Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Monocomponent Biosorption of Copper Ions (II) onto Nanocrystalline Cellulose from Coconut Husk Fibers

Author(s): Nur Athirah Binti Abdullah, Marzieh Badiei*, Masita Mohammad*, Nilofar Asim, Zahira Yaakob and Mohd. Amir Radli Othman

Volume 20, Issue 4, 2024

Published on: 05 June, 2023

Page: [564 - 575] Pages: 12

DOI: 10.2174/1573413719666230502114208

Price: $65

Abstract

Introduction: Nanocrystalline cellulose (NCC) is one of the most suitable cellulose derivatives for the treatment of wastewater. Various agricultural wastes have been used for the extraction of NCC. Coconut wastes have been widely studied as potential adsorbents for the removal of pollutants, including dyes and heavy metals.

Methods: In this work, nanocrystalline cellulose (NCC) was successfully isolated from coconut husk fibers through alkaline pretreatment accompanied by sulfuric acid hydrolysis. Then, the ability of NCC to adsorb Cu2+ from aqueous solution in batch studies was investigated.

Results: Results indicated that the optimal hydrolysis parameters were achieved at 50° C for 45 min with 64% sulfuric acid to extract NCC as rod-like particles with diameters between 4-10 nm. The potential of NCC as a biosorbent to remove copper ions (Cu2+) from aqueous solution was investigated in terms of batch mode and maximum adsorption capacity (qm) of 79.491 mg/g of Cu2+. The adsorption efficiency of Cu2+ions increased with an increase in the adsorbent dosage, decreased with an increase in the initial concentration of contaminant, and increased with the contact time. Under optimal conditions, adsorption kinetic followed a pseudo-second-order kinetic model and the adsorption isotherm fitted most closely with the Langmuir model.

Conclusion: According to a literature review, NCC from coconut husk fibers has not been used for the adsorption of heavy metals, mainly copper ions. This study shows that NCC from coconut husk fibers can be used as a low-cost and environmentally friendly adsorbent for the removal of Cu2+ from aqueous solutions.

« Previous
Graphical Abstract

[1]
Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J.; Zheng, W.; Hu, Z.; Yang, Y.; Gao, Y.; Chen, Y.; Zhang, X.; Gao, F.; Zhang, Y. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere, 2018, 211, 235-253.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.179] [PMID: 30077103]
[2]
Maleki, A.; Mohammad, M.; Emdadi, Z.; Asim, N.; Azizi, M.; Safaei, J. Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions. Arab. J. Chem., 2020, 13(1), 3017-3025.
[http://dx.doi.org/10.1016/j.arabjc.2018.08.011]
[3]
Ameri, Z.; Hoodaji, M.; Rajaei, M.; Ataabadi, M. Optimizing modified rice bran for treating aqueous solutions polluted by Cr (VI) ions: Isotherm and kinetics analyses. Qual. Assur. Saf. Crops Foods, 2021, 13(SP1), 1-11.
[http://dx.doi.org/10.15586/qas.v13iSP1.942]
[4]
Iwuozor, K.O.; Oyekunle, I.P.; Oladunjoye, I.O.; Ibitogbe, E.M.; Olorunfemi, T.S. A review on the mitigation of heavy metals from aqueous solution using sugarcane bagasse. Sugar Tech, 2021, 24, 1167-1185.
[5]
Sajab, M.S.; Chia, C.H.; Zakaria, S.; Sillanpää, M. Adsorption of heavy metal ions on surface of functionalized oil palm empty fruit bunch fibres: Single and binary systems. Sains Malays., 2017, 46(1), 157-165.
[http://dx.doi.org/10.17576/jsm-2017-4601-20]
[6]
Alshekhli, A.F.; Hasan, H.A.; Muhamad, M.H.; Abdullah, S.R.S. Development of adsorbent from phytoremediation plant waste for methylene blue removal. J. Ecol. Eng., 2020, 21(8), 207-215.
[7]
Mohammad, M.; Yaakob, Z.; Abdullah, S. Carbon derived from Jatropha seed hull as a potential green adsorbent for cadmium (II) removal from wastewater. Materials (Basel), 2013, 6(10), 4462-4478.
[http://dx.doi.org/10.3390/ma6104462] [PMID: 28788340]
[8]
Akpomie, K.G.; Conradie, J. Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ. Chem. Lett., 2020, 18(4), 1085-1112.
[http://dx.doi.org/10.1007/s10311-020-00995-x]
[9]
Demcak, S.; Balintova, M.; Hurakova, M.; Frontasyeva, M.V.; Zinicovscaia, I.; Yushin, N. Utilization of poplar wood sawdust for heavy metals removal from model solutions. Nova Biotechnologica et Chimica, 2017, 16(1), 26-31.
[http://dx.doi.org/10.1515/nbec-2017-0004]
[10]
Ighalo, J.O.; Adeniyi, A.G. Adsorption of pollutants by plant bark derived adsorbents: An empirical review. J. Water Process Eng., 2020, 35, 101228.
[http://dx.doi.org/10.1016/j.jwpe.2020.101228]
[11]
Debnath, B.; Haldar, D.; Purkait, M.K. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr. Polym., 2021, 273, 118537.
[http://dx.doi.org/10.1016/j.carbpol.2021.118537] [PMID: 34560949]
[12]
Imran-Shaukat, M.; Wahi, R.; Abdullah, S.M.A.A.; Ngaini, Z. Chemically modified coconut shell biochar for removal of heavy metals from aqueous solution. DDF, 2021, 411, 79-91.
[http://dx.doi.org/10.4028/www.scientific.net/DDF.411.79]
[13]
Abdulrasaq, O.O.; Basiru, O.G. Removal of copper (II), iron (III) and lead (II) ions from mono-component simulated waste effluent by adsorption on coconut husk. Afr. J. Environ. Sci. Technol., 2010, 4(6)
[14]
Swarnalatha, K.; Ayoob, S. Adsorption studies on coir pith for heavy metal removal. Int. J. Sustain. Eng., 2016, 9(4), 259-265.
[http://dx.doi.org/10.1080/19397038.2016.1152323]
[15]
Paul, D.J.M.; Jimmy, J.; Therattil, J.M.; Regi, L.; Shahana, S. Removal of heavy metals using low cost adsorbents. IOSR J. Mech. Civ. Eng., 2017, 14(3), 48-50.
[http://dx.doi.org/10.9790/1684-1403024850]
[16]
Nashine, A.L.; Tembhurkar, A.R. Equilibrium, kinetic and thermodynamic studies for adsorption of As(III) on coconut (Cocos nucifera L.) fiber. J. Environ. Chem. Eng., 2016, 4(3), 3267-3273.
[http://dx.doi.org/10.1016/j.jece.2016.06.005]
[17]
Johari, K.; Alias, A.S.; Saman, N.; Song, S.T.; Mat, H. Removal performance of elemental mercury by low-cost adsorbents prepared through facile methods of carbonisation and activation of coconut husk. Waste Manag. Res., 2015, 33(1), 81-88.
[http://dx.doi.org/10.1177/0734242X14562660] [PMID: 25492720]
[18]
Johari, K.; Saman, N.; Song, S.T.; Chin, C.S.; Kong, H.; Mat, H. Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. Int. Biodeterior. Biodegradation, 2016, 109, 45-52.
[http://dx.doi.org/10.1016/j.ibiod.2016.01.004]
[19]
Asim, N.; Amin, M.H.; Alghoul, M.A.; Sulaiman, S.N.A.; Razali, H.; Akhtaruzzaman, M.; Amin, N.; Sopian, K. Developing of chemically treated waste biomass adsorbent for dye removal. J. Nat. Fibers, 2021, 18(7), 968-977.
[http://dx.doi.org/10.1080/15440478.2019.1675214]
[20]
Daniel, A.B.; Zahir, E.; Asghar, M.A. Remediation of vanadium (V) and chromium (III) ions from aqueous media by modified nanocellulose obtained from coconut coir. J. Macromol. Sci. Part B Phys., 2021, 60(7), 500-520.
[http://dx.doi.org/10.1080/00222348.2020.1870300]
[21]
Asim, N.; Amin, M.H.; Samsudin, N.A.; Badiei, M.; Razali, H.; Akhtaruzzaman, M.; Amin, N.; Sopian, K. Development of effective and sustainable adsorbent biomaterial from an agricultural waste material: Cu(II) removal. Mater. Chem. Phys., 2020, 249, 123128.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123128]
[22]
Honnannavar, S.; Hosamani, S. Comparison of activated and inactivated coconut husk as an adsorbent for removal of hexavalent chromium from wastewater. J. Chem. Pharm. Res., 2014, 6(6), 2628-2633.
[23]
Ahmed, N.; Islam, M.N.; Hossain, M.Y.; Rahman, A.K.M.L.; Sultana, A. Modified coconut coir to remove hexavalent chromium from aqueous solution. Bangladesh J. Sci. Ind. Res., 2019, 54(1), 89-98.
[http://dx.doi.org/10.3329/bjsir.v54i1.40735]
[24]
Suksabye, P.; Thiravetyan, P. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith. J. Environ. Manage., 2012, 102, 1-8.
[http://dx.doi.org/10.1016/j.jenvman.2011.10.020] [PMID: 22421026]
[25]
Jahangard, A.; Sohrabi, M.; Beigmohammadi, Z. Sorption of lead (II) ions on activated coconut husk. Iranian J. Toxicol., 2016, 10(6), 23-29.
[http://dx.doi.org/10.29252/arakmu.10.6.23]
[26]
de Sousa, D.A.; de Oliveira, E.; da Costa Nogueira, M.; Espósito, B.P. Development of a heavy metal sorption system through the P S functionalization of coconut (Cocos nucifera) fibers. Bioresour. Technol., 2010, 101(1), 138-143.
[http://dx.doi.org/10.1016/j.biortech.2008.08.051] [PMID: 19716694]
[27]
Rosa, M.F.; Medeiros, E.S.; Malmonge, J.A.; Gregorski, K.S.; Wood, D.F.; Mattoso, L.H.C.; Glenn, G.; Orts, W.J.; Imam, S.H. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym., 2010, 81(1), 83-92.
[http://dx.doi.org/10.1016/j.carbpol.2010.01.059]
[28]
Nascimento, D.M.; Almeida, J.S.; Vale, M.S.; Leitão, R.C.; Muniz, C.R.; Figueirêdo, M.C.B.; Morais, J.P.S.; Rosa, M.F. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Ind. Crops Prod., 2016, 93, 66-75.
[http://dx.doi.org/10.1016/j.indcrop.2015.12.078]
[29]
Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydr. Polym., 2018, 181, 1038-1051.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.045] [PMID: 29253930]
[30]
Mandal, A.; Chakrabarty, D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym., 2011, 86(3), 1291-1299.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.030]
[31]
Kian, L.K.; Jawaid, M.; Ariffin, H.; Karim, Z. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol., 2018, 114, 54-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.065] [PMID: 29551511]
[32]
Wise, L.E. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade., 1946, 122, 35-43.
[33]
Sheltami, R.M.; Abdullah, I.; Ahmad, I.; Dufresne, A.; Kargarzadeh, H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr. Polym., 2012, 88(2), 772-779.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.062]
[34]
Segal, L.; Creely, J.J.; Martin, A.E., Jr; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J., 1959, 29(10), 786-794.
[http://dx.doi.org/10.1177/004051755902901003]
[35]
Fardioui, M.; Stambouli, A.; Gueddira, T.; Dahrouch, A.; Qaiss, A.E.K.; Bouhfid, R. Extraction and characterization of nanocrystalline cellulose from Doum (Chamaerops humilis) leaves: a potential reinforcing biomaterial. J. Polym. Environ., 2016, 24(4), 356-362.
[http://dx.doi.org/10.1007/s10924-016-0784-5]
[36]
Ilyas, R.A.; Sapuan, S.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Rafiqah, S.A.; Aisyah, H.A.; Nurazzi, N.M.; Norrrahim, M.N.F. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga Pinnata (Wurmb.) Merr). Text. Res. J., 2021, 91(1-2), 152-167.
[http://dx.doi.org/10.1177/0040517520932393]
[37]
Rashid, S.; Dutta, H. Characterization of nanocellulose extracted from short, medium and long grain rice husks Industr. Crops Prod., 2020, 154, 112627.
[38]
Zhang, K.; Sun, P.; Liu, H.; Shang, S.; Song, J.; Wang, D. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr. Polym., 2016, 138, 237-243.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.038] [PMID: 26794758]
[39]
Ibrahim, M.M.; El-Zawawy, W.K.; Jüttke, Y.; Koschella, A.; Heinze, T. Cellulose and microcrystalline cellulose from rice straw and banana plant waste: Preparation and characterization. Cellulose, 2013, 20(5), 2403-2416.
[http://dx.doi.org/10.1007/s10570-013-9992-5]
[40]
Bezerra, R.D.S.; Leal, R.C.; da Silva, M.S.; Morais, A.I.S.; Marques, T.H.C.; Osajima, J.A.; Meneguin, A.B. da S Barud, H.; C da Silva Filho, E. Direct modification of microcrystalline cellulose with ethylenediamine for use as adsorbent for removal amitriptyline drug from environment. Molecules, 2017, 22(11), 2039.
[http://dx.doi.org/10.3390/molecules22112039] [PMID: 29165380]
[41]
Kaboorani, A.; Riedl, B. Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind. Crops Prod., 2015, 65, 45-55.
[http://dx.doi.org/10.1016/j.indcrop.2014.11.027]
[42]
Hosakun, Y.; Halász, K.; Horváth, M.; Csóka, L. Djoković V. ATR-FTIR study of the interaction of CO2 with bacterial cellulose-based membranes. Chem. Eng. J., 2017, 324, 83-92.
[http://dx.doi.org/10.1016/j.cej.2017.05.029]
[43]
Venturi, D.; Grupkovic, D.; Sisti, L.; Baschetti, M.G. Effect of humidity and nanocellulose content on Polyvinylamine-nanocellulose hybrid membranes for CO2 capture. J. Membr. Sci., 2018, 548, 263-274.
[http://dx.doi.org/10.1016/j.memsci.2017.11.021]
[44]
Ahankari, S.S. Nanocellulose based membranes for CO2 separation from biogas through the facilitated transport mechanism: A review; Materials Today Sustainability, 2022, p. 100191.
[45]
Singh, S.; Gaikwad, K.K.; Park, S.I.; Lee, Y.S. Microwave-assisted step reduced extraction of seaweed (Gelidiella aceroso) cellulose nanocrystals. Int. J. Biol. Macromol., 2017, 99, 506-510.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.004] [PMID: 28267615]
[46]
Othman, S.H.; Rashid, A.S.; Ghazi, M.T.I.; Abdullah, N. Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications. J. Nanomater., 2012, 2012, 1-10.
[47]
Suopajärvi, T.; Liimatainen, H.; Karjalainen, M.; Upola, H.; Niinimäki, J. Lead adsorption with sulfonated wheat pulp nanocelluloses. J. Water Process Eng., 2015, 5, 136-142.
[http://dx.doi.org/10.1016/j.jwpe.2014.06.003]
[48]
Singh, K.; Sinha, T.J.M.; Srivastava, S. Functionalized nanocrystalline cellulose: Smart biosorbent for decontamination of arsenic. Int. J. Miner. Process., 2015, 139, 51-63.
[http://dx.doi.org/10.1016/j.minpro.2015.04.014]
[49]
Shanmugarajah, B.; Chew, I.M.; Mubarak, N.M.; Choong, T.S.; Yoo, C.; Tan, K. Valorization of palm oil agro-waste into cellulose biosorbents for highly effective textile effluent remediation. J. Clean. Prod., 2019, 210, 697-709.
[http://dx.doi.org/10.1016/j.jclepro.2018.10.342]
[50]
Madivoli, E.; Kareru, P.; Gachanja, A.; Mugo, S.; Murigi, M.; Kairigo, P. Adsorption of selected heavy metals on modified nano cellulose. Int. Res. J. Pure Appl. Chem., 2016, 12(3), 1-9.
[http://dx.doi.org/10.9734/IRJPAC/2016/28548]
[51]
El Khomri, M.; El Messaoudi, N.; Dbik, A.; Bentahar, S.; Lacherai, A. Efficient adsorbent derived from Argania Spinosa for the adsorption of cationic dye: Kinetics, mechanism, isotherm and thermodynamic study. Surf. Interfaces, 2020, 20, 100601.
[http://dx.doi.org/10.1016/j.surfin.2020.100601]
[52]
Kajjumba, G.W. Aydın, S.; Güneysu, S. Adsorption isotherms and kinetics of vanadium by shale and coal waste. Adsorpt. Sci. Technol., 2018, 36(3-4), 936-952.
[http://dx.doi.org/10.1177/0263617417733586]
[53]
Yashim, M.M.; Marjohan, E.L. Adsorption isotherm study of adsorption methylene blue onto oil palm kernel shell activated carbon. ARPN J. Eng. Appl. Sci., 2006, 11(20), 11907-11910.
[54]
Shahnaz, T. S, M.M.F.; v C, P.; Narayanasamy, S. Surface modification of nanocellulose using polypyrrole for the adsorptive removal of Congo red dye and chromium in binary mixture. Int. J. Biol. Macromol., 2020, 151, 322-332.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.181] [PMID: 32084468]
[55]
Li, W.; Ju, B.; Zhang, S. A green L -cysteine modified cellulose nanocrystals biosorbent for adsorption of mercury ions from aqueous solutions. RSC Advances, 2019, 9(12), 6986-6994.
[http://dx.doi.org/10.1039/C9RA00048H] [PMID: 35518471]
[56]
El Nemr, A.; El-Assal, A.A.M.; El Sikaily, A.; Mahmoud, M.E.; Amira, M.F.; Ragab, S. New magnetic cellulose nanobiocomposites for Cu(II), Cd(II) and Pb(II) ions removal: kinetics, thermodynamics and analytical evaluation. Nanotechnol. Environ. Eng., 2021, 6(3), 42.
[http://dx.doi.org/10.1007/s41204-021-00138-9]
[57]
Santoso, S.P.; Angkawijaya, A.E.; Kurniawan, A.; Yuliana, M.; Soetaredjo, F.E.; Ismadji, S. Utilization of nanocrystalline cellulose for adsorption of divalent cobalt ions in the aqueous phase; Fine Chemical Engineering, 2021, pp. 1-12.
[58]
Xu, Q.; Wang, Y.; Jin, L.; Wang, Y.; Qin, M. Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. J. Hazard. Mater., 2017, 339, 91-99.
[http://dx.doi.org/10.1016/j.jhazmat.2017.06.005] [PMID: 28633083]
[59]
Banerjee, M.; Basu, R.K.; Das, S.K. Cu(II) removal using green adsorbents: Kinetic modeling and plant scale-up design. Environ. Sci. Pollut. Res. Int., 2019, 26(12), 11542-11557.
[http://dx.doi.org/10.1007/s11356-018-1930-5] [PMID: 29667049]
[60]
Lim, Y.H.; Chew, I.M.L.; Choong, T.S.Y.; Tan, M.C.; Tan, K.W. Eds. NanoCrystalline Cellulose isolated from oil palm empty fruit bunch and its potential in cadmium metal removal. MATEC web of conferences; EDP Sciences, 2016.
[61]
Aman, T.; Kazi, A.A.; Sabri, M.U.; Bano, Q. Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids Surf. B Biointerfaces, 2008, 63(1), 116-121.
[http://dx.doi.org/10.1016/j.colsurfb.2007.11.013] [PMID: 18215510]
[62]
Li, H.; Wei, M.; Min, W.; Gao, Y.; Liu, X.; Liu, J. Removal of heavy metal Ions in aqueous solution by Exopolysaccharides from Athelia rolfsii. Biocatal. Agric. Biotechnol., 2016, 6, 28-32.
[http://dx.doi.org/10.1016/j.bcab.2016.01.013]
[63]
Chai, F.; Wang, R.; Yan, L.; Li, G.; Cai, Y.; Xi, C. Facile fabrication of pH-sensitive nanoparticles based on nanocellulose for fast and efficient As(V) removal. Carbohydr. Polym., 2020, 245, 116511.
[http://dx.doi.org/10.1016/j.carbpol.2020.116511] [PMID: 32718622]
[64]
Vadakkekara, G.J.; Thomas, S.; Nair, C.P.R. Sodium itaconate grafted nanocellulose for facile elimination of lead ion from water. Cellulose, 2020, 27(6), 3233-3248.
[http://dx.doi.org/10.1007/s10570-020-02983-4]
[65]
Onyango, M.S.; Kojima, Y.; Aoyi, O.; Bernardo, E.C.; Matsuda, H. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J. Colloid Interface Sci., 2004, 279(2), 341-350.
[http://dx.doi.org/10.1016/j.jcis.2004.06.038] [PMID: 15464797]
[66]
Mthombeni, N.H.; Mbakop, S.; Ochieng, A.; Onyango, M.S. Vanadium (V) adsorption isotherms and kinetics using polypyrrole coated magnetized natural zeolite. J. Taiwan Inst. Chem. Eng., 2016, 66, 172-180.
[http://dx.doi.org/10.1016/j.jtice.2016.06.016]
[67]
Zulu, B.; Oyewo, O.A.; Sithole, B.; Leswifi, T.Y.; Onyango, M.S. Functionalized sawdust-derived cellulose nanocrystalline adsorbent for efficient removal of vanadium from aqueous solution. Front. Environ. Sci., 2020, 8, 56.
[http://dx.doi.org/10.3389/fenvs.2020.00056]
[68]
Batmaz, R.; Mohammed, N.; Zaman, M.; Minhas, G.; Berry, R.M.; Tam, K.C. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose, 2014, 21(3), 1655-1665.
[http://dx.doi.org/10.1007/s10570-014-0168-8]
[69]
Maaloul, N.; Oulego, P.; Rendueles, M.; Ghorbal, A.; Díaz, M. Biopolymer composite from cellulose nanocrystals of almond (Prunus dulcis) shell as effective adsorbents for Cu2+ ions from aqueous solutions. J. Environ. Chem. Eng., 2021, 9(2), 105139.
[http://dx.doi.org/10.1016/j.jece.2021.105139]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy