Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Attack Site Density of a Highly-efficient PET Hydrolases

Author(s): Qiang Li, Wenhong Liu, Nannan Jing, Qingqing Li, Kang Yang, Xia Wang* and Jianzhuang Yao*

Volume 30, Issue 6, 2023

Published on: 08 June, 2023

Page: [506 - 512] Pages: 7

DOI: 10.2174/0929866530666230509141807

Price: $65

Abstract

Introduction: Poly (ethylene terephthalate) (PET) is one of the most abundant polyester materials used in daily life and it is also one of the main culprits of environmental pollution. ICCG (F243I/D238C/S283C/Y127G) is an enzyme that performs four modifications on the leaf branch compost keratase (LCC). It shows excellent performance in the hydrolysis of PET and has a great potential in further applications.

Method: Here, we used ICCG to degrade PET particles of various sizes and use the density of attack sites (Γattack) and kinetic parameters to evaluate the effect of particle size on enzyme degradation efficiency. We are surprised to observe that there is a certain relationship between Km and Γattack. In order to further confirm the relationship, we obtained three different enzymes (Y95K, M166S and H218S) by site-directed mutagenesis on the basis of ICCG.

Result: The results confirmed that there was a negative correlation between Km and Γattack. In addition, we also found that increasing the affinity between the enzyme and the substrate does not necessarily lead to the increase of degradation rate.

Conclusion: These findings show that the granulation of PET and the selection of appropriate particle size are helpful to improve its industrial application value. At the same time, additional protein engineering to increase ICCG performance is realistic, but it can’t be limited to enhance the affinity between enzyme and substrate.

Graphical Abstract

[1]
Laskar, N.; Kumar, U. Plastics and microplastics: A threat to environment. Environmental Technology & Innovation, 2019, 14, 100352.
[2]
Singh, J.; Samuel, J.; Hurley, R. Editorial: Plastics, microplastics, and nanoplastics: management and mitigation of water contamination. Front. Environ. Sci., 2021, 9, 803551.
[http://dx.doi.org/10.3389/fenvs.2021.803551]
[3]
Dominic, W.; Niven, W. The plastic intensity of industries in the USA: The devil wears plastic. Environ. Model. Assess., 2022, 28, 15-28.
[4]
George, N.; Kurian, T. Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind. Eng. Chem. Res., 2014, 53(37), 14185-14198.
[5]
Mohammadian, M.; Allen, N.S.; Edge, M.; Jones, K. Environmental degradation of poly (ethylene terephthalate). Text. Res. J., 1991, 61(11), 690-696.
[http://dx.doi.org/10.1177/004051759106101109]
[6]
Daniel, P.; Tadeusz, S. Chemical Recycling of Poly(ethylene terephthalate). Ind. Eng. Chem. Res., 1997, 36(4), 1373-1383.
[7]
Mekhzoum, M.; Benzeid, H.; Rodrigue, D.; Qaiss, A.; Bouhfid, R. Recent advances in polymer recycling: A short review. Curr. Org. Synth., 2017, 14(2), 171-185.
[http://dx.doi.org/10.2174/1570179413666160929095017]
[8]
Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Management, 2017, 69, 24-58.
[http://dx.doi.org/10.1016/j.wasman.2017.07.044]
[9]
Wei, R.; Tiso, T.; Bertling, J.; O’Connor, K.; Blank, L.M.; Bornscheuer, U.T. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal., 2020, 3(11), 867-871.
[http://dx.doi.org/10.1038/s41929-020-00521-w]
[10]
Shirke, A.N.; White, C.; Englaender, J.A.; Zwarycz, A.; Butterfoss, G.L.; Linhardt, R.J.; Gross, R.A. Stabilizing leaf and branch compost cutinase (LCC) with glycosylation: mechanism and effect on PET hydrolysis. Biochemistry, 2018, 57(7), 1190-1200.
[http://dx.doi.org/10.1021/acs.biochem.7b01189] [PMID: 29328676]
[11]
Ribitsch, D.; Hromic, A.; Zitzenbacher, S.; Zartl, B.; Gamerith, C.; Pellis, A.; Jungbauer, A.; Łyskowski, A.; Steinkellner, G.; Gruber, K.; Tscheliessnig, R.; Herrero Acero, E.; Guebitz, G.M. Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica. Biotechnol. Bioeng., 2017, 114(11), 2481-2488.
[http://dx.doi.org/10.1002/bit.26372] [PMID: 28671263]
[12]
Čorak, I.; Tarbuk, A.; Đorđević, D.; Višić, K.; Botteri, L. Sustainable alkaline hydrolysis of polyester fabric at low temperature. Materials, 2022, 15(4), 1530.
[http://dx.doi.org/10.3390/ma15041530] [PMID: 35208070]
[13]
Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351(6278), 1196-1199.
[http://dx.doi.org/10.1126/science.aad6359]
[14]
Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.L.; Texier, H.; Gavalda, S.; Cot, M.; Guémard, E.; Dalibey, M.; Nomme, J.; Cioci, G.; Barbe, S.; Chateau, M.; André, I.; Duquesne, S.; Marty, A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 2020, 580(7802), 216-219.
[http://dx.doi.org/10.1038/s41586-020-2149-4] [PMID: 32269349]
[15]
Boneta, S.; Arafet, K.; Moliner, V. QM/MM study of the enzymatic biodegradation mechanism of polyethylene terephthalate. J. Chem. Inf. Model., 2021, 61(6), 3041-3051.
[http://dx.doi.org/10.1021/acs.jcim.1c00394] [PMID: 34085821]
[16]
Bååth, J.A.; Borch, K.; Jensen, K.; Brask, J.; Westh, P. Comparative biochemistry of four polyester (PET) hydrolases**. ChemBioChem, 2021, 22(9), 1627-1637.
[http://dx.doi.org/10.1002/cbic.202000793] [PMID: 33351214]
[17]
Kang, Y.; Wenyu, S.; Qiang, L.; Jingfeng, W.; Jianzhuang, Y.; Xia, W. Ellman’s method-based determination of acibenzolar-S-methyl in tobacco by transesterification with methanol and SABP2-catalyzed hydrolysis. Anal. Sci., 2022, 38(5), 749-757.
[18]
Barth, M.; Oeser, T.; Wei, R.; Then, J.; Schmidt, J.; Zimmermann, W. Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca. Biochem. Eng. J., 2015, 93, 222-228.
[http://dx.doi.org/10.1016/j.bej.2014.10.012]
[19]
Arnling Bååth, J.; Borch, K.; Westh, P. A suspension-based assay and comparative detection methods for characterization of polyethylene terephthalate hydrolases. Anal. Biochem., 2020, 607, 113873.
[http://dx.doi.org/10.1016/j.ab.2020.113873] [PMID: 32771375]
[20]
Kari, J.; Andersen, M.; Borch, K.; Westh, P. An inverse michaelis–menten approach for interfacial enzyme kinetics. ACS Catal., 2017, 7(7), 4904-4914.
[http://dx.doi.org/10.1021/acscatal.7b00838]
[21]
Mukai, K.; Yamada, K.; Doi, Y. Kinetics and mechanism of heterogeneous hydrolysis of poly[(R)-3-hydroxybutyrate] film by PHA depolymerases. Int. J. Biol. Macromol., 1993, 15(6), 361-366.
[http://dx.doi.org/10.1016/0141-8130(93)90054-P] [PMID: 8110658]
[22]
Hiraishi, T.; Komiya, N.; Matsumoto, N.; Abe, H.; Fujita, M.; Maeda, M. Degradation and adsorption characteristics of PHB depolymerase as revealed by kinetics of mutant enzymes with amino acid substitution in substrate-binding domain. Biomacromolecules, 2010, 11(1), 113-119.
[PMID: 20058938]
[23]
Chen, K.; Dong, X.; Sun, Y. Sequentially co-immobilized PET and MHET hydrolases via Spy chemistry in calcium phosphate nanocrystals present high-performance PET degradation. J. Hazard. Mater., 2022, 438, 129517.
[http://dx.doi.org/10.1016/j.jhazmat.2022.129517] [PMID: 35809363]
[24]
Sagong, H.Y.; Son, H.F.; Seo, H.; Hong, H.; Lee, D.; Kim, K.J. Implications for the PET decomposition mechanism through similarity and dissimilarity between PETases from Rhizobacter gummiphilus and Ideonella sakaiensis. J. Hazard. Mater., 2021, 416, 126075.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126075] [PMID: 34492896]
[25]
Chen, C.C.; Han, X.; Li, X.; Jiang, P.; Niu, D.; Ma, L.; Liu, W.; Li, S.; Qu, Y.; Hu, H.; Min, J.; Yang, Y.; Zhang, L.; Zeng, W.; Huang, J.W.; Dai, L.; Guo, R.T. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nat. Catal., 2021, 4(5), 425-430.
[http://dx.doi.org/10.1038/s41929-021-00616-y]
[26]
Han, X.; Liu, W.; Huang, J.W.; Ma, J.; Zheng, Y.; Ko, T.P.; Xu, L.; Cheng, Y.S.; Chen, C.C.; Guo, R.T. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun., 2017, 8(1), 2106.
[http://dx.doi.org/10.1038/s41467-017-02255-z] [PMID: 29235460]
[27]
Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.; Michener, W.E.; Amore, A.; Skaf, M.S.; Crowley, M.F.; Thorne, A.W.; Johnson, C.W.; Woodcock, H.L.; McGeehan, J.E.; Beckham, G.T. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA, 2018, 115(19), E4350-E4357.
[http://dx.doi.org/10.1073/pnas.1718804115] [PMID: 29666242]
[28]
Joo, S.; Cho, I.J.; Seo, H.; Son, H.F.; Sagong, H.Y.; Shin, T.J.; Choi, S.Y.; Lee, S.Y.; Kim, K.J. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun., 2018, 9(1), 382.
[http://dx.doi.org/10.1038/s41467-018-02881-1] [PMID: 29374183]
[29]
Mariñas-Collado, I.; Rivas-López, M.J.; Rodríguez-Díaz, J.M.; Santos-Martín, M.T. Optimal designs in enzymatic reactions with high-substrate inhibition. Chemom. Intell. Lab. Syst., 2019, 189, 102-109.
[http://dx.doi.org/10.1016/j.chemolab.2019.04.005]
[30]
Khrenova, M.G.; Polyakov, I.V.; Nemukhin, A.V. Molecular dynamics of enzyme-substrate complexes in guanosine trifosphate-binding proteins. Russ. J. Phys. Chem. B, 2022, 16, 455-460.
[31]
Walters, D.E. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis; Copeland, R.A., Ed.; Wiley-VCH: New York, 2002.
[32]
Müller, R.J.; Schrader, H.; Profe, J.; Dresler, K.; Deckwer, W.D. Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase fromt. fusca. Macromol. Rapid Commun., 2005, 26(17), 1400-1405.
[http://dx.doi.org/10.1002/marc.200500410]
[33]
Ribitsch, D.; Acero, E.H.; Greimel, K.; Eiteljoerg, I.; Trotscha, E.; Freddi, G.; Schwab, H.; Guebitz, G.M. Characterization of a new cutinase fromThermobifida albafor PET-surface hydrolysis. Biocatal. Biotransform., 2011, 2011, 2-9.
[34]
Gamerith, C.; Vastano, M.; Ghorbanpour, S.M.; Zitzenbacher, S.; Ribitsch, D.; Zumstein, M.T.; Sander, M.; Herrero Acero, E.; Pellis, A.; Guebitz, G.M. Enzymatic degradation of aromatic and aliphatic polyesters by P. pastoris expressed cutinase 1 from thermobifida cellulosilytica. Front. Microbiol., 2017, 8, 938.
[http://dx.doi.org/10.3389/fmicb.2017.00938] [PMID: 28596765]
[35]
Cui, Y.; Chen, Y.; Liu, X.; Dong, S.; Tian, Y.; Qiao, Y.; Mitra, R.; Han, J.; Li, C.; Han, X.; Liu, W.; Chen, Q.; Wei, W.; Wang, X.; Du, W.; Tang, S.; Xiang, H.; Liu, H.; Liang, Y.; Houk, K.N.; Wu, B. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal., 2021, 11(3), 1340-1350.
[http://dx.doi.org/10.1021/acscatal.0c05126]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy