Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Exosome-mediated Repair of Intervertebral Disc Degeneration: The Potential Role of miRNAs

Author(s): Han-Shi Wang, Shu Lin* and Hai-Ming Yu*

Volume 19, Issue 6, 2024

Published on: 07 July, 2023

Page: [798 - 808] Pages: 11

DOI: 10.2174/1574888X18666230504094233

Price: $65

Abstract

Intervertebral disc degeneration (IVDD) is a serious condition that manifests as low back pain, intervertebral disc protrusion, and spinal canal stenosis. At present, the main treatment methods for IVDD are surgical interventions such as discectomy, total disc replacement, and spinal fusion. However, these interventions have shown limitations, such as recurrent lumbar disc herniation after discectomy, lesions in adjacent segments, and failure of fixation. To overcome these shortcomings, researchers have been exploring stem cell transplantation therapy, such as mesenchymal stem cell (MSC) transplantation, but the treatment results are still controversial. Therefore, researchers are in search of new methods that are more efficient and have better outcomes. The exosomes from stem cells contain a variety of bioactive molecules that mediate cell interactions, and these components have been investigated for their potential therapeutic role in the repair of various tissue injuries. Recent studies have shown that MSC-derived miRNAs in exosomes and vesicles have therapeutic effects on nucleus pulposus cells, annulus fibrosus, and cartilage endplate. miRNAs play a role in many cell activities, such as cell proliferation, apoptosis, and cytokine release, by acting on mRNA translation, and they may have immense therapeutic potential, especially when combined with stem cell therapy. This article reviews the current status of research on intervertebral disc repair, especially with regard to the latest research findings on the molecular biological mechanisms of miRNAs in MSC-derived exosomes in intervertebral disc repair.

Graphical Abstract

[1]
Cheung KMC, Karppinen J, Chan D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 2009; 34(9): 934-40.
[http://dx.doi.org/10.1097/BRS.0b013e3181a01b3f] [PMID: 19532001]
[2]
Jackson T, Thomas S, Stabile V, Han X, Shotwell M, McQueen K. Prevalence of chronic pain in low-income and middle-income countries: A systematic review and meta-analysis. Lancet 2015; 385(S2): S10.
[http://dx.doi.org/10.1016/S0140-6736(15)60805-4] [PMID: 26313056]
[3]
Buchbinder R, van Tulder M, Öberg B, et al. Low back pain: A call for action. Lancet 2018; 391(10137): 2384-8.
[http://dx.doi.org/10.1016/S0140-6736(18)30488-4] [PMID: 29573871]
[4]
Phillips FM, Slosar PJ, Youssef JA, Andersson G, Papatheofanis F. Lumbar spine fusion for chronic low back pain due to degenerative disc disease: A systematic review. Spine 2013; 38(7): E409-22.
[http://dx.doi.org/10.1097/BRS.0b013e3182877f11] [PMID: 23334400]
[5]
Iorio-Morin C, Fisher CG, Abraham E, et al. Low-back pain after lumbar discectomy for disc herniation: What can you tell your patient? J Neurosurg Spine 2021; 35(6): 715-21.
[http://dx.doi.org/10.3171/2021.2.SPINE201625] [PMID: 34450579]
[6]
Shipton EA. Physical therapy approaches in the treatment of low back pain. Pain Ther 2018; 7(2): 127-37.
[http://dx.doi.org/10.1007/s40122-018-0105-x] [PMID: 30229473]
[7]
Hooten WM, Cohen SP. Evaluation and treatment of low back pain. Mayo Clin Proc 2015; 90(12): 1699-718.
[http://dx.doi.org/10.1016/j.mayocp.2015.10.009] [PMID: 26653300]
[8]
Widjaja G, Jalil AT, Budi HS, et al. Mesenchymal stromal/stem cells and their exosomes application in the treatment of intervertebral disc disease: A promising frontier. Int Immunopharmacol 2022; 105: 108537.
[http://dx.doi.org/10.1016/j.intimp.2022.108537] [PMID: 35101851]
[9]
He XY, Yu HM, Lin S, Li YZ. Advances in the application of mesenchymal stem cells, exosomes, biomimetic materials, and 3D printing in osteoporosis treatment. Cell Mol Biol Lett 2021; 26(1): 47.
[http://dx.doi.org/10.1186/s11658-021-00291-8] [PMID: 34775969]
[10]
Masuda K, An HS. Growth factors and the intervertebral disc. Spine J 2004; 4(6)(S6): S330-40.
[http://dx.doi.org/10.1016/j.spinee.2004.07.028] [PMID: 15541686]
[11]
Sampara P, Banala RR, Vemuri SK, Av GR, Gpv S. Understanding the molecular biology of intervertebral disc degeneration and potential gene therapy strategies for regeneration: A review. Gene Ther 2018; 25(2): 67-82.
[http://dx.doi.org/10.1038/s41434-018-0004-0] [PMID: 29567950]
[12]
Vadalà G, Russo F, Ambrosio L, Loppini M, Denaro V. Stem cells sources for intervertebral disc regeneration. World J Stem Cells 2016; 8(5): 185-201.
[http://dx.doi.org/10.4252/wjsc.v8.i5.185] [PMID: 27247704]
[13]
Krut Z, Pelled G, Gazit D, Gazit Z. Stem cells and exosomes: New therapies for intervertebral disc degeneration. Cells 2021; 10(9): 2241.
[http://dx.doi.org/10.3390/cells10092241] [PMID: 34571890]
[14]
Herger N, Bermudez-Lekerika P, Farshad M, et al. Should degenerated intervertebral discs of patients with modic type 1 changes be treated with mesenchymal stem cells? Int J Mol Sci 2022; 23(5): 2721.
[http://dx.doi.org/10.3390/ijms23052721] [PMID: 35269863]
[15]
Ha DH, Kim H, Lee J, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells 2020; 9(5): 1157.
[http://dx.doi.org/10.3390/cells9051157] [PMID: 32392899]
[16]
Hu ZL, Li HY, Chang X, et al. Exosomes derived from stem cells as an emerging therapeutic strategy for intervertebral disc degeneration. World J Stem Cells 2020; 12(8): 803-13.
[http://dx.doi.org/10.4252/wjsc.v12.i8.803] [PMID: 32952860]
[17]
Fearing BV, Hernandez PA, Setton LA, Chahine NO. Mechanotransduction and cell biomechanics of the intervertebral disc. JOR Spine 2018; 1(3): e1026.
[http://dx.doi.org/10.1002/jsp2.1026] [PMID: 30569032]
[18]
Molladavoodi S, McMorran J, Gregory D. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs. Cell Tissue Res 2020; 379(3): 429-44.
[http://dx.doi.org/10.1007/s00441-019-03136-1] [PMID: 31844969]
[19]
Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 2006; 88 (Suppl. 2): 10-4.
[PMID: 16595436]
[20]
Sun Y, Lyu M, Lu Q, Cheung K, Leung V. Current perspectives on nucleus pulposus fibrosis in disc degeneration and repair. Int J Mol Sci 2022; 23(12): 6612.
[http://dx.doi.org/10.3390/ijms23126612] [PMID: 35743056]
[21]
Lawan A, Crites VJ, Battié MC. The association between vertebral endplate structural defects and back pain: A systematic review and meta-analysis. Eur Spine J 2021; 30(9): 2531-48.
[http://dx.doi.org/10.1007/s00586-021-06865-6] [PMID: 34021785]
[22]
Moore RJ. The vertebral endplate: Disc degeneration, disc regeneration. Eur Spine J 2006; 15(S3): S333-7.
[http://dx.doi.org/10.1007/s00586-006-0170-4]
[23]
Vergroesen PPA, Kingma I, Emanuel KS, et al. Mechanics and biology in intervertebral disc degeneration: A vicious circle. Osteoarthr Cartil 2015; 23(7): 1057-70.
[http://dx.doi.org/10.1016/j.joca.2015.03.028] [PMID: 25827971]
[24]
Urban JPG, Smith S, Fairbank JCT. Nutrition of the intervertebral disc. Spine 2004; 29(23): 2700-9.
[http://dx.doi.org/10.1097/01.brs.0000146499.97948.52] [PMID: 15564919]
[25]
Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat Rev Rheumatol 2014; 10(1): 44-56.
[http://dx.doi.org/10.1038/nrrheum.2013.160] [PMID: 24166242]
[26]
Zhang J, Li Z, Chen F, et al. TGF-β1 suppresses CCL3/4 expression through the ERK signaling pathway and inhibits intervertebral disc degeneration and inflammation-related pain in a rat model. Exp Mol Med 2017; 49(9): e379.
[http://dx.doi.org/10.1038/emm.2017.136] [PMID: 28935976]
[27]
Rutges JPHJ, Kummer JA, Oner FC, et al. Increased MMP-2 activity during intervertebral disc degeneration is correlated to MMP-14 levels. J Pathol 2008; 214(4): 523-30.
[http://dx.doi.org/10.1002/path.2317] [PMID: 18200629]
[28]
Liu S, Yang SD, Huo XW, Yang DL, Ma L, Ding WY. 17β-Estradiol inhibits intervertebral disc degeneration by down-regulating MMP-3 and MMP-13 and up-regulating type II collagen in a rat model. Artif Cells Nanomed Biotechnol 2018; 46(S2): 182-91.
[29]
Trefilova VV, Shnayder NA, Petrova MM, et al. The role of polymorphisms in collagen-encoding genes in intervertebral disc degeneration. Biomolecules 2021; 11(9): 1279.
[http://dx.doi.org/10.3390/biom11091279] [PMID: 34572492]
[30]
Mayer JE, Iatridis JC, Chan D, Qureshi SA, Gottesman O, Hecht AC. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J 2013; 13(3): 299-317.
[http://dx.doi.org/10.1016/j.spinee.2013.01.041] [PMID: 23537453]
[31]
Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001; 26(17): 1873-8.
[http://dx.doi.org/10.1097/00007632-200109010-00011] [PMID: 11568697]
[32]
Griffith JF, Wang YXJ, Antonio GE, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 2007; 32(24): E708-12.
[http://dx.doi.org/10.1097/BRS.0b013e31815a59a0] [PMID: 18007231]
[33]
Che YJ, Guo JB, Liang T, et al. Assessment of changes in the micro-nano environment of intervertebral disc degeneration based on Pfirrmann grade. Spine J 2019; 19(7): 1242-53.
[http://dx.doi.org/10.1016/j.spinee.2019.01.008] [PMID: 30710732]
[34]
Quan M, Hong MW, Ko MS, Kim YY. Relationships between disc degeneration and autophagy expression in human nucleus pulposus. Orthop Surg 2020; 12(1): 312-20.
[http://dx.doi.org/10.1111/os.12573] [PMID: 31802633]
[35]
Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: Assessment of changes in vertebral body marrow with MR imaging. Radiology 1988; 166(1): 193-9.
[http://dx.doi.org/10.1148/radiology.166.1.3336678] [PMID: 3336678]
[36]
Crockett MT, Kelly BS, van Baarsel S, Kavanagh EC. Modic type 1 vertebral endplate changes: Injury, inflammation, or infection? AJR Am J Roentgenol 2017; 209(1): 167-70.
[http://dx.doi.org/10.2214/AJR.16.17403] [PMID: 28402132]
[37]
Yazici A, Yerlikaya T, Oniz A. An evaluation of the efficacy of a four-grade fat infiltration classification method, presented for the first time in literature. BMC Musculoskelet Disord 2022; 23(1): 226.
[http://dx.doi.org/10.1186/s12891-022-05180-5] [PMID: 35260112]
[38]
Slabaugh MA, Friel NA, Karas V, Romeo AA, Verma NN, Cole BJ. Interobserver and intraobserver reliability of the Goutallier classification using magnetic resonance imaging: Proposal of a simplified classification system to increase reliability. Am J Sports Med 2012; 40(8): 1728-34.
[http://dx.doi.org/10.1177/0363546512452714] [PMID: 22753846]
[39]
Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel RSL, Sze GK. Lumbar disc nomenclature: Version 2.0. Spine J 2014; 14(11): 2525-45.
[http://dx.doi.org/10.1016/j.spinee.2014.04.022] [PMID: 24768732]
[40]
Peng B, Wu W, Hou S, Li P, Zhang C, Yang Y. The pathogenesis of discogenic low back pain. J Bone Joint Surg Br 2005; 87-B(1): 62-7.
[http://dx.doi.org/10.1302/0301-620X.87B1.15708] [PMID: 15686239]
[41]
Hayes AJ, Ralphs JR. The response of foetal annulus fibrosus cells to growth factors: Modulation of matrix synthesis by TGF-β1 and IGF-1. Histochem Cell Biol 2011; 136(2): 163-75.
[http://dx.doi.org/10.1007/s00418-011-0835-x] [PMID: 21739215]
[42]
Lee KI, Moon SH, Kim H, et al. Tissue engineering of the intervertebral disc with cultured nucleus pulposus cells using atelocollagen scaffold and growth factors. Spine 2012; 37(6): 452-8.
[http://dx.doi.org/10.1097/BRS.0b013e31823c8603] [PMID: 22037529]
[43]
Wu PH, Kim HS, Jang IT. Intervertebral disc diseases PART 2: A review of the current diagnostic and treatment strategies for intervertebral disc disease. Int J Mol Sci 2020; 21(6): 2135.
[http://dx.doi.org/10.3390/ijms21062135] [PMID: 32244936]
[44]
Kim HS, Wu PH, Jang IT. Lumbar degenerative disease part 1: Anatomy and pathophysiology of intervertebral discogenic pain and radiofrequency ablation of basivertebral and sinuvertebral nerve treatment for chronic discogenic back pain: A prospective case series and review of literature. Int J Mol Sci 2020; 21(4): 1483.
[http://dx.doi.org/10.3390/ijms21041483] [PMID: 32098249]
[45]
Huang YC, Leung VYL, Lu WW, Luk KDK. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J 2013; 13(3): 352-62.
[http://dx.doi.org/10.1016/j.spinee.2012.12.005] [PMID: 23340343]
[46]
Du Y, Wang Z, Wu Y, Liu C, Zhang L. Intervertebral disc stem/progenitor cells: A promising “seed” for intervertebral disc regeneration. Stem Cells Int 2021; 2021: 2130727.
[http://dx.doi.org/10.1155/2021/2130727] [PMID: 34367292]
[47]
Ryan AE, Lohan P, O’Flynn L, et al. Chondrogenic differentiation increases antidonor immune response to allogeneic mesenchymal stem cell transplantation. Mol Ther 2014; 22(3): 655-67.
[http://dx.doi.org/10.1038/mt.2013.261] [PMID: 24184966]
[48]
Preda MB, Neculachi CA, Fenyo IM, et al. Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death Dis 2021; 12(6): 566.
[http://dx.doi.org/10.1038/s41419-021-03839-w] [PMID: 34075029]
[49]
Croft AS, Illien-Jünger S, Grad S, Guerrero J, Wangler S, Gantenbein B. The application of mesenchymal stromal cells and their homing capabilities to regenerate the intervertebral disc. Int J Mol Sci 2021; 22(7): 3519.
[http://dx.doi.org/10.3390/ijms22073519] [PMID: 33805356]
[50]
Illien-Jünger S, Pattappa G, Peroglio M, et al. Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine 2012; 37(22): 1865-73.
[http://dx.doi.org/10.1097/BRS.0b013e3182544a8a] [PMID: 22433498]
[51]
Zhang C, Gullbrand SE, Schaer TP, et al. Combined hydrogel and mesenchymal stem cell therapy for moderate-severity disc degeneration in goats. Tissue Eng Part A 2021; 27(1-2): 117-28.
[http://dx.doi.org/10.1089/ten.tea.2020.0103] [PMID: 32546053]
[52]
Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 1983; 97(2): 329-39.
[http://dx.doi.org/10.1083/jcb.97.2.329] [PMID: 6309857]
[53]
Tang Y, Zhou Y, Li HJ. Advances in mesenchymal stem cell exosomes: A review. Stem Cell Res Ther 2021; 12(1): 71.
[http://dx.doi.org/10.1186/s13287-021-02138-7] [PMID: 33468232]
[54]
Yaghoubi Y, Movassaghpour A, Zamani M, Talebi M, Mehdizadeh A, Yousefi M. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci 2019; 233: 116733.
[http://dx.doi.org/10.1016/j.lfs.2019.116733] [PMID: 31394127]
[55]
Zhou X, Cao H, Guo J, Yuan Y, Ni G. Effects of BMSC-Derived EVs on bone metabolism. Pharmaceutics 2022; 14(5): 1012.
[http://dx.doi.org/10.3390/pharmaceutics14051012] [PMID: 35631601]
[56]
Wang Z, He Z, Liang S, Yang Q, Cheng P, Chen A. Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2020; 11(1): 511.
[http://dx.doi.org/10.1186/s13287-020-02032-8] [PMID: 33246507]
[57]
Gusachenko ON, Zenkova MA, Vlassov VV. Nucleic acids in exosomes: Disease markers and intercellular communication molecules. Biochemistry 2013; 78(1): 1-7.
[http://dx.doi.org/10.1134/S000629791301001X] [PMID: 23379554]
[58]
Baglio SR, Rooijers K, Koppers-Lalic D, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 2015; 6(1): 127.
[http://dx.doi.org/10.1186/s13287-015-0116-z] [PMID: 26129847]
[59]
Yan Y, Chang C, Su J, Venø MT, Kjems J. Osteoblastogenesis alters small RNA profiles in EVs Derived from Bone Marrow Stem Cells (BMSCs) and Adipose Stem Cells (ASCs). Biomedicines 2020; 8(10): 387.
[http://dx.doi.org/10.3390/biomedicines8100387] [PMID: 32998458]
[60]
Hassanzadeh A, Rahman HS, Markov A, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther 2021; 12(1): 297.
[http://dx.doi.org/10.1186/s13287-021-02378-7] [PMID: 34020704]
[61]
Li M, Li R, Yang S, et al. Exosomes derived from bone marrow mesenchymal stem cells prevent acidic ph-induced damage in human nucleus pulposus cells. Med Sci Monit 2020; 26: e922928.
[http://dx.doi.org/10.12659/MSM.922928] [PMID: 32436493]
[62]
Hu Y, Tao R, Wang L, et al. Exosomes derived from bone mesenchymal stem cells alleviate compression-induced nucleus pulposus cell apoptosis by inhibiting oxidative stress. Oxid Med Cell Longev 2021; 2021: 2310025.
[http://dx.doi.org/10.1155/2021/2310025] [PMID: 34733401]
[63]
Zhang Z, Zhang L, Yang J, et al. Influence of extracellular nanovesicles derived from adipose-derived stem cells on nucleus pulposus cell from patients with intervertebral disc degeneration. Exp Ther Med 2021; 22(6): 1431.
[http://dx.doi.org/10.3892/etm.2021.10866] [PMID: 34707712]
[64]
Kozacı LD, Guner A, Oktay G, Guner G. Alterations in biochemical components of extracellular matrix in intervertebral disc herniation: Role of MMP-2 and TIMP-2 in type II collagen loss. Cell Biochem Funct 2006; 24(5): 431-6.
[http://dx.doi.org/10.1002/cbf.1250] [PMID: 16142692]
[65]
Xing H, Zhang Z, Mao Q, et al. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J Nanobiotechnol 2021; 19(1): 264.
[http://dx.doi.org/10.1186/s12951-021-00991-5] [PMID: 34488795]
[66]
Lyu FJ, Cui H, Pan H, et al. Painful intervertebral disc degeneration and inflammation: From laboratory evidence to clinical interventions. Bone Res 2021; 9(1): 7.
[http://dx.doi.org/10.1038/s41413-020-00125-x] [PMID: 33514693]
[67]
Xia C, Zeng Z, Fang B, et al. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects. Free Radic Biol Med 2019; 143: 1-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.07.026] [PMID: 31351174]
[68]
Zhang L, Wang Q, Su H, Cheng J. Exosomes from adipose derived mesenchymal stem cells alleviate diabetic osteoporosis in rats through suppressing NLRP3 inflammasome activation in osteoclasts. J Biosci Bioeng 2021; 131(6): 671-8.
[http://dx.doi.org/10.1016/j.jbiosc.2021.02.007] [PMID: 33849774]
[69]
Feng C, Yang M, Lan M, et al. ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration. Oxid Med Cell Longev 2017; 2017: 5601593.
[http://dx.doi.org/10.1155/2017/5601593] [PMID: 28392887]
[70]
Hingert D, Ekström K, Aldridge J, Crescitelli R, Brisby H. Extracellular vesicles from human mesenchymal stem cells expedite chondrogenesis in 3D human degenerative disc cell cultures. Stem Cell Res Ther 2020; 11(1): 323.
[http://dx.doi.org/10.1186/s13287-020-01832-2] [PMID: 32727623]
[71]
Xie L, Chen Z, Liu M, et al. MSC-derived exosomes protect vertebral endplate chondrocytes against apoptosis and calcification via the miR-31-5p/ATF6 axis. Mol Ther Nucleic Acids 2020; 22: 601-14.
[http://dx.doi.org/10.1016/j.omtn.2020.09.026] [PMID: 33230460]
[72]
Gong C, Zhang H. Autophagy as a potential therapeutic target in intervertebral disc degeneration. Life Sci 2021; 273: 119266.
[http://dx.doi.org/10.1016/j.lfs.2021.119266] [PMID: 33631177]
[73]
Li Z, Kong L, Liu C, Xu HG. Human bone marrow mesenchymal stem cell-derived exosomes attenuate IL-1β-induced annulus fibrosus cell damage. Am J Med Sci 2020; 360(6): 693-700.
[http://dx.doi.org/10.1016/j.amjms.2020.07.025] [PMID: 32771218]
[74]
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell 2009; 136(4): 731-45.
[http://dx.doi.org/10.1016/j.cell.2009.01.042] [PMID: 19239892]
[75]
Yue B, Yang H, Wang J, et al. Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif 2020; 53(7): e12857.
[http://dx.doi.org/10.1111/cpr.12857] [PMID: 32578911]
[76]
Yun Z, Wang Y, Feng W, Zang J, Zhang D, Gao Y. Overexpression of microRNA-185 alleviates intervertebral disc degeneration through inactivation of the Wnt/β-catenin signaling pathway and downregulation of Galectin-3. Mol Pain 2020; 16: 1-13.
[http://dx.doi.org/10.1177/1744806920902559] [PMID: 32090685]
[77]
Yang Q, Guo XP, Cheng YL, Wang Y. MicroRNA-143-5p targeting eEF2 gene mediates intervertebral disc degeneration through the AMPK signaling pathway. Arthritis Res Ther 2019; 21(1): 97.
[http://dx.doi.org/10.1186/s13075-019-1863-5] [PMID: 30987676]
[78]
Zhao K, Zhang Y, Kang L, et al. Epigenetic silencing of miRNA-143 regulates apoptosis by targeting BCL2 in human intervertebral disc degeneration. Gene 2017; 628: 259-66.
[http://dx.doi.org/10.1016/j.gene.2017.07.043] [PMID: 28716711]
[79]
Kang L, Yang C, Song Y, et al. MicroRNA-494 promotes apoptosis and extracellular matrix degradation in degenerative human nucleus pulposus cells. Oncotarget 2017; 8(17): 27868-81.
[http://dx.doi.org/10.18632/oncotarget.15838] [PMID: 28427186]
[80]
Zhang HJ, Ma XH, Xie SL, Qin S, Liu CZ, Zhang ZG. Knockdown of miR-660 protects nucleus pulposus cells from TNF-a-induced apoptosis by targeting serum amyloid A1. J Orthop Surg Res 2020; 15(1): 7.
[http://dx.doi.org/10.1186/s13018-019-1538-6] [PMID: 31907065]
[81]
Zhou J, Sun J, Markova DZ, et al. MicroRNA-145 overexpression attenuates apoptosis and increases matrix synthesis in nucleus pulposus cells. Life Sci 2019; 221: 274-83.
[http://dx.doi.org/10.1016/j.lfs.2019.02.041] [PMID: 30797016]
[82]
Chen H, Wang J, Hu B, et al. MiR-34a promotes Fas-mediated cartilage endplate chondrocyte apoptosis by targeting Bcl-2. Mol Cell Biochem 2015; 406(1-2): 21-30.
[http://dx.doi.org/10.1007/s11010-015-2420-4] [PMID: 25910896]
[83]
Dong W, Liu J, Lv Y, et al. miR‐640 aggravates intervertebral disc degeneration via NF‐κB and WNT signalling pathway. Cell Prolif 2019; 52(5): e12664.
[http://dx.doi.org/10.1111/cpr.12664] [PMID: 31343104]
[84]
Kong L, Sun M, Jiang Z, Li L, Lu B. MicroRNA-194 inhibits lipopolysaccharide-induced inflammatory response in nucleus pulposus cells of the intervertebral disc by targeting TNF receptor-associated factor 6 (TRAF6). Med Sci Monit 2018; 24: 3056-67.
[http://dx.doi.org/10.12659/MSM.907280] [PMID: 29745371]
[85]
Li H, Cui Q, Dong Z, Zhang J, Li H, Zhao L. Downregulation of miR-27b is involved in loss of type II collagen by directly targeting matrix metalloproteinase 13 (MMP13) in human intervertebral disc degeneration. Spine 2016; 41(3): E116-23.
[http://dx.doi.org/10.1097/BRS.0000000000001139] [PMID: 26583473]
[86]
Xu Y, Zhang Z, Zheng Y, Feng S. Dysregulated miR-133a mediates loss of type II collagen by directly targeting matrix metalloproteinase 9 (MMP9) in human intervertebral disc degeneration. Spine 2016; 41(12): E717-24.
[http://dx.doi.org/10.1097/BRS.0000000000001375] [PMID: 26656045]
[87]
Wang C, Zhang ZZ, Yang W, et al. MiR-210 facilitates ECM degradation by suppressing autophagy via silencing of ATG7 in human degenerated NP cells. Biomed Pharmacother 2017; 93: 470-9.
[http://dx.doi.org/10.1016/j.biopha.2017.06.048] [PMID: 28667916]
[88]
Liu J, Yu J, Jiang W, He M, Zhao J. Targeting of CDKN 1B by miR-222-3p may contribute to the development of intervertebral disc degeneration. FEBS Open Bio 2019; 9(4): 728-35.
[http://dx.doi.org/10.1002/2211-5463.12609] [PMID: 30984546]
[89]
Wang J, Liu X, Sun B, Du W, Zheng Y, Sun Y. Upregulated miR-154 promotes ECM degradation in intervertebral disc degeneration. J Cell Biochem 2019; 120(7): 11900-7.
[http://dx.doi.org/10.1002/jcb.28471] [PMID: 30825225]
[90]
Liu W, Xia P, Feng J, et al. MicroRNA-132 upregulation promotes matrix degradation in intervertebral disc degeneration. Exp Cell Res 2017; 359(1): 39-49.
[http://dx.doi.org/10.1016/j.yexcr.2017.08.011] [PMID: 28793234]
[91]
Liu W, Zhang Y, Xia P, et al. MicroRNA-7 regulates IL-1β-induced extracellular matrix degeneration by targeting GDF5 in human nucleus pulposus cells. Biomed Pharmacother 2016; 83: 1414-21.
[http://dx.doi.org/10.1016/j.biopha.2016.08.062] [PMID: 27583982]
[92]
Zhang WL, Chen YF, Meng HZ, et al. Role of miR-155 in the regulation of MMP-16 expression in intervertebral disc degeneration. J Orthop Res 2017; 35(6): 1323-34.
[http://dx.doi.org/10.1002/jor.23313] [PMID: 27227700]
[93]
Chen Z, Han Y, Deng C, et al. Inflammation‐dependent downregulation of miR‐194‐5p contributes to human intervertebral disc degeneration by targeting CUL4A and CUL4B. J Cell Physiol 2019; 234(11): 19977-89.
[http://dx.doi.org/10.1002/jcp.28595] [PMID: 30945295]
[94]
Hai B, Ma Y, Pan X, et al. Melatonin benefits to the growth of human annulus fibrosus cells through inhibiting miR-106a-5p/ATG7 signaling pathway. Clin Interv Aging 2019; 14: 621-30.
[http://dx.doi.org/10.2147/CIA.S193765] [PMID: 30992660]
[95]
Zhu L, Shi Y, Liu L, Wang H, Shen P, Yang H. Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: Therapeutic potential for intervertebral disc degenerative diseases. Cell Cycle 2020; 19(14): 1727-39.
[http://dx.doi.org/10.1080/15384101.2020.1769301] [PMID: 32635856]
[96]
Zhu G, Yang X, Peng C, Yu L, Hao Y. Exosomal miR-532-5p from bone marrow mesenchymal stem cells reduce intervertebral disc degeneration by targeting RASSF5. Exp Cell Res 2020; 393(2): 112109.
[http://dx.doi.org/10.1016/j.yexcr.2020.112109] [PMID: 32464126]
[97]
Cheng X, Zhang G, Zhang L, et al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med 2018; 22(1): 261-76.
[http://dx.doi.org/10.1111/jcmm.13316] [PMID: 28805297]
[98]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[99]
Ridder K, Keller S, Dams M, et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 2014; 12(6): e1001874.
[http://dx.doi.org/10.1371/journal.pbio.1001874] [PMID: 24893313]
[100]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[101]
Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res 2015; 25(8): 981-4.
[http://dx.doi.org/10.1038/cr.2015.82] [PMID: 26138677]
[102]
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal stromal cells and exosomes: Progress and challenges. Front Cell Dev Biol 2020; 8: 665.
[http://dx.doi.org/10.3389/fcell.2020.00665] [PMID: 32766255]
[103]
Gowen A, Shahjin F, Chand S, Odegaard KE, Yelamanchili SV. Mesenchymal stem cell-derived extracellular vesicles: Challenges in clinical applications. Front Cell Dev Biol 2020; 8: 149.
[http://dx.doi.org/10.3389/fcell.2020.00149] [PMID: 32226787]
[104]
Zhang Q, Shen Y, Zhao S, Jiang Y, Zhou D, Zhang Y. Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3. Cell Signal 2021; 86: 110083.
[http://dx.doi.org/10.1016/j.cellsig.2021.110083] [PMID: 34252537]
[105]
Yuan Q, Wang X, Liu L, et al. Exosomes derived from human placental mesenchymal stromal cells carrying antagomiR-4450 alleviate intervertebral disc degeneration through upregulation of ZNF121. Stem Cells Dev 2020; 29(16): 1038-58.
[http://dx.doi.org/10.1089/scd.2020.0083] [PMID: 32620067]
[106]
Zhang J, Zhang J, Zhang Y, et al. Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis. J Cell Mol Med 2020; 24(20): 11742-54.
[http://dx.doi.org/10.1111/jcmm.15784] [PMID: 32860495]
[107]
Yuan X, Li T, Shi L, Miao J, Guo Y, Chen Y. Human umbilical cord mesenchymal stem cells deliver exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell pyroptosis through METTL14/NLRP3. Mol Med 2021; 27(1): 91.
[http://dx.doi.org/10.1186/s10020-021-00355-7] [PMID: 34412584]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy