Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Current Formulation Strategies to Design Novel Carriers for Targeted Drug Delivery and Management of Infectious Keratitis: A Comprehensive Review on the Present State of the Art

Author(s): Tumpa Sarkar*, Mohini Singh, Bani Kumar Jana and Bhaskar Mazumder

Volume 21, Issue 13, 2024

Published on: 08 June, 2023

Page: [2567 - 2589] Pages: 23

DOI: 10.2174/1570180820666230509095446

Price: $65

Abstract

Objective: Infectious keratitis is a pernicious disease that affects the anterior segment of the eye and is one the leading causes of blindness worldwide. This disease may cause severe visual impairment or permanent vision damage if left untreated.

Discussion: No doubt there are many conventional drug delivery systems to treat ocular keratitis, yet it is the fifth leading cause of blindness globally. This is the result of the eye's complex anatomy and barrier system, which restricts the total ocular contact time of the conventional formulations resulting in underdosing. The widely used traditional formulations to treat keratitis, like antibiotic eye drops and ointments, are rendered useless due to less ocular contact time and low therapeutic drug levels at the target ocular site. The main requirement of the present time is to develop novel drug delivery-backed stratagems to overcome the shortcomings of conventional formulations, which will reduce the morbidity associated with infectious keratitis and improve clinical outcomes. It is worth mentioning that there are documented incidents of Herpetic keratitis of the cornea followed by COVID-19 infection and vaccination.

Conclusion: This paper is a rigorous review of all the novel drug delivery strategies to combat ocular keratitis. These future drug delivery strategies will pave the way for the present time researcher and formulation chemists to develop multi-dimensional novel formulations that are safe, patient-compliant, and surpass the ocular barriers to maintain therapeutic drug levels in ocular tissues.

[1]
Sridhar, M. Anatomy of cornea and ocular surface. Indian J. Ophthalmol., 2018, 66(2), 190-194.
[http://dx.doi.org/10.4103/ijo.IJO_646_17] [PMID: 29380756]
[2]
Huang, D.; Chen, Y.S.; Rupenthal, I.D. Overcoming ocular drug delivery barriers through the use of physical forces. Adv. Drug Deliv. Rev., 2018, 126, 96-112.
[http://dx.doi.org/10.1016/j.addr.2017.09.008] [PMID: 28916492]
[3]
Joseph, R.R.; Venkatraman, S.S. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine, 2017, 12(6), 683-702.
[http://dx.doi.org/10.2217/nnm-2016-0379] [PMID: 28186436]
[4]
Weng, Y.; Liu, J.; Jin, S.; Guo, W.; Liang, X.; Hu, Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B, 2017, 7(3), 281-291.
[http://dx.doi.org/10.1016/j.apsb.2016.09.001] [PMID: 28540165]
[5]
Achouri, D.; Alhanout, K.; Piccerelle, P.; Andrieu, V. Recent advances in ocular drug delivery. Drug Dev. Ind. Pharm., 2013, 39(11), 1599-1617.
[http://dx.doi.org/10.3109/03639045.2012.736515] [PMID: 23153114]
[6]
Willcox, M.D.; Walsh, K.; Nichols, J.J.; Morgan, P.B.; Jones, L.W. The ocular surface, coronaviruses and COVID-19. Clin. Exp. Optom., 2020, 103(4), 418-424.
[http://dx.doi.org/10.1111/cxo.13088] [PMID: 32406140]
[7]
Stapleton, F. The epidemiology of infectious keratitis. Ocul. Surf., 2021, S1542-0124(21), 00089-6.
[PMID: 34419639]
[8]
Chowdhary, A.; Singh, K. Spectrum of fungal keratitis in North India. Cornea, 2005, 24(1), 8-15.
[http://dx.doi.org/10.1097/01.ico.0000126435.25751.20] [PMID: 15604861]
[9]
Austin, A.; Lietman, T.; Rose-Nussbaumer, J. Update on the management of infectious keratitis. Ophthalmology, 2017, 124(11), 1678-1689.
[http://dx.doi.org/10.1016/j.ophtha.2017.05.012] [PMID: 28942073]
[10]
Karp, C.L.; Tuli, S.S.; Yoo, S.H.; Vroman, D.T.; Alfonso, E.C.; Huang, A.H.; Pflugfelder, S.C.; Culbertson, W.W. Infectious keratitis after LASIK. Ophthalmology, 2003, 110(3), 503-510.
[http://dx.doi.org/10.1016/S0161-6420(02)01760-8] [PMID: 12623812]
[11]
Abbas, M.N.; Khan, S.A.; Sadozai, S.K.; Khalil, I.A.; Anter, A.; Fouly, M.E.; Osman, A.H.; Kazi, M. Nanoparticles Loaded Thermoresponsive in situ Gel for Ocular Antibiotic Delivery against Bacterial Keratitis. Polymers, 2022, 14(6), 1135.
[http://dx.doi.org/10.3390/polym14061135] [PMID: 35335465]
[12]
Bourcier, T.; Thomas, F.; Borderie, V.; Chaumeil, C.; Laroche, L. Bacterial keratitis: Predisposing factors, clinical and microbiological review of 300 cases. Br. J. Ophthalmol., 2003, 87(7), 834-838.
[http://dx.doi.org/10.1136/bjo.87.7.834] [PMID: 12812878]
[13]
Schaefer, F.; Bruttin, O.; Zografos, L.; Guex-Crosier, Y. Bacterial keratitis: A prospective clinical and microbiological study. Br. J. Ophthalmol., 2001, 85(7), 842-847.
[http://dx.doi.org/10.1136/bjo.85.7.842] [PMID: 11423460]
[14]
Dart, J.K. Predisposing factors in microbial keratitis: The significance of contact lens wear. Br. J. Ophthalmol., 1988, 72(12), 926-930.
[http://dx.doi.org/10.1136/bjo.72.12.926] [PMID: 3147696]
[15]
Srinivasan, M.; Gonzales, C.A.; George, C.; Cevallos, V.; Mascarenhas, J.M.; Asokan, B.; Wilkins, J.; Smolin, G.; Whitcher, J.P. Epidemiology and aetiological diagnosis of corneal ulceration in Madurai, south India. Br. J. Ophthalmol., 1997, 81(11), 965-971.
[http://dx.doi.org/10.1136/bjo.81.11.965] [PMID: 9505820]
[16]
Hammersmith, K.M.; Nagra, P.K. Trends in Fungal Keratitis in the United States, 2001 to 2007. Yearbook of Ophthalmology, 2011, 2011, 121-122.
[http://dx.doi.org/10.1016/j.yoph.2011.02.020]
[17]
Leck, A.K.; Thomas, P.A.; Hagan, M.; Kaliamurthy, J.; Ackuaku, E.; John, M.; Newman, M.J.; Codjoe, F.S.; Opintan, J.A.; Kalavathy, C.M.; Essuman, V.; Jesudasan, C A N.; Johnson, G.J. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br. J. Ophthalmol., 2002, 86(11), 1211-1215.
[http://dx.doi.org/10.1136/bjo.86.11.1211] [PMID: 12386069]
[18]
Brown, L.; Leck, A.K.; Gichangi, M.; Burton, M.J.; Denning, D.W. The global incidence and diagnosis of fungal keratitis. Lancet Infect. Dis., 2021, 21(3), e49-e57.
[http://dx.doi.org/10.1016/S1473-3099(20)30448-5] [PMID: 33645500]
[19]
Xie, L.; Zhong, W.; Shi, W.; Sun, S. Spectrum of fungal keratitis in north China. Ophthalmology, 2006, 113(11), 1943-1948.
[http://dx.doi.org/10.1016/j.ophtha.2006.05.035] [PMID: 16935335]
[20]
O’Day, D.M.; Head, W.S. Advances in the management of keratomycosis and Acanthamoeba keratitis. Cornea, 2000, 19(5), 681-687.
[http://dx.doi.org/10.1097/00003226-200009000-00013] [PMID: 11009320]
[21]
Bharathi, M.J.; Ramakrishnan, R.; Meenakshi, R.; Padmavathy, S.; Shivakumar, C.; Srinivasan, M. Microbial keratitis in South India: influence of risk factors, climate, and geographical variation. Ophthalmic Epidemiol., 2007, 14(2), 61-69.
[http://dx.doi.org/10.1080/09286580601001347] [PMID: 17464852]
[22]
Williamson, J.; Gordon, A.M.; Wood, R.; Dyer, A.M.; Yahya, O.A. Fungal flora of the conjunctival sac in health and disease. Influence of topical and systemic steroids. Br. J. Ophthalmol., 1968, 52(2), 127-137.
[http://dx.doi.org/10.1136/bjo.52.2.127] [PMID: 5642661]
[23]
Ando, N.; Takatori, K. Fungal flora of the conjunctival sac. Am. J. Ophthalmol., 1982, 94(1), 67-74.
[http://dx.doi.org/10.1016/0002-9394(82)90193-3] [PMID: 7091285]
[24]
Ansari, Z.; Miller, D.; Galor, A. Current thoughts in fungal keratitis: Diagnosis and treatment. Curr. Fungal Infect. Rep., 2013, 7(3), 209-218.
[http://dx.doi.org/10.1007/s12281-013-0150-1] [PMID: 24040467]
[25]
Sharma, N.; Chacko, J.; Velpandian, T.; Titiyal, J.S.; Sinha, R.; Satpathy, G.; Tandon, R.; Vajpayee, R.B. Comparative evaluation of topical versus intrastromal voriconazole as an adjunct to natamycin in recalcitrant fungal keratitis. Ophthalmology, 2013, 120(4), 677-681.
[http://dx.doi.org/10.1016/j.ophtha.2012.09.023] [PMID: 23246119]
[26]
Sharma, S. Diagnosis of fungal keratitis: Current options. Expert Opin. Med. Diagn., 2012, 6(5), 449-455.
[http://dx.doi.org/10.1517/17530059.2012.679656] [PMID: 23480809]
[27]
Niederkorn, J.Y.; Kaplan, H.J. Eds.; Immune response and the eye; Karger Medical and Scientific Publishers, 2007.
[http://dx.doi.org/10.1159/isbn.978-3-318-01404-4]
[28]
Peggy Chang, H-Y.; Chodosh, J. Diagnostic and therapeutic considerations in fungal keratitis. Int. Ophthalmol. Clin., 2011, 51(4), 33-42.
[http://dx.doi.org/10.1097/IIO.0b013e31822d64dc] [PMID: 21897138]
[29]
Koganti, R.; Yadavalli, T.; Naqvi, R.A.; Shukla, D.; Naqvi, A.R. Pathobiology and treatment of viral keratitis. Exp. Eye Res., 2021, 205, 108483.
[http://dx.doi.org/10.1016/j.exer.2021.108483] [PMID: 33556334]
[30]
Farooq, A.V.; Shukla, D. Herpes simplex epithelial and stromal keratitis: An epidemiologic update. Surv. Ophthalmol., 2012, 57(5), 448-462.
[http://dx.doi.org/10.1016/j.survophthal.2012.01.005] [PMID: 22542912]
[31]
Akhtar, J.; Tiwari, V.; Oh, M.J.; Kovacs, M.; Jani, A.; Kovacs, S.K.; Valyi-Nagy, T.; Shukla, D. HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium. Invest. Ophthalmol. Vis. Sci., 2008, 49(9), 4026-4035.
[http://dx.doi.org/10.1167/iovs.08-1807] [PMID: 18502984]
[32]
Peng, Y.; Zhou, Y.H. Is novel coronavirus disease (COVID-19) transmitted through conjunctiva? J. Med. Virol., 2020, 92(9), 1408-1409.
[http://dx.doi.org/10.1002/jmv.25753] [PMID: 32176356]
[33]
Alkwikbi, H.; Alenazi, M.; Alanazi, W.; Alruwaili, S. Herpetic keratitis and corneal endothelitis following COVID-19 vaccination: A case series. Cureus, 2022, 14(1), e20967.
[http://dx.doi.org/10.7759/cureus.20967] [PMID: 35154946]
[34]
Güemes-Villahoz, N.; Burgos-Blasco, B.; Arribi-Vilela, A.; Arriola-Villalobos, P.; Rico-Luna, C.M.; Cuiña-Sardiña, R.; Delgado-Iribarren, A.; García-Feijoó, J. Detecting SARS-CoV-2 RNA in conjunctival secretions: Is it a valuable diagnostic method of COVID-19? J. Med. Virol., 2021, 93(1), 383-388.
[http://dx.doi.org/10.1002/jmv.26219] [PMID: 32579256]
[35]
Wu, P.; Duan, F.; Luo, C.; Liu, Q.; Qu, X.; Liang, L.; Wu, K. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol., 2020, 138(5), 575-578.
[http://dx.doi.org/10.1001/jamaophthalmol.2020.1291] [PMID: 32232433]
[36]
Thomas, P.A.; Kaliamurthy, J. Mycotic keratitis: Epidemiology, diagnosis and management. Clin. Microbiol. Infect., 2013, 19(3), 210-220.
[http://dx.doi.org/10.1111/1469-0691.12126] [PMID: 23398543]
[37]
FlorCruz, N.V.; Evans, J.R. Medical interventions for fungal keratitis. Cochrane Database Syst. Rev., 2015, 15(2), CD004241.
[38]
Thomas, P.A.; Leck, A.K.; Myatt, M. Characteristic clinical features as an aid to the diagnosis of suppurative keratitis caused by filamentous fungi. Br. J. Ophthalmol., 2005, 89(12), 1554-1558.
[http://dx.doi.org/10.1136/bjo.2005.076315] [PMID: 16299128]
[39]
Kumar, A.; Khurana, A.; Sharma, M.; Chauhan, L. Causative fungi and treatment outcome of dematiaceous fungal keratitis in North India. Indian J. Ophthalmol., 2019, 67(7), 1048-1053.
[http://dx.doi.org/10.4103/ijo.IJO_1612_18] [PMID: 31238406]
[40]
Lee, M.H.; Abell, R.G.; Mitra, B.; Ferdinands, M.; Vajpayee, R.B. Risk factors, demographics and clinical profile of Acanthamoeba keratitis in Melbourne: An 18-year retrospective study. Br. J. Ophthalmol., 2018, 102(5), 687-691.
[http://dx.doi.org/10.1136/bjophthalmol-2017-310428] [PMID: 28844988]
[41]
Maycock, N.J.R.; Jayaswal, R. Update on Acanthamoeba keratitis: Diagnosis, treatment, and outcomes. Cornea, 2016, 35(5), 713-720.
[http://dx.doi.org/10.1097/ICO.0000000000000804] [PMID: 26989955]
[42]
Khurana, S.; Agrawal, S.K.; Megha, K.; Dwivedi, S.; Jain, N.; Gupta, A. Demographic and clinical profile of microspodial keratitis in North India: An underreported entity. J. Parasit. Dis., 2019, 43(4), 601-606.
[http://dx.doi.org/10.1007/s12639-019-01134-2] [PMID: 31749531]
[43]
Mittal, R.; Jena, S.K.; Desai, A.; Agarwal, S. Pythium insidiosum keratitis: Histopathology and rapid novel diagnostic staining technique. Cornea, 2017, 36(9), 1124-1132.
[http://dx.doi.org/10.1097/ICO.0000000000001244] [PMID: 28582375]
[44]
Vaddavalli, P.K.; Garg, P.; Sharma, S.; Sangwan, V.S.; Rao, G.N.; Thomas, R. Role of confocal microscopy in the diagnosis of fungal and acanthamoeba keratitis. Ophthalmology, 2011, 118(1), 29-35.
[http://dx.doi.org/10.1016/j.ophtha.2010.05.018] [PMID: 20801515]
[45]
Labbé, A.; Khammari, C.; Dupas, B.; Gabison, E.; Brasnu, E.; Labetoulle, M.; Baudouin, C. Contribution of in vivo confocal microscopy to the diagnosis and management of infectious keratitis. Ocul. Surf., 2009, 7(1), 41-52.
[http://dx.doi.org/10.1016/S1542-0124(12)70291-4] [PMID: 19214351]
[46]
Chidambaram, J.D.; Prajna, N.V.; Larke, N.L.; Palepu, S.; Lanjewar, S.; Shah, M.; Elakkiya, S.; Lalitha, P.; Carnt, N.; Vesaluoma, M.H.; Mason, M.; Hau, S.; Burton, M.J. Prospective study of the diagnostic accuracy of the in vivo laser scanning confocal microscope for severe microbial keratitis. Ophthalmology, 2016, 123(11), 2285-2293.
[http://dx.doi.org/10.1016/j.ophtha.2016.07.009] [PMID: 27538797]
[47]
Kanavi, M.R.; Javadi, M.; Yazdani, S.; Mirdehghanm, S. Sensitivity and specificity of confocal scan in the diagnosis of infectious keratitis. Cornea.,
[48]
Chidambaram, J.D.; Prajna, N.V.; Larke, N.; Macleod, D.; Srikanthi, P.; Lanjewar, S.; Shah, M.; Lalitha, P.; Elakkiya, S.; Burton, M.J. In vivo confocal microscopy appearance of Fusarium and Aspergillus species in fungal keratitis. Br. J. Ophthalmol., 2017, 101(8), 1119-1123.
[http://dx.doi.org/10.1136/bjophthalmol-2016-309656] [PMID: 28043985]
[49]
Tabatabaei, S.A.; Soleimani, M.; Tabatabaei, S.M.; Beheshtnejad, A.H.; Valipour, N.; Mahmoudi, S. The use of in vivo confocal microscopy to track treatment success in fungal keratitis and to differentiate between Fusarium and Aspergillus keratitis. Int. Ophthalmol., 2020, 40(2), 483-491.
[http://dx.doi.org/10.1007/s10792-019-01209-2] [PMID: 31701361]
[50]
Robaei, D.; Chan, U.T.; Khoo, P.; Cherepanoff, S.; Li, Y.C.; Hanrahan, J.; Watson, S. Corneal biopsy for diagnosis of recalcitrant microbial keratitis. Graefes Arch. Clin. Exp. Ophthalmol., 2018, 256(8), 1527-1533.
[http://dx.doi.org/10.1007/s00417-018-3981-1] [PMID: 29663139]
[51]
Goh, J.W.Y.; Harrison, R.; Hau, S.; Alexander, C.L.; Tole, D.M.; Avadhanam, V.S. Comparison of in vivo confocal microscopy, PCR and culture of corneal scrapes in the diagnosis of Acanthamoeba keratitis. Cornea, 2018, 37(4), 480-485.
[http://dx.doi.org/10.1097/ICO.0000000000001497] [PMID: 29256983]
[52]
Watson, S.L.; Gatus, B.J.; Cabrera-Aguas, M.; Armstrong, B.H.; George, C.R.; Khoo, P.; Lahra, M.M. Bacterial ocular surveillance system (BOSS) Sydney, Australia 2017-2018. Commun. Dis. Intell., 2020, 44.
[http://dx.doi.org/10.33321/cdi.2020.44.86]
[53]
Azher, T.; Yin, X.T.; Tajfirouz, D.; Huang, A.; Stuart, P. Herpes simplex keratitis: Challenges in diagnosis and clinical management. Clin. Ophthalmol., 2017, 11, 185-191.
[http://dx.doi.org/10.2147/OPTH.S80475] [PMID: 28176902]
[54]
Cabrera-Aguas, M.; Khoo, P.; Watson, S.L. Infectious keratitis: A review. Clin. Exp. Ophthalmol., 2022, 50(5), 543-562.
[http://dx.doi.org/10.1111/ceo.14113] [PMID: 35610943]
[55]
Ferrer, C.; Alió, J.L. Evaluation of molecular diagnosis in fungal keratitis. Ten years of experience. J. Ophthalmic Inflamm. Infect., 2011, 1(1), 15-22.
[http://dx.doi.org/10.1007/s12348-011-0019-9] [PMID: 21475656]
[56]
Lakhani, P.; Patil, A.; Majumdar, S. Challenges in the polyene-and azole-based pharmacotherapy of ocular fungal infections. J. Ocul. Pharmacol. Ther., 2019, 35(1), 6-22.
[http://dx.doi.org/10.1089/jop.2018.0089] [PMID: 30481082]
[57]
Haro-Reyes, T.; Díaz-Peralta, L.; Galván-Hernández, A.; Rodríguez-López, A.; Rodríguez-Fragoso, L.; Ortega-Blake, I. Polyene antibiotics physical chemistry and their effect on lipid membranes; impacting biological processes and medical applications. Membranes, 2022, 12(7), 681.
[http://dx.doi.org/10.3390/membranes12070681] [PMID: 35877884]
[58]
Müller, G.G.; Kara-José, N.; Castro, R.S. Antifungals in eye infections: Drugs and routes of administration. Rev. Bras. Oftalmol., 2013, 72, 132-141.
[59]
Lalitha, P.; Shapiro, B.L.; Srinivasan, M.; Prajna, N.V.; Acharya, N.R.; Fothergill, A.W.; Ruiz, J.; Chidambaram, J.D.; Maxey, K.J.; Hong, K.C.; McLeod, S.D.; Lietman, T.M. Antimicrobial susceptibility of Fusarium, Aspergillus, and other filamentous fungi isolated from keratitis. Arch. Ophthalmol., 2007, 125(6), 789-793.
[http://dx.doi.org/10.1001/archopht.125.6.789] [PMID: 17562990]
[60]
Dahlgren, M.A.; Lingappan, A.; Wilhelmus, K.R. The clinical diagnosis of microbial keratitis. Am. J. Ophthalmol., 2007, 143(6), 940-944.e1.
[http://dx.doi.org/10.1016/j.ajo.2007.02.030] [PMID: 17408586]
[61]
Patil, A.; Lakhani, P.; Majumdar, S. Current perspectives on natamycin in ocular fungal infections. J. Drug Deliv. Sci. Technol., 2017, 41, 206-212.
[http://dx.doi.org/10.1016/j.jddst.2017.07.015]
[62]
Rosa, R.H., Jr; Miller, D.; Alfonso, E.C. The changing spectrum of fungal keratitis in south Florida. Ophthalmology, 1994, 101(6), 1005-1013.
[http://dx.doi.org/10.1016/S0161-6420(94)31225-5] [PMID: 8008340]
[63]
Tuli, S. Fungal keratitis. Clin. Ophthalmol., 2011, 5, 275-279.
[http://dx.doi.org/10.2147/OPTH.S10819] [PMID: 21468333]
[64]
Kaur, I.P.; Rana, C.; Singh, H. Development of effective ocular preparations of antifungal agents. J. Ocul. Pharmacol. Ther., 2008, 24(5), 481-494.
[http://dx.doi.org/10.1089/jop.2008.0031] [PMID: 18788998]
[65]
Prajna, N.V.; Mascarenhas, J.; Krishnan, T.; Reddy, P.R.; Prajna, L.; Srinivasan, M.; Vaitilingam, C.M.; Hong, K.C.; Lee, S.M.; McLeod, S.D.; Zegans, M.E.; Porco, T.C.; Lietman, T.M.; Acharya, N.R. Comparison of natamycin and voriconazole for the treatment of fungal keratitis. Arch. Ophthalmol., 2010, 128(6), 672-678.
[http://dx.doi.org/10.1001/archophthalmol.2010.102] [PMID: 20547942]
[66]
Gopinathan, U.; Garg, P.; Fernandes, M.; Sharma, S.; Athmanathan, S.; Rao, G.N. The epidemiological features and laboratory results of fungal keratitis: A 10-year review at a referral eye care center in South India. Cornea, 2002, 21(6), 555-559.
[http://dx.doi.org/10.1097/00003226-200208000-00004] [PMID: 12131029]
[67]
Saha, R.; Das, S. Mycological profile of infectious Keratitis from Delhi. Indian J. Med. Res., 2006, 123(2), 159-164.
[PMID: 16575115]
[68]
Prajna, N.V.; Radhakrishnan, N. Intrastromal natamycin: A well-aimed arrow in a difficult battle. Indian J. Ophthalmol., 2021, 69(10), 2565.
[http://dx.doi.org/10.4103/ijo.IJO_775_21] [PMID: 34571592]
[69]
Martinez, R. An update on the use of antifungal agents. J. Bras. Pneumol., 2006, 32(5), 449-460.
[http://dx.doi.org/10.1590/S1806-37132006000500013] [PMID: 17268750]
[70]
Kermani, N.K.; Aggarwal, S.P. Isolated post-operative Aspergillus niger endophthalmitis. Eye, 2000, 14(1), 114-116.
[http://dx.doi.org/10.1038/eye.2000.32] [PMID: 10755121]
[71]
Fitzsimons, R.; Peters, A.L. Miconazole and ketoconazole as a satisfactory first-line treatment for keratomycosis. Am. J. Ophthalmol., 1986, 101(5), 605-608.
[http://dx.doi.org/10.1016/0002-9394(86)90953-0] [PMID: 3706466]
[72]
Torres, M.A.; Mohamed, J.; Cavazos-Adame, H.; Martinez, L.A. Topical ketoconazole for fungal keratitis. Am. J. Ophthalmol., 1985, 100(2), 293-298.
[http://dx.doi.org/10.1016/0002-9394(85)90795-0] [PMID: 4025470]
[73]
Prajna, N.V.; John, R.K.; Nirmalan, P.K.; Lalitha, P.; Srinivasan, M. A randomised clinical trial comparing 2% econazole and 5% natamycin for the treatment of fungal keratitis. Br. J. Ophthalmol., 2003, 87(10), 1235-1237.
[http://dx.doi.org/10.1136/bjo.87.10.1235] [PMID: 14507756]
[74]
Prajna, N.V.; Nirmalan, P.K.; Mahalakshmi, R.; Lalitha, P.; Srinivasan, M. Concurrent use of 5% natamycin and 2% econazole for the management of fungal keratitis. Cornea, 2004, 23(8), 793-796.
[http://dx.doi.org/10.1097/01.ico.0000134193.64357.82] [PMID: 15502480]
[75]
Ishibashi, Y.; Matsumoto, Y.; Takei, K. The effects of intravenous miconazole on fungal keratitis. Am. J. Ophthalmol., 1984, 98(4), 433-437.
[http://dx.doi.org/10.1016/0002-9394(84)90126-0] [PMID: 6541434]
[76]
Behrens-Baumann, W.; Klinge, B.; Rüchel, R. Topical fluconazole for experimental candida keratitis in rabbits. Br. J. Ophthalmol., 1990, 74(1), 40-42.
[http://dx.doi.org/10.1136/bjo.74.1.40] [PMID: 2306443]
[77]
Matsumoto, Y.; Murat, D.; Kojima, T.; Shimazaki, J.; Tsubota, K. The comparison of solitary topical micafungin or fluconazole application in the treatment of Candida fungal keratitis. Br. J. Ophthalmol., 2011, 95(10), 1406-1409.
[http://dx.doi.org/10.1136/bjo.2010.191734] [PMID: 21097785]
[78]
Amaral, V.C.S.; Nunes Junior, G.P. Ketoconazole- and fluconazole-induced embryotoxicity and skeletal anomalies in wistar rats: A comparative study. Braz. Arch. Biol. Technol., 2008, 51(6), 1153-1161.
[http://dx.doi.org/10.1590/S1516-89132008000600010]
[79]
Yavas, G.F.; Öztürk, F.; Küsbeci, T.; Çetınkaya, Z.; Ermis, S.S.; Kiraz, N.; Inan, Ü.Ü. Antifungal efficacy of voriconazole, itraconazole and amphotericin b in experimental fusarium solani keratitis. Graefes Arch. Clin. Exp. Ophthalmol., 2008, 246(2), 275-279.
[http://dx.doi.org/10.1007/s00417-007-0687-1] [PMID: 17912543]
[80]
Tu, E.Y.; McCartney, D.L.; Beatty, R.F.; Springer, K.L.; Levy, J.; Edward, D. Successful treatment of resistant ocular fusariosis with posaconazole (SCH-56592). Am. J. Ophthalmol., 2007, 143(2), 222-227.e1.
[http://dx.doi.org/10.1016/j.ajo.2006.10.048] [PMID: 17258521]
[81]
Altun, A.; Kurna, S.A.; Sengor, T.; Altun, G.; Olcaysu, O.O.; Aki, S.F.; Simsek, M.H. Effectiveness of posaconazole in recalcitrant fungal keratitis resistant to conventional antifungal drugs. Case Rep. Ophthalmol. Med., 2014, 2014, 1-4.
[http://dx.doi.org/10.1155/2014/701653] [PMID: 25184064]
[82]
Marangon, F.B.; Miller, D.; Giaconi, J.A.; Alfonso, E.C. In vitro investigation of voriconazole susceptibility for keratitis and endophthalmitis fungal pathogens. Am. J. Ophthalmol., 2004, 137(5), 820-825.
[http://dx.doi.org/10.1016/j.ajo.2003.11.078] [PMID: 15126145]
[83]
Coleman, V.R.; Tsu, E.; Jawetz, E. “Treatment-resistance” to idoxuridine in herpetic keratitis. Exp. Biol. Med., 1968, 129(3), 761-765.
[http://dx.doi.org/10.3181/00379727-129-33419] [PMID: 4302153]
[84]
Coster, D.J.; Wilhelmus, K.R.; Michaud, R.; Jones, B.R. A comparison of acyclovir and idoxuridine as treatment for ulcerative herpetic keratitis. Br. J. Ophthalmol., 1980, 64(10), 763-765.
[http://dx.doi.org/10.1136/bjo.64.10.763] [PMID: 7000170]
[85]
McGill, J.; Scott, G.M. Viral keratitis. Br. Med. Bull., 1985, 41(4), 351-356.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072075] [PMID: 2413949]
[86]
Heidelberger, C.; King, D.H. Trifluorothymidine. Pharmacol. Ther., 1979, 6(3), 427-442.
[http://dx.doi.org/10.1016/0163-7258(79)90062-7]
[87]
Hyndiuk, R.A.; Hull, D.S.; Schultz, R.O.; Chin, G.N.; Laibson, P.R.; Krachmer, J.H. Adenine arabinoside in idoxuridine unresponsive and intolerant herpetic keratitis. Am. J. Ophthalmol., 1975, 79(4), 655-658.
[http://dx.doi.org/10.1016/0002-9394(75)90806-5] [PMID: 123413]
[88]
Gade, S.K.; Shivshetty, N.; Sharma, N.; Bhatnagar, S.; Garg, P.; Venuganti, V.V.K. Effect of mucoadhesive polymeric formulation on corneal permeation of fluoroquinolones. J. Ocul. Pharmacol. Ther., 2018, 34(8), 570-578.
[http://dx.doi.org/10.1089/jop.2018.0059] [PMID: 30136888]
[89]
Wong, R.L.M.; Gangwani, R.A.; Yu, L.W.H.; Lai, J.S.M. New treatments for bacterial keratitis. J. Ophthalmol., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/831502] [PMID: 22991650]
[90]
Kirtland, M.E.; Tsitoura, D.C.; Durham, S.R.; Shamji, M.H. Toll-like receptor agonists as adjuvants for allergen immunotherapy. Front. Immunol., 2020, 11, 599083.
[http://dx.doi.org/10.3389/fimmu.2020.599083] [PMID: 33281825]
[91]
Hindman, H.B.; Patel, S.B.; Jun, A.S. Rationale for adjunctive topical corticosteroids in bacterial keratitis. Arch. Ophthalmol., 2009, 127(1), 97-102.
[http://dx.doi.org/10.1001/archophthalmol.2008.504] [PMID: 19139348]
[92]
Cohen, E.J. The case against the use of steroids in the treatment of bacterial keratitis. Arch. Ophthalmol., 2009, 127(1), 103-104.
[http://dx.doi.org/10.1001/archophthalmol.2008.503] [PMID: 19139349]
[93]
Miller, D. Pharmacological treatment for infectious corneal ulcers. Expert Opin. Pharmacother., 2013, 14(5), 543-560.
[http://dx.doi.org/10.1517/14656566.2013.775248] [PMID: 23441746]
[94]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci., 1996, 85(10), 1017-1025.
[http://dx.doi.org/10.1021/js950534b] [PMID: 8897265]
[95]
Loftsson, T.; Duchêne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm., 2007, 329(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.044] [PMID: 17137734]
[96]
Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm., 2018, 535(1-2), 272-284.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.018] [PMID: 29138045]
[97]
Muankaew, C.; Loftsson, T. Cyclodextrin-based formulations: A non-invasive platform for targeted drug delivery. Basic Clin. Pharmacol. Toxicol., 2018, 122(1), 46-55.
[http://dx.doi.org/10.1111/bcpt.12917] [PMID: 29024354]
[98]
Anand, S.; Braga, V.M. Cyclodextrins in ocular drug delivery; Nano-Biomaterials For Ophthalmic Drug Delivery, 2016, pp. 243-252.
[99]
Majeed, A.; Khan, N.A. Ocular in situ gel: An overview. J. Drug Deliv. Ther., 2019, 9(1), 337-347.
[http://dx.doi.org/10.22270/jddt.v9i1.2231]
[100]
Shepherd, J.; Sarker, P.; Rimmer, S.; Swanson, L.; MacNeil, S.; Douglas, I. Hyperbranched poly(NIPAM) polymers modified with antibiotics for the reduction of bacterial burden in infected human tissue engineered skin. Biomaterials, 2011, 32(1), 258-267.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.084] [PMID: 20933276]
[101]
Destruel, P.L.; Zeng, N.; Maury, M.; Mignet, N.; Boudy, V. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: State of the art and beyond. Drug Discov. Today, 2017, 22(4), 638-651.
[http://dx.doi.org/10.1016/j.drudis.2016.12.008] [PMID: 28017837]
[102]
Makwana, S.B.; Patel, V.A.; Parmar, S.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci., 2016, 6, 1-6.
[http://dx.doi.org/10.1016/j.rinphs.2015.06.001] [PMID: 26949596]
[103]
Kanoujia, J.; Sonker, K.; Pandey, M.; Kymonil, K.M.; Saraf, S.A. Formulation and characterization of a novel pH-triggered <i>in-situ</i> gelling ocular system containing Gatifloxacin. Int. Curr. Pharm. J., 1970, 1(3), 43-49.
[http://dx.doi.org/10.3329/icpj.v1i3.9661]
[104]
Upadhayay, P.; Kumar, M.; Pathak, K. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: optimization, ocular irritancy and corneal toxicity. Iran. J. Pharm. Res., 2016, 15(1), 3-22.
[PMID: 27610144]
[105]
Dol, H.; Gandhi, S.; Pardhi, D.; Vyawahare, N. Formulation and evaluation of in situ ophthalmic gel of moxifloxacin hydrochloride. Pharma Innov., 2014, 3(5, Part A), 60.
[106]
Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: Characterisation and research methods. ScientificWorldJournal, 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/861904] [PMID: 24772038]
[107]
Pahuja, P.; Arora, S.; Pawar, P. Ocular drug delivery system: A reference to natural polymers. Expert Opin. Drug Deliv., 2012, 9(7), 837-861.
[http://dx.doi.org/10.1517/17425247.2012.690733] [PMID: 22703523]
[108]
Li, P.; Wang, S.; Chen, H.; Zhang, S.; Yu, S.; Li, Y.; Cui, M.; Pan, W.; Yang, X. A novel ion-activated in situ gelling ophthalmic delivery system based on κ-carrageenan for acyclovir. Drug Dev. Ind. Pharm., 2018, 44(5), 829-836.
[http://dx.doi.org/10.1080/03639045.2017.1414232] [PMID: 29212376]
[109]
Bonferoni, M.C.; Chetoni, P.; Giunchedi, P.; Rossi, S.; Ferrari, F.; Burgalassi, S.; Caramella, C. Carrageenan-gelatin mucoadhesive systems for ion-exchange based ophthalmic delivery: in vitro and preliminary in vivo studies. Eur. J. Pharm. Biopharm., 2004, 57(3), 465-472.
[http://dx.doi.org/10.1016/j.ejpb.2003.12.002] [PMID: 15093594]
[110]
Mainardes, R.; Urban, M.; Cinto, P.; Khalil, N.; Chaud, M.; Evangelista, R.; Daflon Gremiao, M. Colloidal carriers for ophthalmic drug delivery. Curr. Drug Targets, 2005, 6(3), 363-371.
[http://dx.doi.org/10.2174/1389450053765914] [PMID: 15857294]
[111]
Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 2000, 45(1), 89-121.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4] [PMID: 11104900]
[112]
Bharti, S.K.; Kesavan, K. Phase-transition W/O microemulsions for ocular delivery: Evaluation of antibacterial activity in the treatment of bacterial keratitis. Ocul. Immunol. Inflamm., 2017, 25(4), 463-474.
[http://dx.doi.org/10.3109/09273948.2016.1139136] [PMID: 26943481]
[113]
Li, X.; Müller, R.H.; Keck, C.M.; Bou-Chacra, N.A. Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion--novel combinatorial formulation concept. Pharmazie, 2016, 71(6), 327-333.
[PMID: 27455551]
[114]
Kalam, M.A.; Alshamsan, A.; Aljuffali, I.A.; Mishra, A.K.; Sultana, Y. Delivery of gatifloxacin using microemulsion as vehicle: Formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv., 2016, 23(3), 886-897.
[http://dx.doi.org/10.3109/10717544.2014.920432] [PMID: 24865289]
[115]
Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine, 2010, 5(3), 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[116]
Civiale, C.; Licciardi, M.; Cavallaro, G.; Giammona, G.; Mazzone, M.G. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int. J. Pharm., 2009, 378(1-2), 177-186.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.028] [PMID: 19465101]
[117]
Guo, C.; Zhang, Y.; Yang, Z.; Li, M.; Li, F.; Cui, F.; Liu, T.; Shi, W.; Wu, X. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation. Sci. Rep., 2015, 5(1), 12968.
[http://dx.doi.org/10.1038/srep12968]
[118]
Mandal, A.; Gote, V.; Pal, D.; Ogundele, A.; Mitra, A.K. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease. Pharm. Res., 2019, 36(2), 36.
[http://dx.doi.org/10.1007/s11095-018-2556-5] [PMID: 30617777]
[119]
Shaki, H.; Ganji, F.; Kempen, P.J.; Dolatshahi-Pirouz, A.; Vasheghani-Farahani, E. Self-assembled amphiphilic-dextran nanomicelles for delivery of rapamycin. J. Drug Deliv. Sci. Technol., 2018, 44, 333-341.
[http://dx.doi.org/10.1016/j.jddst.2018.01.010]
[120]
Cholkar, K.; Gilger, B.C.; Mitra, A.K. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery. Transl. Vis. Sci. Technol., 2015, 4(3), 1.
[http://dx.doi.org/10.1167/tvst.4.3.1] [PMID: 25964868]
[121]
Cholkar, K.; Gunda, S.; Earla, R.; Pal, D.; Mitra, A.K. Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery. AAPS PharmSciTech, 2015, 16(3), 610-622.
[http://dx.doi.org/10.1208/s12249-014-0244-2] [PMID: 25425389]
[122]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop. J. Pharm. Res., 2013, 12(2), 265-273.
[123]
Üstündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.İ.; Eğrilmez, S.; Özer, Ö.; Ertan, G. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur. J. Pharm. Sci., 2014, 63, 204-215.
[http://dx.doi.org/10.1016/j.ejps.2014.07.013] [PMID: 25111119]
[124]
Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine, 2010, 6(2), 324-333.
[http://dx.doi.org/10.1016/j.nano.2009.10.004] [PMID: 19857606]
[125]
Jain, D.; Banerjee, R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 86B(1), 105-112.
[http://dx.doi.org/10.1002/jbm.b.30994] [PMID: 18098198]
[126]
Gorantla, S.; Rapalli, V.K.; Waghule, T.; Singh, P.P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances, 2020, 10(46), 27835-27855.
[http://dx.doi.org/10.1039/D0RA04971A] [PMID: 35516960]
[127]
Younes, N.F.; Abdel-Halim, S.A.; Elassasy, A.I. Corneal targeted Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int. J. Pharm., 2018, 553(1-2), 386-397.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.057] [PMID: 30393167]
[128]
Kaur, I.P.; Garg, A.; Singla, A.K.; Aggarwal, D. Vesicular systems in ocular drug delivery: An overview. Int. J. Pharm., 2004, 269(1), 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.016] [PMID: 14698571]
[129]
Hu, W.; Metselaar, J.; Ben, L.H.; Cravens, P.D.; Singh, M.P.; Frohman, E.M.; Eagar, T.N.; Racke, M.K.; Kieseier, B.C.; Stüve, O. PEG minocycline-liposomes ameliorate CNS autoimmune disease. PLoS One, 2009, 4(1), e4151.
[http://dx.doi.org/10.1371/journal.pone.0004151] [PMID: 19127301]
[130]
Wadhwa, S.; Singh, B.; Sharma, G.; Raza, K.; Katare, O.P. Liposomal fusidic acid as a potential delivery system: A new paradigm in the treatment of chronic plaque psoriasis. Drug Deliv., 2016, 23(4), 1204-1213.
[http://dx.doi.org/10.3109/10717544.2015.1110845] [PMID: 26592918]
[131]
Zhang, R.; He, R.; Qian, J.; Guo, J.; Xue, K.; Yuan, Y. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest. Ophthalmol. Vis. Sci., 2010, 51(7), 3575-3582.
[http://dx.doi.org/10.1167/iovs.09-4373] [PMID: 20164461]
[132]
El-Nabarawi, M.A.; Abd El Rehem, R.T.; Teaima, M.; Abary, M.; El-Mofty, H.M.; Khafagy, M.M.; Lotfy, N.M.; Salah, M. Natamycin niosomes as a promising ocular nanosized delivery system with ketorolac tromethamine for dual effects for treatment of candida rabbit keratitis; in vitro/in vivo and histopathological studies. Drug Dev. Ind. Pharm., 2019, 45(6), 922-936.
[http://dx.doi.org/10.1080/03639045.2019.1579827] [PMID: 30744431]
[133]
Wang, X.; Wang, S.; Zhang, Y. Advance of the application of nano-controlled release system in ophthalmic drug delivery. Drug Deliv., 2016, 23(8), 2897-2901.
[http://dx.doi.org/10.3109/10717544.2015.1116025] [PMID: 26635087]
[134]
Cheng, Y.; Qu, H.; Ma, M.; Xu, Z.; Xu, P.; Fang, Y.; Xu, T. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: An in vitro study. Eur. J. Med. Chem., 2007, 42(7), 1032-1038.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.035] [PMID: 17336426]
[135]
Duxfield, L.; Sultana, R.; Wang, R.; Englebretsen, V.; Deo, S.; Swift, S.; Rupenthal, I.; Al-Kassas, R. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharm. Dev. Technol., 2016, 21(2), 172-179.
[http://dx.doi.org/10.3109/10837450.2015.1091839] [PMID: 26794936]
[136]
Dillen, K.; Vandervoort, J.; Van den Mooter, G.; Ludwig, A. Evaluation of ciprofloxacin-loaded Eudragit® RS100 or RL100/PLGA nanoparticles. Int. J. Pharm., 2006, 314(1), 72-82.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.041] [PMID: 16600538]
[137]
Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm., 2016, 109, 214-223.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[138]
Liu, D.; Lian, Y.; Fang, Q.; Liu, L.; Zhang, J.; Li, J. Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int. J. Biol. Macromol., 2018, 116, 1026-1036.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.113] [PMID: 29778883]
[139]
Dillen, K.; Vandervoort, J.; Van den Mooter, G.; Verheyden, L.; Ludwig, A. Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int. J. Pharm., 2004, 275(1-2), 171-187.
[http://dx.doi.org/10.1016/j.ijpharm.2004.01.033] [PMID: 15081148]
[140]
Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Bhatnagar, A.; Mittal, G. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J. Drug Target., 2011, 19(6), 409-417.
[http://dx.doi.org/10.3109/1061186X.2010.504268] [PMID: 20678034]
[141]
Mohammadi, G.; Nokhodchi, A.; Barzegar-Jalali, M.; Lotfipour, F.; Adibkia, K.; Ehyaei, N.; Valizadeh, H. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf. B Biointerfaces, 2011, 88(1), 39-44.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.050] [PMID: 21752610]
[142]
Ciolino, J.B.; Hudson, S.P.; Mobbs, A.N.; Hoare, T.R.; Iwata, N.G.; Fink, G.R.; Kohane, D.S. A prototype antifungal contact lens. Invest. Ophthalmol. Vis. Sci., 2011, 52(9), 6286-6291.
[http://dx.doi.org/10.1167/iovs.10-6935] [PMID: 21527380]
[143]
Huang, J.F.; Zhong, J.; Chen, G.P.; Lin, Z.T.; Deng, Y.; Liu, Y.L.; Cao, P.Y.; Wang, B.; Wei, Y.; Wu, T.; Yuan, J.; Jiang, G.B. A hydrogel-based hybrid theranostic contact lens for fungal keratitis. ACS Nano, 2016, 10(7), 6464-6473.
[http://dx.doi.org/10.1021/acsnano.6b00601] [PMID: 27244244]
[144]
Jiang, J.; Gill, H.S.; Ghate, D.; McCarey, B.E.; Patel, S.R.; Edelhauser, H.F.; Prausnitz, M.R. Coated microneedles for drug delivery to the eye. Invest. Ophthalmol. Vis. Sci., 2007, 48(9), 4038-4043.
[http://dx.doi.org/10.1167/iovs.07-0066] [PMID: 17724185]
[145]
Dugam, S.; Tade, R.; Dhole, R.; Nangare, S. Emerging era of microneedle array for pharmaceutical and biomedical applications: Recent advances and toxicological perspectives. Future J. Pharmaceut. Sci., 2021, 7(1), 19.
[http://dx.doi.org/10.1186/s43094-020-00176-1]
[146]
Üstündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.İ.; Eğrilmez, S.; Ertan, G.; Özer, Ö. Novel nanostructured lipid carrier-based inserts for controlled ocular drug delivery: Evaluation of corneal bioavailability and treatment efficacy in bacterial keratitis. Expert Opin. Drug Deliv., 2015, 12(11), 1791-1807.
[http://dx.doi.org/10.1517/17425247.2015.1059419] [PMID: 26159181]
[147]
Weyenberg, W.; Vermeire, A.; Dhondt, M.M.M.; Adriaens, E.; Kestelyn, P.; Remon, J.P.; Ludwig, A. Ocular bioerodible minitablets as strategy for the management of microbial keratitis. Invest. Ophthalmol. Vis. Sci., 2004, 45(9), 3229-3233.
[http://dx.doi.org/10.1167/iovs.04-0206] [PMID: 15326145]
[148]
Mishra, D.N.; Gilhotra, R.M. Design and characterization of bioadhesive in-situ gelling ocular inserts of gatifloxacin sesquihydrate. Daru, 2008, 16(1), 1-8.
[149]
Mintz, K.J.; Zhou, Y.; Leblanc, R.M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 2019, 11(11), 4634-4652.
[http://dx.doi.org/10.1039/C8NR10059D] [PMID: 30834912]
[150]
Baptista, F.R.; Belhout, S.A.; Giordani, S.; Quinn, S.J. Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev., 2015, 44(13), 4433-4453.
[http://dx.doi.org/10.1039/C4CS00379A] [PMID: 25980819]
[151]
Jian, H.J.; Yu, J.; Li, Y.J.; Unnikrishnan, B.; Huang, Y.F.; Luo, L.J.; Hui-Kang Ma, D.; Harroun, S.G.; Chang, H.T.; Lin, H.J.; Lai, J.Y.; Huang, C-C. Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation. Chem. Eng. J., 2020, 386, 123913.
[http://dx.doi.org/10.1016/j.cej.2019.123913]
[152]
Pleskova, S.; Mikheeva, E.; Gornostaeva, E. Using of Quantum Dots in Biology and Medicine. In Cellular and Molecular Toxicology of Nanoparticles; Springer: Cham, 2018, Vol. 1048, pp. 409-430.
[http://dx.doi.org/10.1007/978-3-319-72041-8_19]
[153]
Khames, A.; Khaleel, M.A.; El-Badawy, M.F.; El-Nezhawy, A.O.H. Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int. J. Nanomedic., 2019, 14, 2515-2531.
[http://dx.doi.org/10.2147/IJN.S190502] [PMID: 31040672]
[154]
Tavakoli, N.; Taymouri, S.; Saeidi, A.; Akbari, V. Thermosensitive hydrogel containing sertaconazole loaded nanostructured lipid carriers for potential treatment of fungal keratitis. Pharm. Dev. Technol., 2019, 24(7), 891-901.
[http://dx.doi.org/10.1080/10837450.2019.1616755] [PMID: 31062987]
[155]
Roy, G.; Galigama, R.D.; Thorat, V.S.; Mallela, L.S.; Roy, S.; Garg, P.; Venuganti, V.V.K. Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis. Int. J. Pharm., 2019, 572, 118808.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118808] [PMID: 31678387]
[156]
Suriyaamporn, P.; Opanasopit, P.; Rangsimawong, W.; Ngawhirunpat, T. Optimal design of novel microemulsions-based two-layered dissolving microneedles for delivering fluconazole in treatment of fungal eye infection. Pharmaceutics, 2022, 14(3), 472.
[http://dx.doi.org/10.3390/pharmaceutics14030472] [PMID: 35335855]
[157]
Leal, A.F.G.; Leite, M.C.; Medeiros, C.S.Q.; Cavalcanti, I.M.F.; Wanderley, A.G.; Santos Magalhães, N.S.; Neves, R.P. Antifungal activity of a liposomal itraconazole formulation in experimental Aspergillus flavus keratitis with endophthalmitis. Mycopathologia, 2015, 179(3-4), 225-229.
[http://dx.doi.org/10.1007/s11046-014-9837-2] [PMID: 25431088]
[158]
Morand, K.; Bartoletti, A.C.; Bochot, A.; Barratt, G.; Brandely, M.L.; Chast, F. Liposomal amphotericin B eye drops to treat fungal keratitis: Physico-chemical and formulation stability. Int. J. Pharm., 2007, 344(1-2), 150-153.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.028] [PMID: 17669608]
[159]
Permana, A.D.; Utami, R.N.; Layadi, P.; Himawan, A.; Juniarti, N.; Anjani, Q.K.; Utomo, E.; Mardikasari, S.A.; Arjuna, A.; Donnelly, R.F. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int. J. Pharm., 2021, 602, 120623.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120623] [PMID: 33892058]
[160]
Üstündağ Okur, N.; Yozgatlı, V.; Okur, M.E.; Yoltaş, A.; Siafaka, P.I. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J. Drug Deliv. Sci. Technol., 2019, 49, 323-333.
[http://dx.doi.org/10.1016/j.jddst.2018.12.005]
[161]
Davaran, S.; Lotfipour, F.; Sedghipour, N.; Sedghipour, M.R.; Alimohammadi, S.; Salehi, R. Preparation and in vivo evaluation of in situ gel system as dual thermo-/pH-responsive nanocarriers for sustained ocular drug delivery. J. Microencapsul., 2015, 32(5), 511-519.
[PMID: 26190215]
[162]
Nagargoje, S.; Phatak, A.; Bhingare, C.; Chaudhari, S. Formulation and evaluation of ophthalmic delivery of fluconazole from ion activated in situ gelling system. Pharm. Lett., 2012, 4(4), 1228-1235.
[163]
Kesavan, K.; Kant, S.; Pandit, J.K. Therapeutic effectiveness in the treatment of experimental bacterial keratitis with ion-activated mucoadhesive hydrogel. Ocul. Immunol. Inflamm., 2016, 24(5), 489-492.
[PMID: 26133969]
[164]
Ubani-Ukoma, U.; Gibson, D.; Schultz, G.; Silva, B.O.; Chauhan, A. Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model. Int. J. Pharm., 2019, 565, 499-508.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.031] [PMID: 31085257]
[165]
Kang, M.S.; Moon, K.J.; Lee, J.E.; Jeong, Y.I.L. Antibacterial Activity of Antibiotic-Releasing Polydopamine-Coated Nephrite Composites for Application in Drug-Eluting Contact Lens. Materials, 2022, 15(14), 4823.
[http://dx.doi.org/10.3390/ma15144823] [PMID: 35888290]
[166]
Sun, X.; Sheng, Y.; Li, K.; Sai, S.; Feng, J.; Li, Y.; Zhang, J.; Han, J.; Tian, B. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: Synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomater., 2022, 138, 193-207.
[http://dx.doi.org/10.1016/j.actbio.2021.10.047] [PMID: 34757228]
[167]
Song, K.; Yan, M.; Li, M.; Geng, Y.; Wu, X. Preparation and in vitro-in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf. B Biointerfaces, 2020, 194, 111157.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111157] [PMID: 32505061]
[168]
Polat, H.K.; Bozdağ Pehlivan, S.; Özkul, C.; Çalamak, S.; Öztürk, N.; Aytekin, E.; Fırat, A.; Ulubayram, K.; Kocabeyoğlu, S.; İrkeç, M.; Çalış, S. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int. J. Pharm., 2020, 585, 119552.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119552] [PMID: 32569814]
[169]
Sun, X.; Yu, Z.; Cai, Z.; Yu, L.; Lv, Y. Voriconazole composited polyvinyl alcohol/hydroxypropyl-β-cyclodextrin nanofibers for ophthalmic delivery. PLoS One, 2016, 11(12), e0167961.
[http://dx.doi.org/10.1371/journal.pone.0167961] [PMID: 27974859]
[170]
Gebreel, R.M.; Edris, N.A.; Elmofty, H.M.; Tadros, M.I.; El-Nabarawi, M.A.; Hassan, D.H. Development and characterization of PLGA nanoparticle-laden hydrogels for sustained ocular delivery of norfloxacin in the treatment of pseudomonas keratitis: An experimental study. Drug Des. Devel. Ther., 2021, 15, 399-418.
[http://dx.doi.org/10.2147/DDDT.S293127] [PMID: 33584095]
[171]
Sha, X.; Chan, L.; Fan, X.; Guo, P.; Chen, T.; Liu, L.; Zhong, J. Thermosensitive Tri-block polymer nanoparticle-hydrogel composites as Payloads of natamycin for antifungal therapy against fusarium solani. Int. J. Nanomedic., 2022, 17, 1463-1478.
[http://dx.doi.org/10.2147/IJN.S332127] [PMID: 35378880]
[172]
Jansook, P.; Maw, P.D.; Soe, H.M.S.H.; Chuangchunsong, R.; Saiborisuth, K.; Payonitikarn, N.; Autthateinchai, R.; Pruksakorn, P. Development of amphotericin B nanosuspensions for fungal keratitis therapy: Effect of self-assembled γ-cyclodextrin. J. Pharm. Investig., 2020, 50(5), 513-525.
[http://dx.doi.org/10.1007/s40005-020-00474-z]
[173]
Josyula, A.; Omiadze, R.; Parikh, K.; Kanvinde, P.; Appell, M.B.; Patel, P.; Saeed, H.; Sutar, Y.; Anders, N.; He, P.; McDonnell, P.J.; Hanes, J.; Date, A.A.; Ensign, L.M. An ion-paired moxifloxacin nanosuspension eye drop provides improved prevention and treatment of ocular infection. Bioeng. Transl. Med., 2021, 6(3), e10238.
[http://dx.doi.org/10.1002/btm2.10238] [PMID: 34589607]
[174]
Rathore, K.S. In situ gelling ophthalmic drug delivery system: An overview. Int. J. Pharma Sci., 2010, 2(4), 30-34.
[175]
Patel, H.A.; Patel, J.K.; Patel, K.N.; Patel, R.R. Ophthalmic drug delivery system-a review. Pharm. Lett., 2010, 2(4), 100-115.
[176]
Madhav, S.; Gupta, D. A review on microemulsion based system. Int. J. Pharm. Sci. Res., 2011, 2(8), 1888.
[177]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[178]
Gadziński, P.; Froelich, A.; Wojtyłko, M.; Białek, A.; Krysztofiak, J.; Osmałek, T. Microneedle-based ocular drug delivery systems - recent advances and challenges. Beilstein J. Nanotechnol., 2022, 13(1), 1167-1184.
[http://dx.doi.org/10.3762/bjnano.13.98] [PMID: 36348935]
[179]
Wadhwa, S.; Paliwal, R.; Paliwal, S.; Vyas, S. Nanocarriers in ocular drug delivery: An update review. Curr. Pharm. Des., 2009, 15(23), 2724-2750.
[http://dx.doi.org/10.2174/138161209788923886] [PMID: 19689343]

© 2025 Bentham Science Publishers | Privacy Policy