Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Preparation of Folic acid@Arsenic Nanoparticles and Evaluation of their Antioxidant Properties and Cytotoxic Effects

Author(s): Mojtaba Shakibaie, Maryam Faraji, Mehdi Ranjbar, Mahboubeh Adeli-Sardou*, Fereshteh Jabari-Morouei and Hamid Forootanfar*

Volume 12, Issue 1, 2024

Published on: 05 July, 2023

Page: [45 - 55] Pages: 11

DOI: 10.2174/2211738511666230507175710

Price: $65

Abstract

Introduction: In this study, arsenic nanoparticles containing folic acid (FA@As NPs) were synthesized by microwave irradiating a mixture of As2O3 and sodium borohydride solution in the presence of folic acid.

Methods: The physicochemical characteristics of the prepared NPs were studied by UV–visible spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Antioxidant activities, hemocompatibility, and cytotoxic effects of the prepared NPs were then evaluated. The attained results showed that the hexagonal FA@As NPs have a size range between 12.8 nm and 19.5 nm.

Results: The DPPH scavenging activity of FA@As NPs was found to be significantly greater than that of As NPs at concentrations ranging from 40 μg/mL to 2560 μg/mL (p<0.05). The hemolytic test confirmed that the measured hemolysis percentage (HP) for FA@As NPs and As NPs was 0% at concentrations between 20 to160 μg/mL, and for FA@As NPs, the measured HP was not significantly higher than As NPs at concentrations higher than 320 μg/mL (p>0.05).

Discussion: The necessary concentration for the death of half of the cells (IC50) for MDA-MB-231, MCF-7, and HUVEC cells treated (24 h) with FA@As NPs was measured to be 19.1±1.3 μg/mL, 15.4±1.1 μg/mL, and 16.8±1.2 μg/mL, respectively. However, further investigations are necessary to clarify the mechanisms behind the biological activities of FA@As NPs.

Graphical Abstract

[1]
Asere TG, Stevens CV, Du Laing G. Use of (modified) natural adsorbents for arsenic remediation: A review. Sci Total Environ 2019; 676: 706-20.
[http://dx.doi.org/10.1016/j.scitotenv.2019.04.237] [PMID: 31054415]
[2]
Yingchen G. Syntheses, crystal structures and antibacterial activities of arsenic (Ⅲ) and bismuth (Ⅲ) dialkyldithiocarbamate complexes. Chemistry 2014; 04.
[3]
Charan N, Lavanya N, Praveen B, et al. Antiviral activity of antimony and arsenic oxides. Pharma Chem 2012; 4: 687-9.
[4]
Wang QQ, Jiang Y, Naranmandura H. Therapeutic strategy of arsenic trioxide in the fight against cancers and other diseases. Metallomics 2020; 12(3): 326-36.
[http://dx.doi.org/10.1039/c9mt00308h] [PMID: 32163072]
[5]
Raju NJ. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environ Res 2022; 203: 111782.
[http://dx.doi.org/10.1016/j.envres.2021.111782] [PMID: 34343549]
[6]
Vergara-Gerónimo CA, León Del Río A, Rodríguez-Dorantes M, Ostrosky-Wegman P, Salazar AM. Arsenic-protein interactions as a mechanism of arsenic toxicity. Toxicol Appl Pharmacol 2021; 431: 115738.
[http://dx.doi.org/10.1016/j.taap.2021.115738] [PMID: 34619159]
[7]
Hu X, Li H, Ip TKY, et al. Arsenic trioxide targets Hsp60, triggering degradation of p53 and survivin. Chem Sci 2021; 12(32): 10893-900.
[http://dx.doi.org/10.1039/D1SC03119H] [PMID: 34476069]
[8]
Sönksen M, Kerl K, Bunzen HJMRR. Current status and future prospects of nanomedicine for arsenic trioxide delivery to solid tumors. Med Res Rev 2022; 42(1): 374-98.
[http://dx.doi.org/10.1002/med.21844] [PMID: 34309879]
[9]
Siddique R, Khan S, Bai Q, Li H, Ullah MW, Xue M. Arsenic trioxide-based nanomedicines as a therapeutic combination approach for treating gliomas: A review. Curr Nanosci 2021; 17(3): 406-17.
[http://dx.doi.org/10.2174/1573413716999201207142810]
[10]
Liu C. The osteogenic niche-targeted arsenic nanoparticles prevent colonization of disseminated breast tumor cells in the bone. Acta Pharm Sin B 2021.
[PMID: 35127392]
[11]
Peng Y, Zhao Z, Liu T, et al. Smart human‐serum‐albumin–As2O3 nanodrug with self‐amplified folate receptor‐targeting ability for chronic myeloid leukemia treatment. Angew Chem Int Ed 2017; 56(36): 10845-9.
[http://dx.doi.org/10.1002/anie.201701366] [PMID: 28686804]
[12]
Ferraro G, Pratesi A, Cirri D, et al. Arsenoplatin-ferritin nanocage: Structure and cytotoxicity. Int J Mol Sci 2021; 22(4): 1874.
[http://dx.doi.org/10.3390/ijms22041874] [PMID: 33668605]
[13]
Fu X, Li Y, Zhao J, et al. Will arsenic trioxide benefit treatment of solid tumor by nano-encapsulation? Mini Rev Med Chem 2020; 20(3): 239-51.
[http://dx.doi.org/10.2174/1389557519666191018155426] [PMID: 31760930]
[14]
Akhtar A, Xiaoyan Wang S, Ghali L, Bell C, Wen X. Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers. J Biomed Res 2017; 31(3): 177-88.
[PMID: 28808212]
[15]
Ahn RW, Chen F, Chen H, et al. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin Cancer Res 2010; 16(14): 3607-17.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0068] [PMID: 20519360]
[16]
Ulewicz-Magulska B. Wesolowski MJPFfHN. Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes. Plant Foods Hum Nutr 2019; 74(1): 61-7.
[http://dx.doi.org/10.1007/s11130-018-0699-5]
[17]
Subastri A, Arun V, Sharma P, et al. Synthesis and characterisation of arsenic nanoparticles and its interaction with DNA and cytotoxic potential on breast cancer cells. Chem Biol Interact 2018; 295: 73-83.
[http://dx.doi.org/10.1016/j.cbi.2017.12.025] [PMID: 29277637]
[18]
Helmy LA, Abdel-Halim M, Raghda H, et al. The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer. Colloids Surf B Biointerfaces 2022; 211: 112289.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112289] [PMID: 34954516]
[19]
Govindarasu M, Pari A, Salman SA, et al. Synthesis, physicochemical characterization and in vitro evaluation of biodegradable PLGA nanoparticles entrapped to folic acid for targeted delivery of kaempferitrin. Biotechnol Appl Biochem 2022; 69(6): 2387-98.
[http://dx.doi.org/10.1002/bab.2290] [PMID: 35020231]
[20]
Nawaz FZ. Kipreos ETJTiE. Kipreos, and metabolism, emerging roles for folate receptor folr1 in signaling and cancer. Trends Endocrinol Metab 2022; 33(3): 159-74.
[http://dx.doi.org/10.1016/j.tem.2021.12.003]
[21]
Fathima E, Ilaiyaraja N, Anand T, et al. Enhanced cellular uptake, transport and oral bioavailability of optimized folic acid-loaded chitosan nanoparticles. Int J Biol Macromol 2022; 208: 596-610.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.042]
[22]
Yang G, Park SJ. Conventional and microwave hydrothermal synthesis and application of functional materials: A review. Materials 2019; 12(7): 1177.
[http://dx.doi.org/10.3390/ma12071177] [PMID: 30978917]
[23]
Nageswara Rao B, Satyanarayana N. Review—development of inorganic nanostructures by microwave synthesis technique. ECS J Solid State Sci Technol 2021; 10(10): 103003.
[http://dx.doi.org/10.1149/2162-8777/ac255d]
[24]
Bandi R, Alle M, Park CW, et al. Rapid synchronous synthesis of Ag nanoparticles and Ag nanoparticles/holocellulose nanofibrils: Hg(II) detection and dye discoloration. Carbohydr Polym 2020; 240: 116356.
[http://dx.doi.org/10.1016/j.carbpol.2020.116356] [PMID: 32475600]
[25]
Ameri A, Shakibaie M, Rahimi HR, et al. Rapid and facile microwave-assisted synthesis of palladium nanoparticles and evaluation of their antioxidant properties and cytotoxic effects against fibroblast-like (HSkMC) and human lung carcinoma (A549) Cell lines. Biol Trace Elem Res 2020; 197(1): 132-40.
[http://dx.doi.org/10.1007/s12011-019-01984-0] [PMID: 31782064]
[26]
Forootanfar H, Adeli-Sardou M, Nikkhoo M, et al. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol 2014; 28(1): 75-9.
[http://dx.doi.org/10.1016/j.jtemb.2013.07.005] [PMID: 24074651]
[27]
Múzquiz-Ramos EM, Guerrero-Chávez V, Macías-Martínez BI, López-Badillo CM, García-Cerda LA. Synthesis and characterization of maghemite nanoparticles for hyperthermia applications. Ceram Int 2015; 41(1): 397-402.
[http://dx.doi.org/10.1016/j.ceramint.2014.08.083]
[28]
Pal A, Saha S, Kumar Maji S, Kundu M, Kundu A. Wet-chemical synthesis of spherical arsenic nanoparticles by a simple reduction method and its characterization. Adv Mater Lett 2012; 3(3): 177-80.
[http://dx.doi.org/10.5185/amlett.2011.9305]
[29]
Durán-Toro VM, Price RE, Maas M, et al. Amorphous arsenic sulfide nanoparticles in a shallow water hydrothermal system. Mar Chem 2019; 211: 25-36.
[http://dx.doi.org/10.1016/j.marchem.2019.03.008]
[30]
Edmundson MC, Horsfall L. Construction of a modular arsenic-resistance operon in E. coli and the production of arsenic nanoparticles. Front Bioeng Biotechnol 2015; 3: 160.
[http://dx.doi.org/10.3389/fbioe.2015.00160] [PMID: 26539432]
[31]
Kaňa A, Loula M, Mestek O. Controlled preparation of arsenic nanoparticles. J Nanopart Res 2021; 23(11): 239.
[http://dx.doi.org/10.1007/s11051-021-05356-5]
[32]
Prabhu N, Gajendran T. Green synthesis of noble metal of platinum nanoparticles from Ocimum sanctum (Tulsi) Plant-extracts. IOSR J Biotechnol Biochem 2017; 3(1): 107-12.
[http://dx.doi.org/10.9790/264X-0301107112]
[33]
Ganaie SU, Abbasi T, Abbasi SA. Biomimetic synthesis of platinum nanoparticles utilizing a terrestrial weed Antigonon leptopus. Particul Sci Technol 2018; 36(6): 681-8.
[http://dx.doi.org/10.1080/02726351.2017.1292336]
[34]
Azmanova M, Pitto-Barry AJC. Oxidative stress in cancer therapy: Friend or enemy? ChemBioChem 2022; 23(10): e202100641.
[http://dx.doi.org/10.1002/cbic.202100641] [PMID: 35015324]
[35]
Gliszczyńska-Świgło AJFC. Folates as antioxidants. Food Chem 2007; 101(4): 1480-3.
[36]
El-Borady OM. El-Sayed AFJJoMR. Synthesis, morphological, spectral and thermal studies for folic acid conjugated ZnO nanoparticles: potency for multi-functional bio-nanocomposite as antimicrobial, antioxidant and photocatalytic agent. J Mater Res Technol 2020; 9(2): 1905-17.
[37]
Salari Z, Ameri A, Forootanfar H, et al. Microwave-assisted biosynthesis of zinc nanoparticles and their cytotoxic and antioxidant activity. J Trace Elem Med Biol 2017; 39: 116-23.
[http://dx.doi.org/10.1016/j.jtemb.2016.09.001] [PMID: 27908402]
[38]
Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 2008; 8(8): 2180-7.
[http://dx.doi.org/10.1021/nl0805615] [PMID: 18605701]
[39]
Singh N, Sahoo SK, Kumar R. Hemolysis tendency of anticancer nanoparticles changes with type of blood group antigen: An insight into blood nanoparticle interactions. Mater Sci Eng C 2020; 109: 110645.
[http://dx.doi.org/10.1016/j.msec.2020.110645] [PMID: 32228982]
[40]
Mahmud H, Föller M, Lang F. Arsenic-induced suicidal erythrocyte death. Arch Toxicol 2009; 83(2): 107-13.
[http://dx.doi.org/10.1007/s00204-008-0338-2] [PMID: 18636241]
[41]
Wang ZY, Song J, Zhang DS. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells. World J Gastroenterol 2009; 15(24): 2995-3002.
[http://dx.doi.org/10.3748/wjg.15.2995] [PMID: 19554652]
[42]
Baláž P. In-vitro testing of arsenic sulfide nanoparticles for the treatment of multiple myeloma cells. NSTI Nanotech 2011; 3.
[43]
Bujňáková Z, Baláž P, Makreski P, et al. Arsenic sulfide nanoparticles prepared by milling: properties, free-volume characterization, and anti-cancer effects. J Mater Sci 2015; 50(4): 1973-85.
[http://dx.doi.org/10.1007/s10853-014-8763-5]
[44]
Dong X, Ma N, Liu M, Liu Z. Effects of As2O3 nanoparticles on cell growth and apoptosis of NB4 cells. Exp Ther Med 2015; 10(4): 1271-6.
[http://dx.doi.org/10.3892/etm.2015.2651] [PMID: 26622477]
[45]
Jadhav V, Ray P, Sachdeva G, Bhatt P. Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21WAF1/CIP1 expression via epigenetic remodeling in LNCaP and PC3 cell lines. Life Sci 2016; 148: 41-52.
[http://dx.doi.org/10.1016/j.lfs.2016.02.042] [PMID: 26883975]
[46]
Das B, Rahaman H, Ghosh SK, Sengupta M. Synthesis and characterization of arsenic(III) Oxide nanoparticles as potent inhibitors of MCF 7 cell proliferation through proapoptotic mechanism. Bionanoscience 2020; 10(2): 420-9.
[http://dx.doi.org/10.1007/s12668-020-00726-0]
[47]
Glienke W, Chow KU, Bauer N, Bergmann L. Down-regulation of wt1 expression in leukemia cell lines as part of apoptotic effect in arsenic treatment using two compounds. Leuk Lymphoma 2006; 47(8): 1629-38.
[http://dx.doi.org/10.1080/10428190600625398] [PMID: 16966277]
[48]
Wang Y, Zhang Y, Yang L, et al. Arsenic trioxide induces the apoptosis of human breast cancer MCF-7 cells through activation of caspase-3 and inhibition of HERG channels. Exp Ther Med 2011; 2(3): 481-6.
[http://dx.doi.org/10.3892/etm.2011.224] [PMID: 22977528]
[49]
Xia J, Li Y, Yang Q, et al. Arsenic trioxide inhibits cell growth and induces apoptosis through inactivation of notch signaling pathway in breast cancer. Int J Mol Sci 2012; 13(8): 9627-41.
[http://dx.doi.org/10.3390/ijms13089627] [PMID: 22949821]
[50]
Ralph SJ. Arsenic-based antineoplastic drugs and their mechanisms of action. Met Based Drugs 2008; 2008: 260146.
[http://dx.doi.org/10.1155/2008/260146]
[51]
Chakraborty S, Kaushik B, Sandip S, et al. Novel arsenic nanoparticles are more effective and less toxic than As (III) to inhibit extracellular and intracellular proliferation of Leishmania donovani. J Parasitol Res 2014; 2014: 187640.
[http://dx.doi.org/10.1155/2014/187640] [PMID: 25614827]
[52]
Raza MA, Zakia K, Ambreen S, et al. Toxicity evaluation of arsenic nanoparticles on growth, biochemical, hematological, and physiological parameters of labeo rohita juveniles. Adv Mater Sci Eng 2021; 2021.
[http://dx.doi.org/10.1155/2021/5185425]
[53]
Shahverdi AR, Faranak S, Elnaz F, et al. Characterization of folic acid surface-coated selenium nanoparticles and corresponding in vitro and in vivo effects against breast cancer. Arch Med Res 2018; 49(1): 10-7.
[http://dx.doi.org/10.1016/j.arcmed.2018.04.007]
[54]
Jiang P, Hua J, Ruiying L, et al. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells. Appl Microbiol Biotechnol 2013; 97(3): 1051-62.
[http://dx.doi.org/10.1007/s00253-012-4359-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy