Abstract
In this study, synthesis of ferrocenylimidazo[1,2-a]pyridine-3-amines was reported from the condensation reaction of ferrocenecarboxaldehyde, 2-aminopyridine, and isocyanides using ZrO(NO3)2.2H2O as an efficient, new, and reusable catalyst under reflux conditions in ethanol. The structures of the products were confirmed by IR, 1H NMR, 13C NMR, and elemental analysis. Quantum theoretical calculations for the structure of compounds (4a, 4b, and 4c) were done using the Def2 with the TZVPPD basis set. Geometric parameters were obtained from the optimized structures, and experimental results were analyzed with the calculated data. The structures of the products were proved by IR, 1H NMR, 13C NMR, and elemental analysis. Computations were carried out for the IR spectra data and 1H NMR and 13C NMR chemical shifts of the ferrocenylimidazo[1,2-a]pyridine-3- amine derivatives in the ground state. Ultimately, a great agreement was found between experimental and theoretical results.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.023] [PMID: 20149501]
[http://dx.doi.org/10.1016/j.bmcl.2013.06.043] [PMID: 23867166]
[http://dx.doi.org/10.1016/j.bmc.2007.10.042] [PMID: 17976993]
[http://dx.doi.org/10.1039/C9RA00350A] [PMID: 35519992]
[http://dx.doi.org/10.1002/ddr.20382]
[http://dx.doi.org/10.1016/j.ejps.2004.10.009]
[http://dx.doi.org/10.1016/j.ejmech.2011.02.051] [PMID: 21414694]
[http://dx.doi.org/10.1016/j.ejmech.2012.10.048] [PMID: 23164660]
[PMID: 24061731]
[http://dx.doi.org/10.3184/174751916X14683327937934]
[http://dx.doi.org/10.1016/j.bmc.2008.11.018] [PMID: 19059783]
[http://dx.doi.org/10.2174/1568026616666160530153233] [PMID: 27237332]
[http://dx.doi.org/10.1007/s40265-014-0300-y] [PMID: 25352391]
[http://dx.doi.org/10.1039/C4CC08495K] [PMID: 25407981]
[http://dx.doi.org/10.1055/s-0034-1380182]
[http://dx.doi.org/10.1016/S0040-4039(98)00653-4];
b) Bienaymé, H.; Bouzid, K. Eine neue heterocyclische Mehrkomponentenreaktion für die kombinatorische Synthese von anellierten 3-Aminoimidazolen. Angew. Chem., 1998, 110(16), 2349-2352.
[http://dx.doi.org/10.1002/(SICI)1521-3757(19980817)110:16<2349:AID-ANGE2349>3.0.CO;2-W]
[http://dx.doi.org/10.1016/j.tetlet.2003.11.051];
b) Khan, A.T. R, S.B.; Lal, M.; Mir, M.H. Formation of unexpected α-amino amidine through three-component ‘UGI condensation reaction’. RSC Advances, 2012, 2(13), 5506-5509.
[http://dx.doi.org/10.1039/c2ra20539d]
[http://dx.doi.org/10.1002/ejoc.201901124] [PMID: 34012704];
b) Saha, B.; Frett, B.; Wang, Y.; Li, H. A p-toluenesulfinic acid-catalyzed three-component Ugi-type reaction and its application for the synthesis of α-amino amides and amidines. Tetrahedron Lett., 2013, 54(19), 2340-2343.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.055];
c) Sharma, S.; Maurya, R.A.; Min, K.I.; Jeong, G.Y.; Kim, D.P. Odorless isocyanide chemistry: An integrated microfluidic system for a multistep reaction sequence. Angew. Chem. Int. Ed., 2013, 52(29), 7564-7568.
[http://dx.doi.org/10.1002/anie.201303213] [PMID: 23780803]
[http://dx.doi.org/10.1002/aoc.3410]
[http://dx.doi.org/10.1007/s13738-016-0849-3]
[http://dx.doi.org/10.3906/kim-1501-43]
[http://dx.doi.org/10.1007/s00706-010-0372-7]
[http://dx.doi.org/10.1002/9780470985663]
[http://dx.doi.org/10.1021/ja00326a036]
[http://dx.doi.org/10.1016/S0166-1280(98)90217-2]
[http://dx.doi.org/10.1016/j.molstruc.2017.09.108]
[http://dx.doi.org/10.11648/j.ajmsp.20170202.11]
[http://dx.doi.org/10.1016/j.molstruc.2017.07.036]
[http://dx.doi.org/10.1016/j.molstruc.2017.04.014]
[http://dx.doi.org/10.1039/C6RA03705D];
b) Zheng, L.; Qiao, Y.; Lu, M.; Chang, J. Theoretical investigations of the reaction between 1,4-dithiane-2,5-diol and azomethine imines: Mechanisms and diastereoselectivity. Org. Biomol. Chem., 2015, 13(27), 7558-7569.
[http://dx.doi.org/10.1039/C5OB00807G] [PMID: 26079432]
[http://dx.doi.org/10.1039/C4DT03491K] [PMID: 25649755];
b) Duca, D.; La Manna, G.; Rosa Russo, M. Computational studies on surface reaction mechanisms: Ethylene hydrogenation on platinum catalysts. Phys. Chem. Chem. Phys., 1999, 1(6), 1375-1382.
[http://dx.doi.org/10.1039/a808634f]
[http://dx.doi.org/10.1021/ja105035r] [PMID: 20795713];
b) Yang, Z.; Yu, P.; Houk, K.N. Molecular dynamics of Dimethyldioxirane C–H Oxidation. J. Am. Chem. Soc., 2016, 138(12), 4237-4242.
[http://dx.doi.org/10.1021/jacs.6b01028] [PMID: 26964643]
[http://dx.doi.org/10.1016/j.molstruc.2016.04.075];
b) Demir, S. Sarioğlu, A.O.; Güler, S.; Dege, N.; Sönmez, M. Synthesis, crystal structure analysis, spectral IR, NMR UV–Vis investigations, NBO and NLO of 2-benzoyl-N-(4-chlorophenyl)-3-oxo-3-phenylpropanamide with use of X-ray diffractions studies along with DFT calculations. J. Mol. Struct., 2016, 1118, 316-324.
[http://dx.doi.org/10.1016/j.molstruc.2016.04.042]
[http://dx.doi.org/10.1016/j.molliq.2016.01.024];
b) Anderson, G.M.; Cameron, I.; Murphy, J.A.; Tuttle, T. Predicting the reducing power of organic super electron donors. RSC Advances, 2016, 6(14), 11335-11343.
[http://dx.doi.org/10.1039/C5RA26483A]
[http://dx.doi.org/10.1139/cjc-2012-0506]
[http://dx.doi.org/10.1063/1.438955]
[http://dx.doi.org/10.1039/b508541a] [PMID: 16240044]
[http://dx.doi.org/10.1063/1.474865]
[http://dx.doi.org/10.1063/1.470438]
[http://dx.doi.org/10.2174/157017861101140113155817]
[http://dx.doi.org/10.1016/j.saa.2014.06.021] [PMID: 25014546]
[http://dx.doi.org/10.2174/1570178617999200818104322]
[http://dx.doi.org/10.1155/2020/9483520]
[http://dx.doi.org/10.1002/jhet.3959]
[http://dx.doi.org/10.22034/CRL.2020.250849.1081]