Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Recent Studies on Serotonin 5-HT2A Receptor Antagonists in Medicinal Chemistry: A Last Decades Survey

Author(s): Jignesh H. Kamadar, D Roza Kumari and Khushal M Kapadiya*

Volume 23, Issue 19, 2023

Published on: 31 May, 2023

Page: [1859 - 1870] Pages: 12

DOI: 10.2174/1389557523666230508162439

Price: $65

Abstract

In the last decades, much attention has been paid to the functioning of receptors to understand better how they work with various chemical motifs. Among different families, G-proteincoupled receptor (GPCR) families have drawn much attention in the twenty-first century. They are the most prominent signal transducer across the cell membrane, comprising thousand-odd proteins. One of the members of GPCRs is the serotonin 2A (5-HT2A) receptor, which has been associated with complex etiological mental illnesses. In this survey, we collected data on 5-HT2A, i.e., the role of 5- HT2A receptors in human and animal analogy, various binding site functionalities, advanced effects, and synthetic aspects.

Graphical Abstract

[1]
Ryu, Y.; Maekawa, T.; Yoshino, D.; Sakitani, N.; Takashima, A.; Inoue, T.; Suzurikawa, J.; Toyohara, J.; Tago, T.; Makuuchi, M.; Fujita, N.; Sawada, K.; Murase, S.; Watanave, M.; Hirai, H.; Sakai, T.; Yoshikawa, Y.; Ogata, T.; Shinohara, M.; Nagao, M.; Sawada, Y. Mechanical regulation underlies effects of exercise on serotonin-induced signaling in the prefrontal cortex neurons. iScience, 2020, 23(2), 100874.
[http://dx.doi.org/10.1016/j.isci.2020.100874] [PMID: 32062453]
[2]
Bush, S.E.; Mayer, S.E. 5-Hydroxytryptamine (Serotonin). Receptor Agonists Antagon., 1997, 45(5), 991-996.
[3]
Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev., 1994, 46(2), 157-203.
[PMID: 7938165]
[4]
Frazer, A.; Hensler, J.G. Serotonin Receptors, Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed; American Society for Neurochemistry, 1999.
[5]
Beliveau, V.; Ganz, M.; Feng, L.; Ozenne, B.; Højgaard, L.; Fisher, P.M.; Svarer, C.; Greve, D.N.; Knudsen, G.M. A high-resolution in vivo atlas of the human brain’s serotonin system. J. Neurosci., 2017, 37(1), 120-128.
[http://dx.doi.org/10.1523/JNEUROSCI.2830-16.2016] [PMID: 28053035]
[6]
Raote, I.; Bhattacharya, A.; Panicker, M. Serotonin 2A (5-HT2A) Receptor Function: Ligand-dependent mechanisms and pathways.Serotonin Receptors in Neurobiology, Chapter 6; Chattopadhyay, A., Ed.; CRC Press/Taylor & Francis, 2007. Available from : https://www.ncbi.nlm.nih.gov/books/NBK1853
[7]
Cook, E.H.; Fletcher, K.E.; Wainwright, M. Primary structure of the human platelet serotonin 5-HT2A receptor: Identify with frontal cortex serotonin 5-HT2A receptor. J. Neurosci., 2017, 63(2), 465-469.
[PMID: 29175957]
[8]
Martin, P.; Waters, N.; Schmidt, C.J.; Carlsson, A.; Carlsson, M.L. Rodent data and general hypothesis: Antipsychotic action exerted through 5-HT2A receptor antagonism is dependent on increased serotonergic tone. J. Neural Transm., 1998, 105(4), 365-396.
[http://dx.doi.org/10.1007/s007020050064] [PMID: 9720968]
[9]
De Almeida, R.M.M.; Rosa, M.M.; Santos, D.M.; Saft, D.M.; Benini, Q.; Miczek, K.A. 5-HT1B receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology, 2006, 185(4), 441-450.
[http://dx.doi.org/10.1007/s00213-006-0333-3] [PMID: 16550387]
[10]
Marinissen, M.J.; Gutkind, J.S. G-protein-coupled receptors and signaling networks: Emerging paradigms. Trends Pharmacol. Sci., 2001, 22(7), 368-376.
[http://dx.doi.org/10.1016/S0165-6147(00)01678-3] [PMID: 11431032]
[11]
Murray, C.J.L.; Lopez, A.D. Alternative projections of mortality and disability by cause 1990–2020: Global burden of disease study. Lancet, 1997, 349(9064), 1498-1504.
[http://dx.doi.org/10.1016/S0140-6736(96)07492-2] [PMID: 9167458]
[12]
Pritchett, D.B.; Bach, A.W.; Wozny, M.; Taleb, O.; Dal Toso, R.; Shih, J.C.; Seeburg, P.H. Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J., 1988, 7(13), 4135-4140.
[http://dx.doi.org/10.1002/j.1460-2075.1988.tb03308.x] [PMID: 2854054]
[13]
Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav., 2002, 71(4), 533-554.
[http://dx.doi.org/10.1016/S0091-3057(01)00746-8] [PMID: 11888546]
[14]
Williams, G.V.; Rao, S.G.; Goldman-Rakic, P.S. The physiological role of 5-HT2A receptors in working memory. J. Neurosci., 2002, 22(7), 2843-2854.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02843.2002] [PMID: 11923449]
[15]
Roth, B. L.; Berry, S. A.; Kroeze, W. Serotonin 5-HT2A receptors:Molecular biology and mechanisms of regulation. Crit. Rev. neurobio. 1998, 12(4), 199.
[16]
Millar, R.P.; Newton, C.L. The year in G protein-coupled receptor research. Mol. Endocrinol., 2010, 24(1), 261-274.
[http://dx.doi.org/10.1210/me.2009-0473] [PMID: 20019124]
[17]
Pytliak, M.; Vargová, V.; Mechírová, V.; Felšöci, M. Serotonin receptors-from molecular biology to clinical applications. Physiol. Res., 2011, 60(1), 15-25.
[http://dx.doi.org/10.33549/physiolres.931903] [PMID: 20945968]
[18]
McCorvy, J.D.; Roth, B.L. Structure and function of serotonin G protein-coupled receptors. Pharmacol. Ther., 2015, 150, 129-142.
[http://dx.doi.org/10.1016/j.pharmthera.2015.01.009] [PMID: 25601315]
[19]
Bartuzi, D.; Kaczor, A.A.; Matosiuk, D. Signaling within allosteric machines: Signal transmission pathways inside G protein-coupled receptors. Molecules, 2017, 22, 1188.
[20]
Borroto-Escuela, D.O.; Carlsson, J.; Ambrogini, P.; Narváez, M.; Wydra, K.; Tarakanov, A.O.; Li, X.; Millón, C.; Ferraro, L.; Cuppini, R.; Tanganelli, S.; Liu, F.; Filip, M.; Diaz-Cabiale, Z.; Fuxe, K. Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease. Front. Cell. Neurosci., 2017, 11, 37.
[http://dx.doi.org/10.3389/fncel.2017.00037] [PMID: 28270751]
[21]
Bacon, E.R.; Williams, M. Therapeutic Areas I: Central nervous system, pain, metabolic syndrome, urology, gastrointestinal and cardiovascular. In: In: Comprehensive Medicinal Chemistry II;; Williams,M., Ed., 2007; 6, p. 863.
[22]
Haensel, S.M.; Rowland, D.L.; Kallan, K.T.H.K.; Slob, K.A. Clomipramine and sexual function in men with premature ejaculation and controls. J. Urol., 1996, 156(4), 1310-1315.
[http://dx.doi.org/10.1016/S0022-5347(01)65576-9] [PMID: 8808861]
[23]
Grewal, J.S.; Mukhin, Y.V.; Garnovskaya, M.N.; Raymond, J.R.; Greene, E.L. Serotonin 5-HT2A receptor induces TGF-beta1 expression in mesangial cells via ERK: Proliferative and fibrotic signals. Am. J. Physiol., 1999, 276(6), F922-F930.
[PMID: 10362781]
[24]
Schöning, C.; Flieger, M.; Pertz, H.H. Complex interaction of ergovaline with 5-HT2A, 5-HT1B/1D, and alpha1 receptors in isolated arteries of rat and guinea pig. J. Anim. Sci., 2001, 79(8), 2202-2209.
[http://dx.doi.org/10.2527/2001.7982202x] [PMID: 11518230]
[25]
Tittarelli, R.; Mannocchi, G.; Pantano, F.; Romolo, F. Recreational use, analysis and toxicity of tryptamines. Curr. Neuropharmacol., 2015, 13(1), 26-46.
[http://dx.doi.org/10.2174/1570159X13666141210222409] [PMID: 26074742]
[26]
Storch, E.A.; Murphy, T.K.; Lack, C.W.; Geffken, G.R.; Jacob, M.L.; Goodman, W.K. Sleep-related problems in pediatric obsessive-compulsive disorder. J. Anxiety Disord., 2008, 22(5), 877-885.
[http://dx.doi.org/10.1016/j.janxdis.2007.09.003] [PMID: 17951025]
[27]
Cao, D.; Yu, J.; Wang, H.; Luo, Z.; Liu, X.; He, L.; Qi, J.; Fan, L.; Tang, L.; Chen, Z.; Li, J.; Cheng, J.; Wang, S. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science, 2022, 375(6579), 403-411.
[http://dx.doi.org/10.1126/science.abl8615] [PMID: 35084960]
[28]
Mattoo, S.K.; Ghosh, A.; Chakraborty, K. Newer molecules in the treatment of schizophrenia: A clinical update. Indian J. Pharmacol., 2011, 43(2), 105-112.
[http://dx.doi.org/10.4103/0253-7613.77334] [PMID: 21572641]
[29]
Dewkar, G.K.; Peddi, S.; Mosier, P.D.; Roth, B.L.; Westkaemper, R.B. Methoxy-substituted 9-aminomethyl-9,10-dihydroanthracene (AMDA) derivatives exhibit differential binding affinities at the 5-HT2A receptor. Bioorg. Med. Chem. Lett., 2008, 18(19), 5268-5271.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.059] [PMID: 18774714]
[30]
Costa, L.G.; Steardo, L.; Cuomo, V. Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: Experimental and clinical aspects. Pharmacol. Rev., 2004, 56(1), 103-147.
[http://dx.doi.org/10.1124/pr.56.1.5] [PMID: 15001664]
[31]
Shonberg, J.; Herenbrink, C.K.; López, L.; Christopoulos, A.; Scammells, P.J.; Capuano, B.; Lane, J.R. A structure-activity analysis of biased agonism at the dopamine D2 receptor. J. Med. Chem., 2013, 56(22), 9199-9221.
[http://dx.doi.org/10.1021/jm401318w] [PMID: 24138311]
[32]
Chen, X.; Sassano, M.F.; Zheng, L.; Setola, V.; Chen, M.; Bai, X.; Frye, S.V.; Wetsel, W.C.; Roth, B.L.; Jin, J. Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J. Med. Chem., 2012, 55(16), 7141-7153.
[http://dx.doi.org/10.1021/jm300603y] [PMID: 22845053]
[33]
Lv, J.; Liu, F. The role of serotonin beyond the central nervous system during embryogenesis. Front. Cell. Neurosci., 2017, 11, 74.
[http://dx.doi.org/10.3389/fnpit.2017.00400] [PMID: 28348520]
[34]
Berman, E.R. Biochemistry of the Eye.Perspectives in Vision Research; Springer: Boston, MA, 1991.
[http://dx.doi.org/10.1007/978-1-4757-9441-0]
[35]
Ohia, S.E.; Njie-Mbye, Y.F.; Robinson, J.; Mitchell, L.; Mckoy, M.; Opere, C.A.; Sharif, N.A. Serotonin-2B/2C receptors mediate bovine ciliary muscle contraction: Role in intraocular pressure regulation. J. Ocul. Pharmacol. Ther., 2018, 34(1-2), 70-75.
[http://dx.doi.org/10.1089/jop.2017.0123] [PMID: 29364761]
[36]
a) Olsson, T.; Håkansson, A.; Seck, J.R. Ketanserin selectively blocks acute stress-induced changes in NGFI-A and mineralocorticoid receptor gene expression in hippocampal neurons. Neurosci. J., 1997, 76(2), 441-448.;
b) Saxena, P.R.; Bolt, G.R.; Dhasmana, K.M. Serotonin agonists and antagonists in experimental hypertension. J. Cardiovasc. Pharmacol., 1987, 10, 12-18.
[37]
Sharif, N.A.; Senchyna, M. Serotonin receptor subtype mRNA expression in human ocular tissues, determined by RT-PCR. Mol. Vis., 2006, 12(117), 1040-1047.
[PMID: 16971896]
[38]
Sharif, N.A.; Kelly, C.R.; McLaughlin, M. Human trabecular meshwork cells express functional serotonin-2A (5HT2A) receptors: role in IOP reduction. Invest. Ophthalmol. Vis. Sci., 2006, 47(9), 4001-4010.
[http://dx.doi.org/10.1167/iovs.06-0062] [PMID: 16936116]
[39]
Portas, C.M.; Bjorvatn, B.; Ursin, R. Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog. Neurobiol., 2000, 60(1), 13-35.
[http://dx.doi.org/10.1016/S0301-0082(98)00097-5] [PMID: 10622375]
[40]
Monti, J.M. Serotonin 5-HT2A receptor antagonists in the treatment of insomnia: Present status and future prospects. Drugs Today, 2010, 46(3), 183-193.
[http://dx.doi.org/10.1358/dot.2010.46.3.1437247] [PMID: 20467592]
[41]
Morairty, S.R.; Hedley, L.; Flores, J.; Martin, R.; Kilduff, T.S. Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. Sleep, 2008, 31(1), 34-44.
[http://dx.doi.org/10.1093/sleep/31.1.34] [PMID: 18220076]
[42]
Maroteaux, L.; Ayme-Dietrich, E.; Aubertin-Kirch, G.; Banas, S.; Quentin, E.; Lawson, R.; Monassier, L. New therapeutic opportunities for 5-HT2 receptor ligands. Pharmacol. Ther., 2017, 170, 14-36.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.008] [PMID: 27771435]
[43]
Sencanski, M.; Sukalovic, V.; Shakib, K.; Soskic, V.; Dosen-Micovic, L.; Kostic-Rajacic, S. Molecular modeling of 5HT2A receptor-arylpiperazine ligands interactions. Chem. Biol. Drug Des., 2014, 83(4), 462-471.
[http://dx.doi.org/10.1111/cbdd.12261] [PMID: 24772489]
[44]
Kumar, R.; Jade, D.; Gupta, D. A novel identification approach for discovery of 5-HydroxyTriptamine 2A antagonists: Combination of 2D/3D similarity screening, molecular docking and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(4), 931-943.
[http://dx.doi.org/10.1080/07391102.2018.1444509] [PMID: 29468945]
[45]
Varin, T.; Gutiérrez-de-Terán, H.; Castro, M.; Brea, J.; Fabis, F.; Dauphin, F.; Åqvist, J.; Lepailleur, A.; Perez, P.; Burgueño, J.; Vela, J.M.; Loza, M.I.; Rodrigo, J. Phe369(7.38) at human 5-HT7 receptors confers interspecies selectivity to antagonists and partial agonists. Br. J. Pharmacol., 2010, 159(5), 1069-1081.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00481.x] [PMID: 19922537]
[46]
Shapiro, D.A.; Kristiansen, K.; Kroeze, W.K.; Roth, B.L. Differential modes of agonist binding to 5-hydroxytryptamine(2A) serotonin receptors revealed by mutation and molecular modeling of conserved residues in transmembrane region 5. Mol. Pharmacol., 2000, 58(5), 877-886.
[http://dx.doi.org/10.1124/mol.58.5.877] [PMID: 11040033]
[47]
Perez-Aguilar, J.M.; Shan, J.; LeVine, M.V.; Khelashvili, G.; Weinstein, H. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J. Am. Chem. Soc., 2014, 136(45), 16044-16054.
[http://dx.doi.org/10.1021/ja508394x] [PMID: 25314362]
[48]
Runyon, S.P.; Mosier, P.D.; Roth, B.L.; Glennon, R.A.; Westkaemper, R.B. Potential modes of interaction of 9-aminomethyl-9,10-dihydroanthracene (AMDA) derivatives with the 5-HT2A receptor: A ligand structure-affinity relationship, receptor mutagenesis and receptor modeling investigation. J. Med. Chem., 2008, 51(21), 6808-6828.
[http://dx.doi.org/10.1021/jm800771x] [PMID: 18847250]
[49]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[50]
Wang, C.; Jiang, Y.; Ma, J.; Wu, H.; Wacker, D.; Katritch, V.; Han, G.W.; Liu, W.; Huang, X.P.; Vardy, E.; McCorvy, J.D.; Gao, X.; Zhou, X.E.; Melcher, K.; Zhang, C.; Bai, F.; Yang, H.; Yang, L.; Jiang, H.; Roth, B.L.; Cherezov, V.; Stevens, R.C.; Xu, H.E. Structural basis for molecular recognition at serotonin receptors. Science, 2013, 340(6132), 610-614.
[http://dx.doi.org/10.1126/science.1232807] [PMID: 23519210]
[51]
Podlewska, S.; Bugno, R.; Lacivita, E.; Leopoldo, M.; Bojarski, A.J.; Handzlik, J. Low basicity as a characteristic for atypical ligands of serotonin receptor 5-HT2. Int. J. Mol. Sci., 2021, 22(3), 1035-1047.
[http://dx.doi.org/10.3390/ijms22031035] [PMID: 33494248]
[52]
Moreno, J.L.; Holloway, T.; Albizu, L.; Sealfon, S.C.; González-Maeso, J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci. Lett., 2011, 493(3), 76-79.
[http://dx.doi.org/10.1016/j.neulet.2011.01.046] [PMID: 21276828]
[53]
Yu, B.; Becnel, J.; Zerfaoui, M.; Rohatgi, R.; Boulares, A.H.; Nichols, C.D. Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency. J. Pharmacol. Exp. Ther., 2008, 327(2), 316-323.
[http://dx.doi.org/10.1124/jpet.108.143461] [PMID: 18708586]
[54]
Nau, F., Jr; Yu, B.; Martin, D.; Nichols, C.D. Serotonin 5-HT2A receptor activation blocks TNF-α mediated inflammation in vivo. PLoS One, 2013, 8(10), e75426.
[http://dx.doi.org/10.1371/journal.pone.0075426] [PMID: 24098382]
[55]
Van de Kar, L.D.; Javed, A.; Zhang, Y.; Serres, F.; Raap, D.K.; Gray, T.S. 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J. Neurosci., 2001, 21(10), 3572-3579.
[http://dx.doi.org/10.1523/JNEUROSCI.21-10-03572.2001] [PMID: 11331386]
[56]
Zhang, Y.; Damjanoska, K.J.; Carrasco, G.A.; Dudas, B.; D’Souza, D.N.; Tetzlaff, J.; Garcia, F.; Hanley, N.R.S.; Scripathirathan, K.; Petersen, B.R.; Gray, T.S.; Battaglia, G.; Muma, N.A.; Van de Kar, L.D. Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. J. Neurosci., 2002, 22(21), 9635-9642.
[http://dx.doi.org/10.1523/JNEUROSCI.22-21-09635.2002] [PMID: 12417689]
[57]
Harvey, J.A. Role of the serotonin 5-HT(2A) receptor in learning. Learn. Mem., 2003, 10(5), 355-362.
[http://dx.doi.org/10.1101/lm.60803] [PMID: 14557608]
[58]
García-Cazorla, A.; Artuch, R. Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease - Neurotransmitter Disorders, 5th ed; Academic Press, 2015, pp. 703-712.
[http://dx.doi.org/10.1016/B978-0-12-410529-4.00063-2]
[59]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[60]
Jin, H.; Cianchetta, G.; Devasagayaraj, A.; Gu, K.; Marinelli, B.; Samala, L.; Scott, S.; Stouch, T.; Tunoori, A.; Wang, Y.; Zang, Y.; Zhang, C.; David Kimball, S.; Main, A.J.; Ding, Z.M.; Sun, W.; Yang, Q.; Yu, X.Q.; Powell, D.R.; Wilson, A.; Liu, Q.; Shi, Z.C. Substituted 3-(4-(1,3,5-triazin-2-yl)-phenyl)-2-aminopropanoic acids as novel tryptophan hydroxylase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(17), 5229-5232.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.005] [PMID: 19631532]
[61]
Sands, A. T. Pharmaceutical compositions containing multicyclicamino acid derivative tryptophan hydroxylase inhibitors and methodsof using them in treatment, prevention and combination therapy of pulmonary hypertension and related diseases. , 2009. EP2315587B1 Patent,
[62]
Shi, Z.C.; Devasagayaraj, A.; Gu, K.; Jin, H.; Marinelli, B.; Samala, L.; Scott, S.; Stouch, T.; Tunoori, A.; Wang, Y.; Zang, Y.; Zhang, C.; Kimball, S.D.; Main, A.J.; Sun, W.; Yang, Q.; Nouraldeen, A.; Yu, X.Q.; Buxton, E.; Patel, S.; Nguyen, N.; Swaffield, J.; Powell, D.R.; Wilson, A.; Liu, Q. Modulation of peripheral serotonin levels by novel tryptophan hydroxylase inhibitors for the potential treatment of functional gastrointestinal disorders. J. Med. Chem., 2008, 51(13), 3684-3687.
[http://dx.doi.org/10.1021/jm800338j] [PMID: 18557609]
[63]
Tanaka, C.; Yoh, Y.J.; Takori, S. Relation between brain monoamine tryptophan hydroxylase inhibitors. Brain Res. J., 1972, 45(1), 153-164.
[http://dx.doi.org/10.1016/0006-8993(72)90222-3]
[64]
Liu, Q.; Yang, Q.; Sun, W.; Vogel, P.; Heydorn, W.; Yu, X.Q.; Hu, Z.; Yu, W.; Jonas, B.; Pineda, R.; Calderon-Gay, V.; Germann, M.; O’Neill, E.; Brommage, R.; Cullinan, E.; Platt, K.; Wilson, A.; Powell, D.; Sands, A.; Zambrowicz, B.; Shi, Z. Discovery and characterization of novel tryptophan hydroxylase inhibitors that selectively inhibit serotonin synthesis in the gastrointestinal tract. J. Pharmacol. Exp. Ther., 2008, 325(1), 47-55.
[http://dx.doi.org/10.1124/jpet.107.132670] [PMID: 18192499]
[65]
Shah, J.R.; Mosier, P.D.; Roth, B.L.; Kellogg, G.E.; Westkaemper, R.B. Synthesis, structure–affinity relationships, and modeling of AMDA analogs at 5-HT2A and H1 receptors: Structural factors contributing to selectivity. Bioorg. Med. Chem., 2009, 17(18), 6496-6504.
[http://dx.doi.org/10.1016/j.bmc.2009.08.016] [PMID: 19700330]
[66]
Jordan, S.; Koprivica, V.; Chen, R.; Tottori, K.; Kikuchi, T.; Altar, C.A. The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur. J. Pharmacol., 2002, 441(3), 137-140.
[http://dx.doi.org/10.1016/S0014-2999(02)01532-7] [PMID: 12063084]
[67]
Shapiro, D.A.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology, 2003, 28(8), 1400-1411.
[http://dx.doi.org/10.1038/sj.npp.1300203] [PMID: 12784105]
[68]
Ehrlich, K.; Götz, A.; Bollinger, S.; Tschammer, N.; Bettinetti, L.; Härterich, S.; Hübner, H.; Lanig, H.; Gmeiner, P. Dopamine D2, D3, and D4 selective phenylpiperazines as molecular probes to explore the origins of subtype specific receptor binding. J. Med. Chem., 2009, 52(15), 4923-4935.
[http://dx.doi.org/10.1021/jm900690y] [PMID: 19606869]
[69]
Keck, T.M.; Banala, A.K.; Slack, R.D.; Burzynski, C.; Bonifazi, A.; Okunola-Bakare, O.M.; Moore, M.; Deschamps, J.R.; Rais, R.; Slusher, B.S.; Newman, A.H. Using click chemistry toward novel 1,2,3-triazole-linked dopamine D3 receptor ligands. Bioorg. Med. Chem., 2015, 23(14), 4000-4012.
[http://dx.doi.org/10.1016/j.bmc.2015.01.017] [PMID: 25650314]
[70]
Möller, D.; Salama, I.; Kling, R.C.; Hübner, H.; Gmeiner, P. 1,4-Disubstituted aromatic piperazines with high 5-HT2A/D2 selectivity: Quantitative structure-selectivity investigations, docking, synthesis and biological evaluation. Bioorg. Med. Chem., 2015, 23(18), 6195-6209.
[http://dx.doi.org/10.1016/j.bmc.2015.07.050] [PMID: 26299826]
[71]
Roche, D.; Brackenridge, D.; McGuffin, L. Proteins and their interacting partners: An introduction to protein–ligand binding site prediction methods. Int. J. Mol. Sci., 2015, 16(12), 29829-29842.
[http://dx.doi.org/10.3390/ijms161226202] [PMID: 26694353]
[72]
Lin, F.; Li, F.; Wang, C.; Wang, J.; Yang, Y.; Yang, L.; Li, Y. Mechanism exploration of arylpiperazine derivatives targeting the 5-HT2A receptor by in silico methods. Molecules, 2017, 22(7), 1064-1071.
[http://dx.doi.org/10.3390/molecules22071064] [PMID: 28672848]
[73]
Muntasir, H.A.; Rashid, M.; Komiyama, T.; Kawakami, J.; Nagatomo, T. Identification of amino acid residues important for sarpogrelate binding to the human 5-hydroxytryptamine2A serotonin receptor. J. Pharmacol. Sci., 2006, 102(1), 55-63.
[http://dx.doi.org/10.1254/jphs.FP0060171] [PMID: 16974069]
[74]
Dezi, C.; Brea, J.; Alvarado, M.; Raviña, E.; Masaguer, C.F.; Loza, M.I.; Sanz, F.; Pastor, M. Synthesis and binding affinity of potential atypical antipsychotics with the tetrahydroquinazolinone motif. J. Med. Chem., 2007, 50, 3242.
[http://dx.doi.org/10.1021/jm070277a] [PMID: 17579386]
[75]
GOLD, Version 5.1.1, Cambridge Crystallographic Data Centre;GOLD.
[76]
Möller, D.; Kling, R.C.; Skultety, M.; Leuner, K.; Hübner, H.; Gmeiner, P. Discovery of G protein-biased dopaminergics with a pyrazolo[1,5-a] pyridine substructure. J. Med. Chem., 2014, 57, 4861-4875.
[PMID: 24831693]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy