Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Study Against Colon Cancer Mechanism of Xanthium sibiricum Herba Based on Computer Simulation and Bioinformatics

Author(s): Ying Qi, Jia-Han Cai, Qiu-Tong Deng, Yuan-Ning Zeng and Qiu-Hong Wang*

Volume 27, Issue 12, 2024

Published on: 21 June, 2023

Page: [1716 - 1734] Pages: 19

DOI: 10.2174/1386207326666230504154304

Price: $65

Abstract

Introduction: Cancer is one of the leading causes of death worldwide, accounting for nearly one in six deaths in 2020. As a folk medicine, Xanthium sibiricum Herba (XSH) has been used many times in clinical practice for the treatment of various diseases. With the increasing number of cancer patients, there is a clinical need to find effective anti-cancer drugs.

Aim: This study aims to explores the bioactivity and the anti-cancer mechanism of XSH.

Methods: In this study, bioinformatics, network pharmacology, molecular docking, molecular dynamics simulation techniques, and apoptosis assay were used to explore the bioactivity and the anti- cancer mechanism of XSH.

Results: Finally, seven active ingredients in XSH after the screening were obtained, the two most active compounds were β-sitosterol and aloe-emodin, and good anti-cancer activity of XSH was predicted.

Discussion: Four core targets were obtained from the PPI network map, namely Caspase-3 (CASP3), Transcription factor AP-1 (JUN), Myc proto-oncogene protein (MYC), and cellular tumor antigen p53 (TP53). GO and KEGG analyses showed that the mechanism of XSH anti-cancer is mainly related to the apoptosis process, and the main signaling pathways are enriched in the p53 signaling pathway, Apoptosis, and MAPK signaling. The molecular docking and molecular dynamics simulation results showed that CASP3, JUN, MYC, and TP53 had a high affinity with β- sitosterol and aloe-emodin. Bioinformatics analyses demonstrated the importance of core targets. Apoptosis assay showed that XSH could significantly promote the apoptosis of cancer cells, and inhibit their proliferation and migration, especially colon cancer cells.

Conclusion: This study uncovered the main active components, bioactivities, and potential targets of XSH, and further revealed the multi-component, multi-target, and multi-pathway mechanism of XSH for cancer treatment and promoting apoptosis.

Graphical Abstract

[1]
Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer Statistics, 2010. CA Cancer J. Clin., 2010, 60(5), 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[2]
Jing, H.; Wei, Z.; Yong, S.; Lunfang, X.; Wei, W. Psychological distress among elderly patients with cancer. Chung Hua Hu Li Tsa Chih, 2015, 50(01), 92-96.
[http://dx.doi.org/10.3761/j.issn.0254-1769.2015.01.022]
[3]
Weijin, W.; Xiaolu, Z. Stat-quo and disease burden of cancer in china. China Policy Review, 2019, 04, 63-73.
[4]
Ying, Z.; Wei, H.; Hongsheng, L. Clinical research results and thinking of traditional chinese medicine in the treatment of malignant tumors. J. Tradit. Chin. Med., 2014, 55(06), 523-525.
[http://dx.doi.org/10.13288/j.11-2166/r.2014.06.021]
[5]
Yıldırım, M.A.; Goh, K.I.; Cusick, M.E.; Barabási, A.L.; Vidal, M. Drug—target network. Nat. Biotechnol., 2007, 25(10), 1119-1126.
[http://dx.doi.org/10.1038/nbt1338] [PMID: 17921997]
[6]
Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[7]
Hongjing, T. Famous doctors’ special book; People's Medical Publishing House: Beijing, 1986.
[8]
Nanjing University Of Chinese Medicine. Dictionary of traditional chinese medicine; Publishers, Shanghai Scientific Technical: Shanghai, 2006.
[9]
Xiaoli, J. The pharmacognosy research of herba xanthii; Chengdu University of TCM, 2011.
[10]
Shen, M. Dietary herbal annotation; Shanghai Classics Publishing House: Shanghai, 2007.
[11]
Chu-An, W. Materia medica is easy to read, People’s Medical Publishing House; PMPH: Beijing, 1987.
[12]
Xin, T.; Ting-Ting, Z.; Mei-Jiao, C.; Qiao, C.; Nan, X. Study on the phenol constituents and antibacterial action of xanthium sibiricum. Zhong Yao Cai, 2017, 40(06), 1326-1330.
[http://dx.doi.org/10.13863/j.issn1001-4454.2017.06.019]
[13]
Guo, F.; Zeng, Y.; Li, J. Inhibition of α-glucosidase activity by water extracts of Xanthium sibiricum Patrin ex Widder and their effects on blood sugar in mice. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2013, 42(6), 632-637.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2013.06.007] [PMID: 24421228]
[14]
Li, X.; Li, Z.; Xue, M.; Ou, Z.; Liu, M.; Yang, M.; Liu, S.; Yang, S.; Li, X.; Mihai, C. Fructus xanthii attenuates hepatic steatosis in rats fed on high-fat diet. PLoS One, 2013, 8(4), e61499.
[http://dx.doi.org/10.1371/journal.pone.0061499] [PMID: 23585904]
[15]
Tang, J.; Aittokallio, T. Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr. Pharm. Des., 2014, 20(1), 23-36.
[http://dx.doi.org/10.2174/13816128113199990470] [PMID: 23530504]
[16]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[17]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[18]
Jiang, L.; Shi, Z.; Yang, Y. Network pharmacology-based approach to investigate the molecular targets of rhubarb for treating cancer. Evid. Based Complement. Alternat. Med., 2021, 2021, 9945633.
[http://dx.doi.org/10.1155/2021/9945633]
[19]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[20]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[21]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[22]
Yuan, H.; Rui, C.; Jixiong, M.; Zhenning, C.; Yang, Z. Screening of α-glucosidase inhibitors in alpine compositae extracts. Zhongguo Yaoke Daxue Xuebao, 2008, 39(6), 4.
[http://dx.doi.org/10.3321/j.issn:1000-5048.2008.06.020]
[23]
Wolfe, A.; Shimer, G.H., Jr; Meehan, T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 1987, 26(20), 6392-6396.
[http://dx.doi.org/10.1021/bi00394a013] [PMID: 3427013]
[24]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[25]
Hsin, K.Y.; Ghosh, S.; Kitano, H.; Franca, F. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 2013, 8(12), e83922.
[http://dx.doi.org/10.1371/journal.pone.0083922] [PMID: 24391846]
[26]
Wang, Y.; Shen, J.; He, Q.; Yang, K.L.; He, C.N.; Xiao, P.G. Material basis and mechanism of Huangqin Tea in prevention of colorectal cancer based on network pharmacology and molecular docking. Zhongguo Zhongyao Zazhi, 2021, 46(23), 6251-6260.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20210916.401] [PMID: 34951252]
[27]
Hua, J.G.; Xiao-Li, J.; Jun, Z.; Fu-Rong, Z.; Sha, Y.; Jia-Ni, C. Antibacterial test of aqueous extract and acetone extract of xanthium sibiricum. Huaxi Yaoxue Zazhi, 2011, 26(04), 345-346.
[http://dx.doi.org/10.13375/j.cnki.wcjps.2011.04.013]
[28]
Lu, S.; Nuo, H.J.; Jing, Z.; Zijun, Z.; Chao, W. Research status of death cause analysis of residents in my country. J. Modern Med. Heal., 2018, 34(19), 3011-3014.
[http://dx.doi.org/10.3969/j.issn.1009-5519.2018.19.021]
[29]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[30]
Jing, Z.; Xiaofang, L.; Yu, L.; Mingze, W. Research progress in cancer epidemiology and antitumor traditional chinese medicine. Shandong Chem. Indus., 2015, 44(12), 42-44.
[http://dx.doi.org/10.19319/j.cnki.issn.1008-021x.2015.12.020]
[31]
Yingchen, H. Medicinal value of cocklebur. J. Pharm. Pract., 2005, (03), 262-263.
[http://dx.doi.org/10.14172/j.cnki.issn1671-4008.2005.03.056]
[32]
Guiying, W.; Jikun, T. Acute toxicity test of cocklebur from guizhou. Brit. Med. J., 2018, 5(07), 164-168.
[http://dx.doi.org/10.16281/j.cnki.jocml.2018.07.137]
[33]
Yuan, S. Nutriology, pharmacology and cardiovascular effects of Xanthium sibiricum. Prog. Nutr., 2020, 22, 370-377.
[34]
Zhang, L.; Ruan, J.; Yan, L.; Li, W.; Wu, Y.; Tao, L.; Zhang, F.; Zheng, S.; Wang, A.; Lu, Y. Xanthatin induces cell cycle arrest at G2/M checkpoint and apoptosis via disrupting NF-κB pathway in A549 non-small-cell lung cancer cells. Molecules, 2012, 17(4), 3736-3750.
[http://dx.doi.org/10.3390/molecules17043736] [PMID: 22450683]
[35]
Takeda, S.; Matsuo, K.; Yaji, K.; Okajima-Miyazaki, S.; Harada, M.; Miyoshi, H.; Okamoto, Y.; Amamoto, T.; Shindo, M.; Omiecinski, C.J.; Aramaki, H. (--)-Xanthatin selectively induces GADD45γ and stimulates caspase-independent cell death in human breast cancer MDA-MB-231 cells. Chem. Res. Toxicol., 2011, 24(6), 855-865.
[http://dx.doi.org/10.1021/tx200046s] [PMID: 21568272]
[36]
Ya-Yun, C.; Yu, W.; Shui-Ying, Y.; Jing, M.; Gang, C.; Gang, C. Anticancer effect of xanthium in vitro and in vivo in hepg2 of hepatocellular carcinoma. Chin. J. Integr. Med., 2019, 14(07), 946-949.
[http://dx.doi.org/10.13935/j.cnki.sjzx.190715]
[37]
Li, W.D.; Wu, Y.; Zhang, L.; Yan, L.G.; Yin, F.Z.; Ruan, J.S.; Chen, Z.P.; Yang, G.M.; Yan, C.P.; Zhao, D.; Lu, Y.; Cai, B.C. Characterization of xanthatin: Anticancer properties and mechanisms of inhibited murine melanoma in vitro and in vivo. Phytomedicine, 2013, 20(10), 865-873.
[http://dx.doi.org/10.1016/j.phymed.2013.03.006] [PMID: 23664560]
[38]
Zeli, M.; Dongchen, X.; Jian, G. Clinical observation on 38 cases of skin cancer treated with xanthicao ointment. J. Gansu Uni. Chinese Med., 1999, 16(1), 2.
[39]
Weiliang, L.; Yu, J.; Aixiang, H. Research and development progress of β- sitosterol. Inf. Process. Agric., 2019, (01), 77-79.
[http://dx.doi.org/10.16693/j.cnki.1671-9646(X).2019.01.022]
[40]
Shuai, W.; Yu, S.; Chunmei, L.; Qun, L. Research progress of stigmasterol. China Pharmaceuticals, 2019, 28(23), 96-98.
[http://dx.doi.org/10.3969/j.issn.1006-4931.2019.23.031]
[41]
Simin, F.; Ke, N.; Ping, S.; Guoping, R.; Peilong, S.; Zisheng, L. Research on the β-sitosterol and stigmasterol therapeutic effect of acute colitis in mice. J. Chin. Cereals Oils Assoc., 2018, 33(12), 80-86.
[http://dx.doi.org/10.3969/j.issn.1003-0174.2018.12.014]
[42]
Mu, L. Du Zhi-min, Research progress on pharmacological effects of aloe -emodin. Chin. J. Pharmacol., 2015, 31(09), 765-768.
[http://dx.doi.org/10.13699/j.cnki.1001-6821.2015.09.027]
[43]
Zhang-Bin, T.; You-Cai, X.; Wen-Jun, D.; Sui-Hui, D.; Bin, L.; Jing-Zhi, Z. Mechanism of aloe-emodin in inhibiting proliferation and migration of hepatocellular carcinoma cells. Zhongchengyao, 2021, 43(10), 2653-2658.
[http://dx.doi.org/10.3969/j.issn.1001-1528.2021.10.009]
[44]
Chang, H.W.; Liu, P.F.; Tsai, W.L.; Hu, W.H.; Hu, Y.C.; Yang, H.C.; Lin, W.Y.; Weng, J.R.; Shu, C.W. Shu, Xanthium strumarium fruit extract inhibits atg4b and diminishes the proliferation and metastatic characteristics of colorectal cancer cells. Toxins, 2019, 11(6), 313.
[http://dx.doi.org/10.3390/toxins11060313] [PMID: 31159487]
[45]
Xiaohong, P.; Qing, Y. Dysfunction of the tp53 in some lymphoid malignancies and blood cancer. Linchuang Zhongliuxue Zazhi, 2014, 19(02), 186-190.
[46]
Gong, Z.J.; Huang, H.B.; Xu, K.; Liang, F.; Li, X.L.; Xiong, W.; Zeng, Z.Y.; Li, G.Y. Advances in micrornas and tp53 gene regulatory network. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Jin Zhan, 2013, 39(12), 1133-1144.
[http://dx.doi.org/10.3724/SP.J.1206.2012.00015]
[47]
Bin Sayeed, M.S.; Ameen, S.S. Beta-sitosterol: A promising but orphan nutraceutical to fight against cancer. Nutr. Cancer, 2015, 67(8), 1216-1222.
[http://dx.doi.org/10.1080/01635581.2015.1087042] [PMID: 26473555]
[48]
Wang, Z.; Zhan, Y.; Xu, J.; Wang, Y.; Sun, M.; Chen, J.; Liang, T.; Wu, L.; Xu, K. B-sitosterol reverses multidrug resistance via bcrp suppression by inhibiting the p53–mdm2 interaction in colorectal cancer. J. Agric. Food Chem., 2020, 68(12), 3850-3858.
[http://dx.doi.org/10.1021/acs.jafc.0c00107] [PMID: 32167760]
[49]
Bae, H.; Park, S.; Ham, J.; Song, J.; Hong, T.; Choi, J.H.; Song, G.; Lim, W. Er-mitochondria calcium flux by β-sitosterol promotes cell death in ovarian cancer. Antioxidants, 2021, 10(10), 1583.
[http://dx.doi.org/10.3390/antiox10101583] [PMID: 34679718]
[50]
Qiang, Z.; Xin-Huai, Z. Phytosterol and its anticancer effect. Zhongguo Youzhi, 2006, (10), 57-60.
[51]
Qian, K.; Zheng, X.X.; Wang, C.; Huang, W.G.; Liu, X.B.; Xu, S.D.; Liu, D.K.; Liu, M.Y.; Lin, C.S. B-sitosterol inhibits rheumatoid synovial angiogenesis through suppressing vegf signaling pathway. Front. Pharmacol., 2022, 12, 816477.
[http://dx.doi.org/10.3389/fphar.2021.816477] [PMID: 35295740]
[52]
Sharmila, R.; Sindhu, G. Modulation of angiogenesis, proliferative response and apoptosis by β-sitosterol in rat model of renal carcinogenesis. Indian J. Clin. Biochem., 2017, 32(2), 142-152.
[http://dx.doi.org/10.1007/s12291-016-0583-8] [PMID: 28428688]
[53]
Lin, K.Y.; Uen, Y.H. Aloe-emodin, an anthraquinone, in vitro inhibits proliferation and induces apoptosis in human colon carcinoma cells. Oncol. Lett., 2010, 1(3), 541-547.
[http://dx.doi.org/10.3892/ol_00000096] [PMID: 22966340]
[54]
Jiang, D.; Ding, S.; Mao, Z.; You, L.; Ruan, Y. Integrated analysis of potential pathways by which aloe-emodin induces the apoptosis of colon cancer cells. Cancer Cell Int., 2021, 21(1), 238.
[http://dx.doi.org/10.1186/s12935-021-01942-8] [PMID: 33902610]
[55]
Abdellatef, A.A.; Fathy, M.; Mohammed, A.E.S.I.; Bakr, M.S.A.; Ahmed, A.H.; Abbass, H.S.; El-Desoky, A.H.; Morita, H.; Nikaido, T.; Hayakawa, Y. Inhibition of cell-intrinsic NF-κB activity and metastatic abilities of breast cancer by aloe-emodin and emodic-acid isolated from Asphodelus microcarpus. J. Nat. Med., 2021, 75(4), 840-853.
[http://dx.doi.org/10.1007/s11418-021-01526-w] [PMID: 33988779]
[56]
Suboj, P.; Babykutty, S.; Valiyaparambil Gopi, D.R.; Nair, R.S.; Srinivas, P.; Gopala, S. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB. Eur. J. Pharm. Sci., 2012, 45(5), 581-591.
[http://dx.doi.org/10.1016/j.ejps.2011.12.012] [PMID: 22227305]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy