Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Investigation of the Apoptosis Inducing and β-catenin Silencing by Tetradentate Schiff Base Zinc(II) Complex on the T-47D Breast Cancer Cells

Author(s): Mostafa Heidari Majd and Xiangyu Guo*

Volume 23, Issue 15, 2023

Published on: 05 June, 2023

Page: [1740 - 1746] Pages: 7

DOI: 10.2174/1871520623666230511124547

Price: $65

Abstract

Introduction: Several mechanisms are known for the anticancer effects of cisplatin. However, its most wellknown function involves binding to DNA and activating the DNA damage response.

Methods: Despite its good effects, the treatment process often leads to chemoresistance and affects the mechanisms that support cell survival, such as pathways that promote cell growth, apoptosis, DNA damage repair, and endocytosis. For this reason, we investigated the effects of a new metal complex (tetradentate Schiff base zinc(II) complex) on breast cancer cells (T-47D). We evaluated its effect on cytotoxicity, apoptosis, and drug resistance in comparison to cisplatin.

Results: The results of the MTT test showed that tetradentate Schiff base zinc(II) complex has good cytotoxicity compared to cisplatin. The IC50 values for the [Zn(SB)]Cl2 complex and cisplatin after 72 h of exposure were equal to 42.1 and 276.1 μM, respectively. Real-time PCR assay confirmed that the [Zn(SB)]Cl2 complex activated the mitochondrial pathway of apoptosis and increased the expression of Bak1 and caspase-3 genes significantly compared to cisplatin. More importantly, the [Zn(SB)]Cl2 was able to reduce the expression of the β-catenin gene, which plays a role in drug resistance, by 0.011 compared to the control.

Conclusion: Therefore, we can hope for this new complex because, without the help of any β-catenin silencing agent, it was able to inhibit the drug resistance in the T-47D cell line that overexpresses the β-catenin gene.

Erratum In:
Investigation of the Apoptosis Inducing and β-catenin Silencing by Tetradentate Schiff Base Zinc(II) Complex on the T-47D Breast Cancer Cells

Graphical Abstract

[1]
Achkar, I.W.; Abdulrahman, N.; Al-Sulaiti, H.; Joseph, J.M.; Uddin, S.; Mraiche, F. Cisplatin based therapy: The role of the mitogen activated protein kinase signaling pathway. J. Transl. Med., 2018, 16(1), 96.
[http://dx.doi.org/10.1186/s12967-018-1471-1] [PMID: 29642900]
[2]
Köberle, B.; Schoch, S. Platinum complexes in colorectal cancer and other solid tumors., 2021, 13(9), 2073.
[3]
Johnson, B.W.; Burgess, M.W.; Murray, V.; Aldrich-Wright, J.R.; Temple, M.D. The interactions of novel mononuclear platinum-based complexes with DNA. BMC Cancer, 2018, 18(1), 1284.
[http://dx.doi.org/10.1186/s12885-018-5194-8] [PMID: 30577821]
[4]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[5]
Aldossary, S.A. Review on pharmacology of cisplatin: Clinical use, toxicity and mechanism of resistance of cisplatin. Biomed. Pharmacol. J., 2019, 12(1), 07-15.
[http://dx.doi.org/10.13005/bpj/1608]
[6]
Yuan, S.; Tao, F.; Zhang, X.; Zhang, Y.; Sun, X.; Wu, D. Role of Wnt/β -Catenin signaling in the chemoresistance modulation of colorectal cancer. BioMed Res. Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/9390878] [PMID: 32258160]
[7]
Li, L.; Liu, H.C.; Wang, C.; Liu, X.; Hu, F.C.; Xie, N.; Lü, L.; Chen, X.; Huang, H.Z. Overexpression of β -Catenin induces cisplatin resistance in oral squamous cell carcinoma. BioMed Res. Int., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/5378567] [PMID: 27529071]
[8]
Yang, X.; Tang, S.; Li, D.; Yu, X.; Wang, F.; Xiao, X. DIDS inhibits overexpression BAK1-induced mitochondrial apoptosis through GSK3β/β-catenin signaling pathway. J. Cell. Physiol., 2018, 233(6), 5070-5077.
[http://dx.doi.org/10.1002/jcp.26396] [PMID: 29231977]
[9]
Zhu, X.; Feng, J.; Fu, W.; Shu, X.; Wan, X.; Liu, J. Effects of cisplatin on the proliferation, invasion and apoptosis of breast cancer cells following β catenin silencing. Int. J. Mol. Med., 2020, 45(6), 1838-1850.
[http://dx.doi.org/10.3892/ijmm.2020.4543] [PMID: 32186756]
[10]
Wang, S.; Hannafon, B.N.; Lind, S.E.; Ding, W.Q. Zinc protoporphyrin suppresses β-Catenin protein expression in human cancer cells: The potential involvement of lysosome-mediated degradation. PLoS One, 2015, 10(5)e0127413
[http://dx.doi.org/10.1371/journal.pone.0127413] [PMID: 26000787]
[11]
Shahraki, S.; Majd, M.H.; Heydari, A. Novel tetradentate Schiff base zinc(II) complex as a potential antioxidant and cancer chemotherapeutic agent: Insights from the photophysical and computational approach. J. Mol. Struct., 2019, 1177, 536-544.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.005]
[12]
Shahraki, S.; Shiri, F.; Heidari Majd, M.; Dahmardeh, S. Anti-cancer study and whey protein complexation of new lanthanum(III) complex with the aim of achieving bioactive anticancer metal-based drugs. J. Biomol. Struct. Dyn., 2019, 37(8), 2072-2085.
[http://dx.doi.org/10.1080/07391102.2018.1476266] [PMID: 29768984]
[13]
Sorinezami, Z.; Mansouri-Torshizi, H.; Aminzadeh, M.; Ghahghaei, A.; Jamgohari, N.; Heidari Majd, M. Synthesis of new ultrasonic-assisted palladium oxide nanoparticles: An in vitro evaluation on cytotoxicity and DNA/BSA binding properties. J. Biomol. Struct. Dyn., 2019, 37(16), 4238-4250.
[http://dx.doi.org/10.1080/07391102.2018.1546619] [PMID: 30600777]
[14]
Yu, C. The role of folic acid in inducing of apoptosis by zinc(II) complex in ovary and cervix cancer cells. Mol. Divers., 2022, 26(3), 1545-1555.
[PMID: 34417716]
[15]
Yan, M.; Majd, M.H. Evaluation of induced apoptosis by biosynthesized zinc oxide nanoparticles in MCF-7 breast cancer cells using Bak1 and Bclx expression. Dokl. Biochem. Biophys., 2021, 500(1), 360-367.
[http://dx.doi.org/10.1134/S1607672921050148] [PMID: 34697744]
[16]
Ou, X.; Shahraki, J.; Heidari Majd, M. Investigation on protective effects of magnetic nanoparticles containing methotrexate and tamoxifen in inhibition of hepatocyte toxicity and induction of apoptosis. Lat. Am. J. Pharm., 2021, 40(9), 2219-2225.
[17]
Habibi Khorassani, S.M.; Ghodsi, F.; Arezomandan, H.; Shahraki, M.; Omidikia, N.; Hashemzaei, M.; Heidari Majd, M. In Vitro Apoptosis evaluation and kinetic modeling onto cyclodextrin-based host–guest magnetic nanoparticles containing methotrexate and tamoxifen. Bionanoscience, 2021, 11(3), 667-677.
[http://dx.doi.org/10.1007/s12668-021-00877-8]
[18]
Sargazi, A.; Barani, A.; Heidari Majd, M. Synthesis and apoptotic efficacy of biosynthesized silver nanoparticles using acacia luciana flower extract in MCF-7 breast cancer cells: Activation of Bak1 and Bclx for cancer therapy. Bionanoscience, 2020, 10(3), 683-689.
[http://dx.doi.org/10.1007/s12668-020-00753-x]
[19]
He, C.; Heidari Majd, M.; Shiri, F.; Shahraki, S. Palladium and platinum complexes of folic acid as new drug delivery systems for treatment of breast cancer cells. J. Mol. Struct., 2021, 1229129806
[http://dx.doi.org/10.1016/j.molstruc.2020.129806]
[20]
Diana, R.; Panunzi, B. The role of Zinc(II) Ion in fluorescence tuning of tridentate pincers: A review. Molecules, 2020, 25(21), 4984.
[http://dx.doi.org/10.3390/molecules25214984] [PMID: 33126503]
[21]
Abdel-Rahman, L.H.; Adam, M.S.S.; Al-Zaqri, N.; Shehata, M.R.; El-Sayed Ahmed, H.; Mohamed, S.K. Synthesis, characterization, biological and docking studies of ZrO(II), VO(II) and Zn(II) complexes of a halogenated tetra-dentate Schiff base. Arab. J. Chem., 2022, 15(5)103737
[http://dx.doi.org/10.1016/j.arabjc.2022.103737]
[22]
Ejidike, I.P.; Ajibade, P.A. Synthesis, characterization, antioxidant, and antibacterial studies of some metal(ii) complexes of tetradentate schiff base ligand: (4E)-4-[(2- (E)-[1-(2,4-Dihydroxyphenyl)ethylidene]amino ethyl)imino]pentan-2-one. Bioinorg. Chem. Appl., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/890734] [PMID: 26074738]
[23]
Nguyen, Q.T.; Pham Thi, P.N.; Nguyen, V.T. Synthesis, Characterization, and In Vitro Cytotoxicity of Unsymmetrical Tetradentate Schiff Base Cu(II) and Fe(III). Complexes. Bioinorg. Chem. Appl., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6696344] [PMID: 34035799]
[24]
Zhu, Y.; Wen, L.M.; Li, R.; Dong, W.; Jia, S.Y.; Qi, M.C. Recent advances of nano-drug delivery system in oral squamous cell carcinoma treatment. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(21), 9445-9453.
[PMID: 31773682]
[25]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098]
[26]
Yang, L.; Heidari Majd, M.; Shiri, F.; Shahraki, S.; Karimi, P. The in vitro apoptotic effect of new zinc complex possessing folic acid and phenanthroline on cervix cancer cells. Appl. Organomet. Chem., 2022, 36(2)e6525
[http://dx.doi.org/10.1002/aoc.6525]
[27]
Singh, A.K.; Tiwari, R.; Singh, V.K.; Singh, P.; Khadim, S.R.; Singh, U. Laxmi; Srivastava, V.; Hasan, S.H.; Asthana, R.K. Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line. J. Drug Deliv. Sci. Technol., 2019, 51, 164-176.
[http://dx.doi.org/10.1016/j.jddst.2019.02.023]
[28]
Zhao, H.; Wei, W.; Sun, Y.; Gao, J.; Wang, Q.; Zheng, J. Interference with the expression of β-catenin reverses cisplatin resistance in A2780/DDP cells and inhibits the progression of ovarian cancer in mouse model. DNA Cell Biol., 2015, 34(1), 55-62.
[http://dx.doi.org/10.1089/dna.2014.2626] [PMID: 25211326]
[29]
Liu, Y.; Liu, C.; Tan, T.; Li, S.; Tang, S.; Chen, X. Sinomenine sensitizes human gastric cancer cells to cisplatin through negative regulation of PI3K/AKT/Wnt signaling pathway. Anticancer Drugs, 2019, 30(10), 983-990.
[http://dx.doi.org/10.1097/CAD.0000000000000834] [PMID: 31609766]
[30]
Al-Serwi, R.H.; Othman, G.; Attia, M.A.; Enan, E.T.; El-Sherbiny, M.; Mahmoud, S.; Elsherbiny, N. Enhancement of cisplatin cytotoxicity by Cu(II)–Mn(II) schiff base tetradentate complex in human oral squamous cell carcinoma. Molecules, 2020, 25(20), 4688.
[http://dx.doi.org/10.3390/molecules25204688] [PMID: 33066414]
[31]
Wu, G.J.; Chen, J.T.; Tsai, H.C.; Chen, T.L.; Liu, S.H.; Chen, R.M. Protection of dexmedetomidine against ischemia/reperfusion-induced apoptotic insults to neuronal cells occurs via an intrinsic mitochondria-dependent pathway. J. Cell. Biochem., 2017, 118(9), 2635-2644.
[http://dx.doi.org/10.1002/jcb.25847] [PMID: 27987330]
[32]
Dou, J.; Mi, Y.; Daneshmand, S.; Heidari Majd, M. The effect of magnetic nanoparticles containing hyaluronic acid and methotrexate on the expression of genes involved in apoptosis and metastasis in A549 lung cancer cell lines. Arab. J. Chem., 2022, 15(12)104307
[http://dx.doi.org/10.1016/j.arabjc.2022.104307]
[33]
Shen, D.W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev., 2012, 64(3), 706-721.
[http://dx.doi.org/10.1124/pr.111.005637] [PMID: 22659329]
[34]
Zhang, D.; Fei, F.; Li, S.; Zhao, Y.; Yang, Z.; Qu, J.; Zhang, X.; Yin, Y.; Zhang, S. The role of β-catenin in the initiation and metastasis of TA2 mice spontaneous breast cancer. J. Cancer, 2017, 8(11), 2114-2123.
[http://dx.doi.org/10.7150/jca.19723] [PMID: 28819413]
[35]
Zhang, J. Liu, J.; Li, H.; Wang, J. β-catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Mol. Med. Rep., 2016, 13(3), 2543-2551.
[http://dx.doi.org/10.3892/mmr.2016.4882] [PMID: 26860078]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy