R.J.; Flavell, R.A.; Fagarasan, S.; Mackay, C.R. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun., 2015, 6(1), 6734.
[http://dx.doi.org/10.1038/ncomms7734] [PMID: 25828455]
[98]
Felizardo, R.J.F.; Watanabe, I.K.M.; Dardi, P.; Rossoni, L.V.; Câmara, N.O.S. The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids. Pharmacol. Res., 2019, 141, 366-377.
[http://dx.doi.org/10.1016/j.phrs.2019.01.019] [PMID: 30639376]
[99]
Reddel, S.; Del Chierico, F.; Quagliariello, A.; Giancristoforo, S.; Vernocchi, P.; Russo, A.; Fiocchi, A.; Rossi, P.; Putignani, L.; El Hachem, M. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci. Rep., 2019, 9(1), 4996.
[http://dx.doi.org/10.1038/s41598-019-41149-6] [PMID: 30899033]
[100]
Sirich, T.L.; Plummer, N.S.; Gardner, C.D.; Hostetter, T.H.; Meyer, T.W. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin. J. Am. Soc. Nephrol., 2014, 9(9), 1603-1610.
[http://dx.doi.org/10.2215/CJN.00490114] [PMID: 25147155]
[101]
Asai, M.; Kumakura, S.; Kikuchi, M. Review of the efficacy of AST-120 (KREMEZIN®) on renal function in chronic kidney disease patients. Ren. Fail., 2019, 41(1), 47-56.
[http://dx.doi.org/10.1080/0886022X.2018.1561376] [PMID: 30732506]
[102]
Schulman, G.; Berl, T.; Beck, G.J.; Remuzzi, G.; Ritz, E.; Arita, K.; Kato, A.; Shimizu, M. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J. Am. Soc. Nephrol., 2015, 26(7), 1732-1746.
[http://dx.doi.org/10.1681/ASN.2014010042] [PMID: 25349205]
[103]
Hsu, C.K.; Su, S.C.; Chang, L.C.; Yang, K.J.; Lee, C.C.; Hsu, H.J.; Chen, Y.T.; Sun, C.Y.; Wu, I.W. Oral Absorbent AST-120 is associated with compositional and functional adaptations of gut microbiota and modification of serum short and medium-chain fatty acids in advanced CKD patients. Biomedicines, 2022, 10(9), 2234.
[http://dx.doi.org/10.3390/biomedicines10092234] [PMID: 36140334]
[104]
Sato, E.; Saigusa, D.; Mishima, E.; Uchida, T.; Miura, D.; Morikawa-Ichinose, T.; Kisu, K.; Sekimoto, A.; Saito, R.; Oe, Y.; Matsumoto, Y.; Tomioka, Y.; Mori, T.; Takahashi, N.; Sato, H.; Abe, T.; Niwa, T.; Ito, S. Impact of the oral adsorbent AST-120 on organ-specific accumulation of uremic toxins: LC-MS/MS and MS imaging techniques. Toxins, 2017, 10(1), 19.
[http://dx.doi.org/10.3390/toxins10010019] [PMID: 29283413]
[105]
Lano, G.; Burtey, S.; Sallée, M. Indoxyl sulfate, a uremic endotheliotoxin. Toxins, 2020, 12(4), 229.
[http://dx.doi.org/10.3390/toxins12040229] [PMID: 32260489]
[106]
Cheng, T.H.; Ma, M.C.; Liao, M.T.; Zheng, C.M.; Lu, K.C.; Liao, C.H.; Hou, Y.C.; Liu, W.C.; Lu, C.L. Indoxyl sulfate, a tubular toxin, contributes to the development of chronic kidney disease. Toxins, 2020, 12(11), 684.
[http://dx.doi.org/10.3390/toxins12110684] [PMID: 33138205]
[107]
Lenglet, A.; Fabresse, N.; Taupin, M.; Gomila, C.; Liabeuf, S.; Kamel, S.; Alvarez, J.C.; Drueke, T.B.; Massy, Z.A. Does the administration of sevelamer or nicotinamide modify uremic toxins or endotoxemia in chronic hemodialysis patients? Drugs, 2019, 79(8), 855-862.
[http://dx.doi.org/10.1007/s40265-019-01118-9] [PMID: 31062264]
[108]
Ada, S.; Seçkin, D. udakoğlu, İlu, Özdemir, F.N. Treatment of uremic pruritus with narrowband ultraviolet B phototherapy: An open pilot study. J. Am. Acad. Dermatol., 2005, 53(1), 149-151.
[http://dx.doi.org/10.1016/j.jaad.2004.12.052] [PMID: 15965439]
[109]
Gilchrest, B.A.; Rowe, J.W.; Brown, R.S.; Steinman, T.I.; Arndt, K.A. Relief of uremic pruritus with ultraviolet phototherapy. N. Engl. J. Med., 1977, 297(3), 136-138.
[http://dx.doi.org/10.1056/NEJM197707212970304] [PMID: 865585]
[110]
Cheng, A.Y.; Wong, L.S. Uremic pruritus: From diagnosis to treatment. Diagnostics, 2022, 12(5), 1108.
[http://dx.doi.org/10.3390/diagnostics12051108] [PMID: 35626264]
[111]
Balaskas, E.; Szepietowski, J.C.; Bessis, D.; Ioannides, D.; Ponticelli, C.; Ghienne, C.; Taberly, A.; Dupuy, P. Randomized, double-blind study with glycerol and paraffin in uremic xerosis. Clin. J. Am. Soc. Nephrol., 2011, 6(4), 748-752.
[http://dx.doi.org/10.2215/CJN.05490610] [PMID: 21258039]
[112]
Young, T.A.; Patel, T.S.; Camacho, F.; Clark, A.; Freedman, B.I.; Kaur, M.; Fountain, J.; Williams, L.L.; Yosipovitch, G.; Fleischer, A.B. Jr A pramoxine-based anti-itch lotion is more effective than a control lotion for the treatment of uremic pruritus in adult hemodialysis patients. J. Dermatolog. Treat., 2009, 20(2), 76-81.
[http://dx.doi.org/10.1080/09546630802441218] [PMID: 18821119]
[113]
Kimmel, M.; Alscher, D.M.; Dunst, R.; Braun, N.; Machleidt, C.; Kiefer, T.; Stülten, C.; van der Kuip, H.; Pauli-Magnus, C.; Raub, U.; Kuhlmann, U.; Mettang, T. The role of micro-inflammation in the pathogenesis of uraemic pruritus in haemodialysis patients. Nephrol. Dial. Transplant., 2006, 21(3), 749-755.
[http://dx.doi.org/10.1093/ndt/gfi204] [PMID: 16249205]
[114]
Sukul, N.; Speyer, E.; Tu, C.; Bieber, B.A.; Li, Y.; Lopes, A.A.; Asahi, K.; Mariani, L.; Laville, M.; Rayner, H.C.; Stengel, B.; Robinson, B.M.; Pisoni, R.L. Pruritus and patient reported outcomes in non-dialysis CKD. Clin. J. Am. Soc. Nephrol., 2019, 14(5), 673-681.
[http://dx.doi.org/10.2215/CJN.09600818] [PMID: 30975656]
[115]
Chorążyczewska, W.; Reich, A.; Szepietowski, J. Lipid content and barrier function analysis in uraemic pruritus. Acta Derm. Venereol., 2016, 96(3), 402-403.
[http://dx.doi.org/10.2340/00015555-2266] [PMID: 26524435]
[116]
Rossi, M.; Johnson, D.W.; Morrison, M.; Pascoe, E.M.; Coombes, J.S.; Forbes, J.M.; Szeto, C.C.; McWhinney, B.C.; Ungerer, J.P.J.; Campbell, K.L. Synbiotics easing renal failure by improving gut microbiology (SYNERGY). Clin. J. Am. Soc. Nephrol., 2016, 11(2), 223-231.
[http://dx.doi.org/10.2215/CJN.05240515] [PMID: 26772193]
[117]
Toyoda, S.; Kikuchi, M.; Komatsu, T.; Hori, Y.; Nakahara, S.; Kobayashi, S.; Sakai, Y.; Inoue, T.; Taguchi, I. Impact of the oral adsorbent AST-120 on oxidative stress and uremic toxins in high-risk chronic kidney disease patients. Int. J. Cardiol., 2014, 177(2), 705-707.
[http://dx.doi.org/10.1016/j.ijcard.2014.09.196] [PMID: 25449490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy