Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Molecular Mechanism and Structure-activity Relationship of the Inhibition Effect between Monoamine Oxidase and Selegiline Analogues

Author(s): Chuanxi Yang, Xiaoning Wang, Chang Gao, Yunxiang Liu, Ziyi Ma, Jinqiu Zang, Haoce Wang, Lin Liu, Yonglin Liu, Haofen Sun and Weiliang Wang*

Volume 20, Issue 5, 2024

Published on: 08 June, 2023

Page: [474 - 485] Pages: 12

DOI: 10.2174/1573409919666230503143055

Price: $65

Abstract

Introduction: To investigate the inhibition properties and structure-activity relationship between monoamine oxidase (MAO) and selected monoamine oxidase inhibitors (MAOIs, including selegiline, rasagiline and clorgiline).

Methods: The inhibition effect and molecular mechanism between MAO and MAOIs were identified via the half maximal inhibitory concentration (IC50) and molecular docking technology.

Results: It was indicated that selegiline and rasagiline were MAO B inhibitors, but clorgiline was MAO-A inhibitor based on the selectivity index (SI) of MAOIs (0.000264, 0.0197 and 14607.143 for selegiline, rasagiline and clorgiline, respectively). The high-frequency amino acid residues of the MAOIs and MAO were Ser24, Arg51, Tyr69 and Tyr407 for MAO-A and Arg42 and Tyr435 for MAO B. The MAOIs and MAO A/B pharmacophores included the aromatic core, hydrogen bond acceptor, hydrogen bond donor-acceptor and hydrophobic core.

Conclusion: This study shows the inhibition effect and molecular mechanism between MAO and MAOIs and provides valuable findings on the design and treatment of Alzheimer's and Parkinson's diseases.

Graphical Abstract

[1]
Finberg, J.P.M. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther., 2014, 143(2), 133-152.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.010] [PMID: 24607445]
[2]
Ramsay, R.R.; Dunford, C.; Gillman, P.K. Methylene blue and serotonin toxicity: Inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. Br. J. Pharmacol., 2007, 152(6), 946-951.
[http://dx.doi.org/10.1038/sj.bjp.0707430] [PMID: 17721552]
[3]
Saura, J.; Luque, J.M.; Cesura, A.M.; Prada, M.D.; Chan-Palay, V.; Huber, G.; Löffler, J.; Richards, J.G. Increased monoamine oxidase b activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience, 1994, 62(1), 15-30.
[http://dx.doi.org/10.1016/0306-4522(94)90311-5] [PMID: 7816197]
[4]
Lu, C.; Zhou, Q.; Yan, J.; Du, Z.; Huang, L.; Li, X. A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 62, 745-753.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.039] [PMID: 23454517]
[5]
Albreht, A.; Vovk, I.; Mavri, J.; Marco-Contelles, J.; Ramsay, R.R. Evidence for a cyanine link between propargylamine drugs and monoamine oxidase clarifies the inactivation mechanism. Front Chem., 2018, 6, 169.
[http://dx.doi.org/10.3389/fchem.2018.00169] [PMID: 29892597]
[6]
Ramsay, R.R.; Basile, L.; Maniquet, A.; Hagenow, S.; Pappalardo, M.; Saija, M.C.; Bryant, S.D.; Albreht, A.; Guccione, S. Parameters for irreversible inactivation of monoamine oxidase. Molecules, 2020, 25(24), 5908.
[http://dx.doi.org/10.3390/molecules25245908] [PMID: 33322203]
[7]
Ramsay, R.R.; Albreht, A. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural Transm., 2018, 125(11), 1659-1683.
[http://dx.doi.org/10.1007/s00702-018-1861-9] [PMID: 29516165]
[8]
Krátký, M.; Vu, Q.A.; Štěpánková, Š.; Maruca, A.; Silva, T.B.; Ambrož, M.; Pflégr, V.; Rocca, R.; Svrčková, K.; Alcaro, S.; Borges, F.; Vinšová, J. Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorg. Chem., 2021, 116, 105301.
[http://dx.doi.org/10.1016/j.bioorg.2021.105301] [PMID: 34492558]
[9]
Tandarić, T.; Vianello, R. Computational insight into the mechanism of the irreversible inhibition of monoamine oxidase enzymes by the antiparkinsonian propargylamine inhibitors rasagiline and selegiline. ACS Chem. Neurosci., 2019, 10(8), 3532-3542.
[http://dx.doi.org/10.1021/acschemneuro.9b00147] [PMID: 31264403]
[10]
Xie, S.; Chen, J.; Li, X.; Su, T.; Wang, Y.; Wang, Z.; Huang, L.; Li, X. Synthesis and evaluation of selegiline derivatives as monoamine oxidase inhibitor, antioxidant and metal chelator against Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(13), 3722-3729.
[http://dx.doi.org/10.1016/j.bmc.2015.04.009] [PMID: 25934229]
[11]
Pisani, L.; Muncipinto, G.; Miscioscia, T.F.; Nicolotti, O.; Leonetti, F.; Catto, M.; Caccia, C.; Salvati, P.; Soto-Otero, R.; Mendez-Alvarez, E.; Passeleu, C.; Carotti, A. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: Development and biopharmacological profiling of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor. J. Med. Chem., 2009, 52(21), 6685-6706.
[http://dx.doi.org/10.1021/jm9010127] [PMID: 19810674]
[12]
Pisani, L.; Farina, R.; Nicolotti, O.; Gadaleta, D.; Soto-Otero, R.; Catto, M.; Di Braccio, M.; Mendez-Alvarez, E.; Carotti, A. In silico design of novel 2H-chromen-2-one derivatives as potent and selective MAO-B inhibitors. Eur. J. Med. Chem., 2015, 89(7), 98-105.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.029] [PMID: 25462230]
[13]
Musa, M.A.; Badisa, V.L.D.; Aghimien, M.O.; Eyunni, S.V.K.; Latinwo, L.M. Identification of 7,8‐dihydroxy‐3‐phenylcoumarin as a reversible monoamine oxidase enzyme inhibitor. J. Biochem. Mol. Toxicol., 2021, 35(2), e22651.
[http://dx.doi.org/10.1002/jbt.22651] [PMID: 33085988]
[14]
Youdim, M.B.H.; Gross, A.; Finberg, J.P.M. Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br. J. Pharmacol., 2001, 132(2), 500-506.
[http://dx.doi.org/10.1038/sj.bjp.0703826] [PMID: 11159700]
[15]
Park, S.E.; Paudel, P.; Wagle, A.; Seong, S.H.; Kim, H.R.; Fauzi, F.M.; Jung, H.A.; Choi, J.S. Luteolin, a potent human monoamine oxidase A inhibitor and dopamine D4 and vasopressin V1A receptor antagonist. J. Agric. Food Chem., 2020, 68(39), 10719-10729.
[http://dx.doi.org/10.1021/acs.jafc.0c04502] [PMID: 32869630]
[16]
Delport, A.; Harvey, B.H.; Petzer, A.; Petzer, J.P. Methylene blue analogues with marginal monoamine oxidase inhibition retain antidepressant-like activity. ACS Chem. Neurosci., 2018, 9(12), 2917-2928.
[http://dx.doi.org/10.1021/acschemneuro.8b00042] [PMID: 29976053]
[17]
Delport, A.; Harvey, B.H.; Petzer, A.; Petzer, J.P. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicol. Appl. Pharmacol., 2017, 325, 1-8.
[http://dx.doi.org/10.1016/j.taap.2017.03.026] [PMID: 28377303]
[18]
El-Azab, A.S.; Abdel-Aziz, A.A.M.; Abou-Zeid, L.A.; El-Husseiny, W.M.; El Morsy, A.M.; El-Gendy, M.A.; El-Sayed, M.A.A. Synthesis, antitumour activities and molecular docking of thiocarboxylic acid ester-based NSAID scaffolds: COX-2 inhibition and mechanistic studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 989-998.
[http://dx.doi.org/10.1080/14756366.2018.1474878] [PMID: 29806488]
[19]
Liu, Z.; Liu, Y.; Zeng, G.; Shao, B.; Chen, M.; Li, Z.; Jiang, Y.; Liu, Y.; Zhang, Y.; Zhong, H. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere, 2018, 203, 139-150.
[http://dx.doi.org/10.1016/j.chemosphere.2018.03.179] [PMID: 29614407]
[20]
Ming, Y.; Jiachen, L.; Tao, G.; Zhihui, W. Exploration of the mechanism of tripterygium wilfordii in the treatment of myocardial fibrosis based on network pharmacology and molecular docking. Curr. Computeraided Drug Des., 2023, 19(1), 68-79.
[PMID: 36306461]
[21]
Zong, W.; Wang, X.; Du, Y.; Zhang, S.; Zhang, Y.; Teng, Y. Molecular mechanism for the regulation of microcystin toxicity to protein phosphatase 1 by glutathione conjugation pathway. BioMed Res. Int., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/9676504] [PMID: 28337461]
[22]
Yang, C.; Wang, X.; Ji, Y.; Ma, T.; Zhang, F.; Wang, Y.; Ci, M.; Chen, D.; Jiang, A.; Wang, W. Photocatalytic degradation of methylene blue with ZnO@C nanocomposites: Kinetics, mechanism, and the inhibition effect on monoamine oxidase A and B. NanoImpact, 2019, 15, 100174.
[http://dx.doi.org/10.1016/j.impact.2019.100174]
[23]
De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D.E.; Mattevi, A. Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proc. Natl. Acad. Sci., 2005, 102(36), 12684-12689.
[http://dx.doi.org/10.1073/pnas.0505975102] [PMID: 16129825]
[24]
Hubálek, F.; Binda, C.; Khalil, A.; Li, M.; Mattevi, A.; Castagnoli, N.; Edmondson, D.E. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J. Biol. Chem., 2005, 280(16), 15761-15766.
[http://dx.doi.org/10.1074/jbc.M500949200] [PMID: 15710600]
[25]
Jin, C.F.; Wang, Z.Z.; Chen, K.Z.; Xu, T.F.; Hao, G.F. Computational fragment-based design facilitates discovery of potent and selective monoamine oxidase-B (MAO-B) inhibitor. J. Med. Chem., 2020, 63(23), 15021-15036.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01663] [PMID: 33210537]
[26]
Łażewska, D.; Olejarz-Maciej, A.; Reiner, D.; Kaleta, M.; Latacz, G.; Zygmunt, M.; Doroz-Płonka, A.; Karcz, T.; Frank, A.; Stark, H.; Kieć-Kononowicz, K. Dual target ligands with 4-tertbutylphenoxy scaffold as histamine H3 receptor antagonists and monoamine oxidase B inhibitors. Int. J. Mol. Sci., 2020, 21(10), 3411.
[http://dx.doi.org/10.3390/ijms21103411] [PMID: 32408504]
[27]
Tandarić, T.; Prah, A.; Stare, J.; Mavri, J.; Vianello, R. Hydride abstraction as the rate-limiting step of the irreversible inhibition of monoamine oxidase B by rasagiline and selegiline: A computational empirical valence bond study. Int. J. Mol. Sci., 2020, 21(17), 6151.
[http://dx.doi.org/10.3390/ijms21176151] [PMID: 32858935]
[28]
Harvey, B.H.; Duvenhage, I.; Viljoen, F.; Scheepers, N.; Malan, S.F.; Wegener, G.; Brink, C.B.; Petzer, J.P. Role of monoamine oxidase, nitric oxide synthase and regional brain monoamines in the antidepressant-like effects of methylene blue and selected structural analogues. Biochem. Pharmacol., 2010, 80(10), 1580-1591.
[http://dx.doi.org/10.1016/j.bcp.2010.07.037] [PMID: 20699087]
[29]
Petzer, A.; Harvey, B.H.; Wegener, G.; Petzer, J.P. Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol. Appl. Pharmacol., 2012, 258(3), 403-409.
[http://dx.doi.org/10.1016/j.taap.2011.12.005] [PMID: 22197611]
[30]
Hu, Y.; Cui, Q.; Ma, D.; Jin, W.; Li, Y.; Zhang, J.; Xu, Y. Key targets and molecular mechanisms of active volatile components of rabdosia rubescens in gastric cancer cells. Curr. Computeraided Drug Des., 2022, 18(7), 493-505.
[http://dx.doi.org/10.2174/1573409918666221003091312] [PMID: 36200190]
[31]
Paudel, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Rubrofusarin as a dual protein tyrosine phosphate 1b and human monoamine oxidase a inhibitor: An in vitro and in silico study. ACS Omega, 2019, 4(7), 11621-11630.
[http://dx.doi.org/10.1021/acsomega.9b01433] [PMID: 31460269]
[32]
Aziz, D.M.; Azeez, H.J. Synthesis of new ß-lactam- N-(thiazol-2-yl)benzene sulfonamide hybrids: Their in vitro antimicrobial and in silico molecular docking studies. J. Mol. Struct., 2020, 1222, 128904.
[http://dx.doi.org/10.1016/j.molstruc.2020.128904]
[33]
Zhang, Y.M.; Xu, H.Y.; Hu, H.N.; Tian, F.Y.; Chen, F.; Liu, H.N.; Zhan, L.; Pi, X.P.; Liu, J.; Gao, Z.B.; Nan, F.J. Discovery of HN37 as a potent and chemically stable antiepileptic drug candidate. J. Med. Chem., 2021, 64(9), 5816-5837.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02252] [PMID: 33929863]
[34]
Wang, X.; Yang, C.; Sun, Y.; Sui, X.; Zhu, T.; Wang, Q.; Wang, S.; Yang, J.; Yang, W.; Liu, F.; Zhang, M.; Wang, Y.; Luo, Y. A novel screening strategy of anti-SARS-CoV-2 drugs via blocking interaction between Spike RBD and ACE2. Environ. Int., 2021, 147, 106361.
[http://dx.doi.org/10.1016/j.envint.2020.106361] [PMID: 33401173]
[35]
Ding, K.; Kong, X.; Wang, J.; Lu, L.; Zhou, W.; Zhan, T.; Zhang, C.; Zhuang, S. Side chains of parabens modulate antiandrogenic activity: in vitro and molecular docking studies. Environ. Sci. Technol., 2017, 51(11), 6452-6460.
[http://dx.doi.org/10.1021/acs.est.7b00951] [PMID: 28466639]
[36]
Ng, C.A.; Hungerbuehler, K. Exploring the use of molecular docking to identify bioaccumulative perfluorinated alkyl acids (PFAAs). Environ. Sci. Technol., 2015, 49(20), 12306-12314.
[http://dx.doi.org/10.1021/acs.est.5b03000] [PMID: 26393377]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy