Abstract
This patent describes the synthesis of compounds, methods, and compositions for preventing, treating, and/or curing Covid-19, human coronavirus, and enterovirus infections. Some peptidomimetic compounds are very potent and could be a game changer in new treatment therapy for COVID-19.
[1]
Alfarouk, K.O.; AlHoufie, S.T.S.; Ahmed, S.B.M.; Shabana, M.; Ahmed, A.; Alqahtani, S.S.; Alqahtani, A.S.; Alqahtani, A.M.; Ramadan, A.M.; Ahmed, M.E.; Ali, H.S.; Bashir, A.; Devesa, J.; Cardone, R.A.; Ibrahim, M.E.; Schwartz, L.; Reshkin, S.J. Pathogenesis and management of COVID-19. J. Xenobiot., 2021, 11(2), 77-93.
[http://dx.doi.org/10.3390/jox11020006] [PMID: 34063739]
[http://dx.doi.org/10.3390/jox11020006] [PMID: 34063739]
[2]
Mackie, P.L. The classification of viruses infecting the respiratory tract. Paediatr. Respir. Rev., 2003, 4(2), 84-90.
[http://dx.doi.org/10.1016/S1526-0542(03)00031-9] [PMID: 12758044]
[http://dx.doi.org/10.1016/S1526-0542(03)00031-9] [PMID: 12758044]
[3]
Peters, C.E.; Schulze-Gahmen, U.; Eckhardt, M.; Jang, G.M.; Xu, J.; Pulido, E.H.; Bardine, C.; Craik, C.S.; Ott, M.; Gozani, O.; Verba, K.A.; Hüttenhain, R.; Carette, J.E.; Krogan, N.J. Structure-function analysis of enterovirus protease 2A in complex with its essential host factor SETD3. Nat. Commun., 2022, 13(1), 5282.
[http://dx.doi.org/10.1038/s41467-022-32758-3] [PMID: 36075902]
[http://dx.doi.org/10.1038/s41467-022-32758-3] [PMID: 36075902]
[4]
Bagwe, P.V.; Bagwe, P.V.; Ponugoti, S.S.; Joshi, S.V. Peptide-based vaccines and therapeutics for COVID-19. Int. J. Pept. Res. Ther., 2022, 28(3), 94.
[http://dx.doi.org/10.1007/s10989-022-10397-y] [PMID: 35463185]
[http://dx.doi.org/10.1007/s10989-022-10397-y] [PMID: 35463185]
[5]
Zhu, J.; Zhang, H.; Lin, Q.; Lyu, J.; Lu, L.; Chen, H.; Zhang, X.; Zhang, Y.; Chen, K. Progress on SARS-CoV-2 3CLpro inhibitors: Inspiration from SARS-CoV 3CLpro peptidomimetics and small-molecule anti-inflammatory compounds. Drug Des. Devel. Ther., 2022, 16, 1067-1082.
[http://dx.doi.org/10.2147/DDDT.S359009] [PMID: 35450403]
[http://dx.doi.org/10.2147/DDDT.S359009] [PMID: 35450403]
[6]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: Current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[7]
Wang, H.M.; Liang, P.H. Picornaviral 3C protease inhibitors and the dual 3C protease/coronaviral 3C-like protease inhibitors. Expert Opin. Ther. Pat., 2010, 20(1), 59-71.
[http://dx.doi.org/10.1517/13543770903460323]
[http://dx.doi.org/10.1517/13543770903460323]
[8]
Citarella, A.; Scala, A.; Piperno, A.; Micale, N. SARS-CoV-2 Mpro: A potential target for peptidomimetics and small-molecule inhibitors. Biomolecules, 2021, 11(4), 607.
[http://dx.doi.org/10.3390/biom11040607] [PMID: 33921886]
[http://dx.doi.org/10.3390/biom11040607] [PMID: 33921886]
[9]
Capasso, C.; Nocentini, A.; Supuran, C.T. Protease inhibitors targeting the main protease and papain-like protease of coronaviruses. Expert Opin. Ther. Pat., 2021, 31(4), 309-324.
[http://dx.doi.org/10.1080/13543776.2021.1857726]
[http://dx.doi.org/10.1080/13543776.2021.1857726]
[10]
Robson, B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Comput. Biol. Med., 2020, 121, 103749.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103749] [PMID: 32568687]
[http://dx.doi.org/10.1016/j.compbiomed.2020.103749] [PMID: 32568687]
[11]
Banerjee, R.; Perera, L.; Tillekeratne, L.M.V. Potential SARS-CoV-2 main protease inhibitors. Drug Discov. Today, 2021, 26(3), 804-816.
[http://dx.doi.org/10.1016/j.drudis.2020.12.005] [PMID: 33309533]
[http://dx.doi.org/10.1016/j.drudis.2020.12.005] [PMID: 33309533]
[12]
Ramajayam, R.; Tan, K.P.; Liang, P.H. Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery. Biochem. Soc. Trans., 2011, 39(5), 1371-1375.
[http://dx.doi.org/10.1042/BST0391371] [PMID: 21936817]
[http://dx.doi.org/10.1042/BST0391371] [PMID: 21936817]
[13]
Greenberg, S. Rhinovirus and coronavirus infections. Semin. Respir. Crit. Care Med., 2007, 28(2), 182-192.
[http://dx.doi.org/10.1055/s-2007-976490] [PMID: 17458772]
[http://dx.doi.org/10.1055/s-2007-976490] [PMID: 17458772]
[14]
Weil, T.; Lawrenz, J.; Seidel, A.; Münch, J.; Müller, J.A. Immunodetection assays for the quantification of seasonal common cold coronaviruses OC43, NL63, or 229E infection confirm nirmatrelvir as broad coronavirus inhibitor. Antiviral Res., 2022, 203, 105343.
[http://dx.doi.org/10.1016/j.antiviral.2022.105343] [PMID: 35598779]
[http://dx.doi.org/10.1016/j.antiviral.2022.105343] [PMID: 35598779]
[15]
Bouin, A.; Vu, M.N.; Al-Hakeem, A.; Tran, G.P.; Nguyen, J.H.C.; Semler, B.L. Enterovirus-cardiomyocyte interactions: impact of terminally deleted genomic RNAs on viral and host functions. J. Virol., 2023, 97(1), e0142622.
[http://dx.doi.org/10.1128/jvi.01426-22] [PMID: 36475766]
[http://dx.doi.org/10.1128/jvi.01426-22] [PMID: 36475766]
[16]
Swain, S.K.; Panda, S.; Sahu, B.P.; Sarangi, R. Activation of host cellular signaling and mechanism of enterovirus 71 viral proteins associated with hand, foot and mouth disease. Viruses, 2022, 14(10), 2190.
[http://dx.doi.org/10.3390/v14102190] [PMID: 36298746]
[http://dx.doi.org/10.3390/v14102190] [PMID: 36298746]
[17]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[18]
Akinosoglou, K.; Schinas, G.; Gogos, C. Oral antiviral treatment for COVID-19: A comprehensive review on nirmatrelvir/ritonavir. Viruses, 2022, 14(11), 2540.
[http://dx.doi.org/10.3390/v14112540] [PMID: 36423149]
[http://dx.doi.org/10.3390/v14112540] [PMID: 36423149]
[19]
Haddad, F.; Dokmak, G.; Karaman, R. A comprehensive review on the efficacy of several pharmacologic agents for the treatment of COVID-19. Life, 2022, 12(11), 1758.
[http://dx.doi.org/10.3390/life12111758] [PMID: 36362912]
[http://dx.doi.org/10.3390/life12111758] [PMID: 36362912]
[20]
Yang, K.S.; Leeuwon, S.Z.; Xu, S.; Liu, W.R. Evolutionary and structural insights about potential SARS-CoV-2 evasion of nirmatrelvir. J. Med. Chem., 2022, 65(13), 8686-8698.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00404] [PMID: 35731933]
[http://dx.doi.org/10.1021/acs.jmedchem.2c00404] [PMID: 35731933]
[21]
Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; Dantonio, A.; Di, L.; Eng, H.; Ferre, R.; Gajiwala, K.S.; Gibson, S.A.; Greasley, S.E.; Hurst, B.L.; Kadar, E.P.; Kalgutkar, A.S.; Lee, J.C.; Lee, J.; Liu, W.; Mason, S.W.; Noell, S.; Novak, J.J.; Obach, R.S.; Ogilvie, K.; Patel, N.C.; Pettersson, M.; Rai, D.K.; Reese, M.R.; Sammons, M.F.; Sathish, J.G.; Singh, R.S.P.; Steppan, C.M.; Stewart, A.E.; Tuttle, J.B.; Updyke, L.; Verhoest, P.R.; Wei, L.; Yang, Q.; Zhu, Y. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science, 2021, 374(6575), 1586-1593.
[http://dx.doi.org/10.1126/science.abl4784] [PMID: 34726479]
[http://dx.doi.org/10.1126/science.abl4784] [PMID: 34726479]