Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

OL-FS13 Alleviates Cerebral Ischemia-reperfusion Injury by Inhibiting miR-21-3p Expression

Author(s): Naixin Liu, Yan Fan, Yilin Li, Yingxuan Zhang, Jiayi Li, Yinglei Wang, Zhuo Wang, Yixiang Liu, Yuansheng Li, Zijian Kang, Ying Peng, Zeqiong Ru, Meifeng Yang*, Chengan Feng*, Ying Wang* and Xinwang Yang*

Volume 21, Issue 12, 2023

Published on: 03 May, 2023

Page: [2550 - 2562] Pages: 13

DOI: 10.2174/1570159X21666230502111013

Price: $65

Abstract

Background: OL-FS13, a neuroprotective peptide derived from Odorrana livida, can alleviate cerebral ischemia-reperfusion (CI/R) injury, although the specific underlying mechanism remains to be further explored.

Objective: The effect of miR-21-3p on the neural-protective effects of OL-FS13 was examined.

Methods: In this study, the multiple genome sequencing analysis, double luciferase experiment, RT-qPCR, and Western blotting were used to explore the mechanism of OL-FS13.

Results: Showed that over-expression of miR-21-3p against the protective effects of OL-FS13 on oxygen- glucose deprivation/re-oxygenation (OGD/R)-damaged pheochromocytoma (PC12) cells and in CI/R-injured rats. miR-21-3p was then found to target calcium/calmodulin-dependent protein kinase 2 (CAMKK2), and its overexpression inhibited the expression of CAMKK2 and phosphorylation of its downstream adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK), thereby inhibiting the therapeutic effects of OL-FS13 on OGD/R and CI/R. Inhibition of CAMKK2 also antagonized up-regulated of nuclear factor erythroid 2-related factor 2 (Nrf-2) by OL-FS13, thereby abolishing the antioxidant activity of the peptide.

Conclusion: Our results showed that OL-FS13 alleviated OGD/R and CI/R by inhibiting miR-21-3p to activate the CAMKK2/AMPK/Nrf-2 axis.

Graphical Abstract

[1]
Stolwyk, R.J.; O’Connell, E.; Lawson, D.W.; Thrift, A.G.; New, P.W. Neurobehavioral disability in stroke patients during subacute inpatient rehabilitation: Prevalence and biopsychosocial associations. Top. Stroke Rehabil., 2018, 25(7), 527-534.
[http://dx.doi.org/10.1080/10749357.2018.1499301] [PMID: 30213238]
[2]
Wunderlich, M.T.; Ebert, A.D.; Kratz, T.; Goertler, M.; Jost, S.; Herrmann, M. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke, 1999, 30(6), 1190-1195.
[http://dx.doi.org/10.1161/01.STR.30.6.1190] [PMID: 10356098]
[3]
Liao, S.; Apaijai, N.; Chattipakorn, N.; Chattipakorn, S.C. The possible roles of necroptosis during cerebral ischemia and ischemia/reperfusion injury. Arch. Biochem. Biophys., 2020, 695, 108629.
[http://dx.doi.org/10.1016/j.abb.2020.108629] [PMID: 33068524]
[4]
Pandian, J.D.; Gall, S.L.; Kate, M.P.; Silva, G.S.; Akinyemi, R.O.; Ovbiagele, B.I.; Lavados, P.M.; Gandhi, D.B.C.; Thrift, A.G. Prevention of stroke: A global perspective. Lancet, 2018, 392(10154), 1269-1278.
[http://dx.doi.org/10.1016/S0140-6736(18)31269-8] [PMID: 30319114]
[5]
Rapillo, C.M.; Donati, M.C.; Renieri, L.; Lombardo, I.; Addazio, I.; Betti, M.; Capasso, F.; Capirossi, C.; Giacomucci, G.; Lamassa, M. Orbital infarction syndrome as a rare complication after mechanical thrombectomy in ischemic stroke. J. Neuroophthalmol., 2022. [Epub Ahead of Print
[http://dx.doi.org/10.1097/WNO.0000000000001659] [PMID: 35830710]
[6]
Paliwal, P.; Chauhan, G.; Gautam, D.; Dash, D.; Patne, S.C.U.; Krishnamurthy, S. Indole-3-carbinol improves neurobehavioral symptoms in a cerebral ischemic stroke model. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(6), 613-625.
[http://dx.doi.org/10.1007/s00210-018-1488-2] [PMID: 29602953]
[7]
O’Keeffe, F.; Liégeois, F.; Eve, M.; Ganesan, V.; King, J.; Murphy, T. Neuropsychological and neurobehavioral outcome following childhood arterial ischemic stroke: Attention deficits, emotional dysregulation, and executive dysfunction. Child Neuropsychol., 2014, 20(5), 557-582.
[http://dx.doi.org/10.1080/09297049.2013.832740] [PMID: 24028185]
[8]
Nagy, Z.; Nardai, S. Cerebral ischemia/repefusion injury: From bench space to bedside. Brain Res. Bull., 2017, 134, 30-37.
[http://dx.doi.org/10.1016/j.brainresbull.2017.06.011] [PMID: 28625785]
[9]
Duan, J.; Gao, S.; Tu, S.; Lenahan, C.; Shao, A.; Sheng, J. Pathophysiology and therapeutic potential of nadph oxidases in ischemic stroke-induced oxidative stress. Oxid. Med. Cell. Longev., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/6631805] [PMID: 33777315]
[10]
Maier, C.M.; Hsieh, L.; Crandall, T.; Narasimhan, P.; Chan, P.H. Evaluating therapeutic targets for reperfusion-related brain hemorrhage. Ann. Neurol., 2006, 59(6), 929-938.
[http://dx.doi.org/10.1002/ana.20850] [PMID: 16673393]
[11]
Huang, H.; Zeng, J.; Kang, Y.; Huang, H.; Hu, Z.; Zeng, W.; Ouyang, F. Acute ischemia stroke: A rare and severe complication of ovarian hyperstimulation syndrome. Int. J. Cardiol., 2016, 203, 418-419.
[http://dx.doi.org/10.1016/j.ijcard.2015.10.059] [PMID: 26544065]
[12]
Xing, C.; Arai, K.; Lo, E.H.; Hommel, M. Pathophysiologic cascades in ischemic stroke. Int. J. Stroke, 2012, 7(5), 378-385.
[http://dx.doi.org/10.1111/j.1747-4949.2012.00839.x] [PMID: 22712739]
[13]
Pemberton, J.M.; Pogmore, J.P.; Andrews, D.W. Neuronal cell life, death, and axonal degeneration as regulated by the BCL-2 family proteins. Cell Death Differ., 2021, 28(1), 108-122.
[http://dx.doi.org/10.1038/s41418-020-00654-2] [PMID: 33162554]
[14]
Rodrigo, R.; Fernández-Gajardo, R.; Gutiérrez, R.; Matamala, J.; Carrasco, R.; Miranda-Merchak, A.; Feuerhake, W. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol. Disord. Drug Targets, 2013, 12(5), 698-714.
[http://dx.doi.org/10.2174/1871527311312050015] [PMID: 23469845]
[15]
Bukauskienė R.; Širvinskas, E.; Lenkutis, T.; Benetis, R.; Steponavičiūtė, R. Risk factors for delayed neurocognitive recovery according to brain biomarkers and cerebral blood flow velocity. Medicina (Kaunas), 2020, 56(6), 288.
[http://dx.doi.org/10.3390/medicina56060288] [PMID: 32545416]
[16]
Moore, M.; Stuart, J.; Humphreys, A.; Pfaff, J. To tPA or not to tPA: Two medical-legal misadventures of diagnosing a cerebrovascular accident as a stroke mimic. Clin. Pract. Cases Emerg. Med., 2019, 3(3), 194-198.
[http://dx.doi.org/10.5811/cpcem.2019.4.42186] [PMID: 31404351]
[17]
Ratnasingham, Y.; Kristensen, L.H.; Gammelgaard, L.; Balslev, T. Arterial ischemic stroke as a complication to disseminated infection with Fusobacterium necrophorum Neuropediatrics, 2014, 45(2), 120-122.
[PMID: 24227208]
[18]
Wronska, A. The role of microRNA in the development, diagnosis, and treatment of cardiovascular disease - recent developments J. Pharmacol. Exp. Ther., 2022, JPET-MR-2022-001152..
[http://dx.doi.org/10.1124/jpet.121.001152] [PMID: 35779862]
[19]
Zhang, Y.; Wang, Y.; Zeng, L.; Liu, Y.; Sun, H.; Li, S.; Wang, S.; Shu, L.; Liu, N.; Yin, S.; Wang, J.; Ni, D.; Wu, Y.; Yang, Y.; He, L.; Meng, B.; Yang, X. Amphibian-derived peptide homodimer OA-GL17d promotes skin wound regeneration through the miR-663a/TGF-β1/Smad axis. Burns Trauma, 2022, 10, tkac032.
[http://dx.doi.org/10.1093/burnst/tkac032] [PMID: 35832307]
[20]
Huang, R.; Ma, J.; Niu, B.; Li, J.; Chang, J.; Zhang, Y.; Liu, P.; Luan, X. MiR-34b protects against focal cerebral Ischemia-Reperfusion (I/R) injury in rat by targeting keap1. J. Stroke Cerebrovasc. Dis., 2019, 28(1), 1-9.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.023] [PMID: 30539753]
[21]
Wang, Y.; Yang, Q.; Gao, Z.; Dong, H. Recent advance of RNA aptamers and DNAzymes for MicroRNA detection. Biosens. Bioelectron., 2022, 212, 114423.
[http://dx.doi.org/10.1016/j.bios.2022.114423] [PMID: 35671695]
[22]
Bulygin, K.V.; Beeraka, N.M.; Saitgareeva, A.R.; Nikolenko, V.N.; Gareev, I.; Beylerli, O.; Akhmadeeva, L.R.; Mikhaleva, L.M.; Torres Solis, L.F.; Solís Herrera, A.; Avila-Rodriguez, M.F.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. Can miRNAs be considered as diagnostic and therapeutic molecules in ischemic stroke pathogenesis?—current status. Int. J. Mol. Sci., 2020, 21(18), 6728.
[http://dx.doi.org/10.3390/ijms21186728] [PMID: 32937836]
[23]
Al-Rawaf, H.A.; Alghadir, A.H.; Gabr, S.A. Circulating microRNAs and molecular oxidative stress in older adults with neuroprogression disorders. Dis. Markers, 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/4409212] [PMID: 34721735]
[24]
Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in control of gene expression: An overview of nuclear functions. Int. J. Mol. Sci., 2016, 17(10), 1712.
[http://dx.doi.org/10.3390/ijms17101712] [PMID: 27754357]
[25]
Liu, N.; Li, Y.; Yang, Y.; Shu, L.; Liu, Y.; Wu, Y.; Sun, D.; Kang, Z.; Zhang, Y.; Ni, D.; Wei, Z.; Li, S.; Yang, M.; Wang, Y.; Sun, J.; Yang, X. OL-FS13 alleviates experimental cerebral ischemia-reperfusion injury. Exp. Neurol., 2022, 357, 114180.
[http://dx.doi.org/10.1016/j.expneurol.2022.114180] [PMID: 35901974]
[26]
Yin, S.; Pang, A.; Liu, C.; Li, Y.; Liu, N.; Li, S.; Li, C.; Sun, H.; Fu, Z.; Wang, Y.; Zhang, Y.; Yang, M.; Sun, J.; Wang, Y.; Yang, X. Peptide OM-LV20 protects astrocytes against oxidative stress via the ‘PAC1R/JNK/TPH1’ axis. J. Biol. Chem., 2022, 298(10), 102429.
[http://dx.doi.org/10.1016/j.jbc.2022.102429] [PMID: 36037970]
[27]
Ohtsuka, S.; Ozeki, Y.; Fujiwara, M.; Miyagawa, T.; Kanayama, N.; Magari, M.; Hatano, N.; Suizu, F.; Ishikawa, T.; Tokumitsu, H. Development and characterization of novel molecular probes for Ca2+/calmodulin-dependent protein kinase kinase, derived from STO-609. Biochemistry, 2020, 59(17), 1701-1710.
[http://dx.doi.org/10.1021/acs.biochem.0c00149] [PMID: 32298102]
[28]
Shi, Y.; Yang, F.; Wei, S.; Xu, G. Identification of key genes affecting results of hyperthermia in osteosarcoma based on integrative ChIP-Seq/targetscan analysis. Med. Sci. Monit., 2017, 23, 2042-2048.
[http://dx.doi.org/10.12659/MSM.901191] [PMID: 28453502]
[29]
Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[30]
Oprea, D.; Sanz, C.G.; Barsan, M.M.; Enache, T.A. PC-12 cell line as a neuronal cell model for biosensing applications. Biosensors (Basel), 2022, 12(7), 500.
[http://dx.doi.org/10.3390/bios12070500] [PMID: 35884303]
[31]
Zhi, S.M.; Fang, G.X.; Xie, X.M.; Liu, L.H.; Yan, J.; Liu, D.B.; Yu, H.Y. Melatonin reduces OGD/R-induced neuron injury by regulating redox/inflammation/apoptosis sign valing Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1524-1536.
[PMID: 32096202]
[32]
Li, L.; Cui, P.; Ge, H.; Shi, Y.; Wu, X. Fan ru, Z. miR-188-5p inhibits apoptosis of neuronal cells during oxygen-glucose deprivation (OGD)-induced stroke by suppressing PTEN. Exp. Mol. Pathol., 2020, 116, 104512.
[http://dx.doi.org/10.1016/j.yexmp.2020.104512] [PMID: 32745469]
[33]
Wang, Y.; Feng, Z.; Yang, M.; Zeng, L.; Qi, B.; Yin, S.; Li, B.; Li, Y.; Fu, Z.; Shu, L.; Fu, C.; Qin, P.; Meng, Y.; Li, X.; Yang, Y.; Tang, J.; Yang, X. Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol. Res., 2021, 163, 105296.
[http://dx.doi.org/10.1016/j.phrs.2020.105296] [PMID: 33220421]
[34]
Fan, Q.; Wu, M.; Li, C.; Li, J. MiR-107 Aggravates Oxygen-Glucose Deprivation/Reoxygenation (OGD/R)-induced injury through inactivating PI3K-AKT signalling pathway by targeting FGF9/FGF12 in PC12 Cells. J. Stroke Cerebrovasc. Dis., 2022, 31(4), 106295.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.106295] [PMID: 35093630]
[35]
Cao, Y.X.; Wang, Z.Q.; Kang, J.X.; Liu, K.; Zhao, C.F.; Guo, Y.X.; Jiao, B.H. miR-424 protects PC-12 cells from OGD-induced injury by negatively regulating MKP-1 Eur. Rev. Med. Pharmacol. Sci., 2018, 22(5), 1426-1436.
[PMID: 29565504]
[36]
Fu, Y.; Li, C.; Li, X.; Zeng, L.; Wang, Y.; Fu, Z.; Shu, L.; Liu, Y.; Liu, N.; Yang, Y.; Tang, J.; Wang, Y.; Yang, X. Amphibian-derived peptide homodimer promotes regeneration of skin wounds. Biomed. Pharmacother., 2022, 146, 112539.
[http://dx.doi.org/10.1016/j.biopha.2021.112539] [PMID: 34923337]
[37]
Yin, S.; Yang, M.; Li, Y.; Li, S.; Fu, Z.; Liu, N.; Wang, Y.; Hu, Y.; Xie, C.; Shu, L.; Pang, A.; Gu, Y.; Wang, Y.; Sun, J.; Yang, X. Peptide OM-LV20 exerts neuroprotective effects against cerebral ischemia/reperfusion injury in rats. Biochem. Biophys. Res. Commun., 2021, 537, 36-42.
[http://dx.doi.org/10.1016/j.bbrc.2020.12.053] [PMID: 33383562]
[38]
Tanaka, J.; Kiyoshi, K.; Kadokura, T.; Suzuki, K.; Nakayama, S. Elucidation of the enzyme involved in 2,3,5-triphenyl tetrazolium chloride (TTC) staining activity and the relationship between TTC staining activity and fermentation profiles in Saccharomyces cerevisiae. J. Biosci. Bioeng., 2021, 131(4), 396-404.
[http://dx.doi.org/10.1016/j.jbiosc.2020.12.001] [PMID: 33386278]
[39]
Bonato, J.M.; Meyer, E.; Mendonça, P.S.B.; Milani, H.; Prickaerts, J.; Oliveira, R.M. Roflumilast protects against spatial memory impairments and exerts anti-inflammatory effects after transient global cerebral ischemia. Eur. J. Neurosci., 2021, 53(4), 1171-1188.
[http://dx.doi.org/10.1111/ejn.15089] [PMID: 33340424]
[40]
Zhao, J.; Pang, A.; Yin, S.; Yang, M.; Zhang, X.; Zhang, R.; Liu, J.; Gu, Y.; Li, S.; Hu, Y.; Zhang, Y.; Ba, Y.; Meng, B.; Yang, X. Peptide OM-LV20 promotes structural and functional recovery of spinal cord injury in rats. Biochem. Biophys. Res. Commun., 2022, 598, 124-130.
[http://dx.doi.org/10.1016/j.bbrc.2022.02.017] [PMID: 35158211]
[41]
Qin, P.; Tang, J.; Sun, D.; Yang, Y.; Liu, N.; Li, Y.; Fu, Z.; Wang, Y.; Li, C.; Li, X.; Zhang, Y.; Liu, Y.; Wang, S.; Sun, J.; Deng, Z.; He, L.; Wang, Y.; Yang, X. Zn2+ Cross-linked alginate carrying hollow silica nanoparticles loaded with RL-QN15 peptides provides promising treatment for chronic skin wounds. ACS Appl. Mater. Interfaces, 2022, 14(26), 29491-29505.
[http://dx.doi.org/10.1021/acsami.2c03583] [PMID: 35731847]
[42]
Deng, Z.; Zhang, Y.; Li, L.; Xie, X.; Huang, J.; Zhang, M.; Ni, X.; Li, X. A dual-luciferase reporter system for characterization of small RNA target genes in both mammalian and insect cells. Insect Sci., 2022, 29(3), 631-644.
[http://dx.doi.org/10.1111/1744-7917.12945] [PMID: 34232550]
[43]
Paguio, A.; Stecha, P.; Wood, K.V.; Fan, F. Improved dual-luciferase reporter assays for nuclear receptors. Curr. Chem. Genomics, 2010, 4, 43-49.
[http://dx.doi.org/10.2174/1875397301004010043] [PMID: 21687560]
[44]
Najar, M.A.; Rex, D.A.B.; Modi, P.K.; Agarwal, N.; Dagamajalu, S.; Karthikkeyan, G.; Vijayakumar, M.; Chatterjee, A.; Sankar, U.; Prasad, T.S.K. A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway. J. Cell Commun. Signal., 2021, 15(2), 283-290.
[http://dx.doi.org/10.1007/s12079-020-00592-1] [PMID: 33136287]
[45]
Pulliam, T.L.; Goli, P.; Awad, D.; Lin, C.; Wilkenfeld, S.R.; Frigo, D.E. Regulation and role of CAMKK2 in prostate cancer. Nat. Rev. Urol., 2022, 19(6), 367-380.
[http://dx.doi.org/10.1038/s41585-022-00588-z] [PMID: 35474107]
[46]
Rajakylä, E.K.; Lehtimäki, J.I.; Acheva, A.; Schaible, N.; Lappalainen, P.; Krishnan, R.; Tojkander, S. Assembly of peripheral actomyosin bundles in epithelial cells is dependent on the CaMKK2/AMPK pathway. Cell Rep., 2020, 30(12), 4266-4280.e4.
[http://dx.doi.org/10.1016/j.celrep.2020.02.096] [PMID: 32209483]
[47]
Sun, H.; Wang, Y.; He, T.; He, D.; Hu, Y.; Fu, Z.; Wang, Y.; Sun, D.; Wang, J.; Liu, Y.; Shu, L.; He, L.; Deng, Z.; Yang, X. Hollow polydopamine nanoparticles loading with peptide RL-QN15: A new pro-regenerative therapeutic agent for skin wounds. J. Nanobiotechnology, 2021, 19(1), 304.
[http://dx.doi.org/10.1186/s12951-021-01049-2] [PMID: 34600530]
[48]
Mai, H.; Fan, W.; Wang, Y.; Cai, Y.; Li, X.; Chen, F.; Chen, X.; Yang, J.; Tang, P.; Chen, H.; Zou, T.; Hong, T.; Wan, C.; Zhao, B.; Cui, L. Intranasal administration of miR-146a agomir rescued the pathological process and cognitive impairment in an AD mouse model. Mol. Ther. Nucleic Acids, 2019, 18, 681-695.
[http://dx.doi.org/10.1016/j.omtn.2019.10.002] [PMID: 31707205]
[49]
Khanevski, A.N.; Bjerkreim, A.T.; Novotny, V.; Næss, H.; Thomassen, L.; Logallo, N.; Kvistad, C.E. Recurrent ischemic stroke: Incidence, predictors, and impact on mortality. Acta Neurol. Scand., 2019, 140(1), 3-8.
[http://dx.doi.org/10.1111/ane.13093] [PMID: 30929256]
[50]
Alfieri, A.; Srivastava, S.; Siow, R.C.M.; Modo, M.; Fraser, P.A.; Mann, G.E. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J. Physiol., 2011, 589(17), 4125-4136.
[http://dx.doi.org/10.1113/jphysiol.2011.210294] [PMID: 21646410]
[51]
Orellana-Urzúa, S.; Rojas, I.; Líbano, L.; Rodrigo, R. Pathophysiology of ischemic stroke: Role of oxidative stress. Curr. Pharm. Des., 2020, 26(34), 4246-4260.
[http://dx.doi.org/10.2174/1381612826666200708133912] [PMID: 32640953]
[52]
Olde Loohuis, N.F.M.; Kos, A.; Martens, G.J.M.; Van Bokhoven, H.; Nadif Kasri, N.; Aschrafi, A. MicroRNA networks direct neuronal development and plasticity. Cell. Mol. Life Sci., 2012, 69(1), 89-102.
[http://dx.doi.org/10.1007/s00018-011-0788-1] [PMID: 21833581]
[53]
Guo, Y.; Gao, J.; Liu, Y.; Zhang, X.; An, X.; Zhou, J.; Su, P. miR-451 on myocardial ischemia-reperfusion in rats by regulating AMPK signaling pathway. BioMed Res. Int., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/9933998] [PMID: 34307674]
[54]
Bicker, S.; Lackinger, M.; Weiß, K.; Schratt, G. MicroRNA-132, -134, and -138: A microRNA troika rules in neuronal dendrites. Cell. Mol. Life Sci., 2014, 71(20), 3987-4005.
[http://dx.doi.org/10.1007/s00018-014-1671-7] [PMID: 25008044]
[55]
Fiore, R.; Siegel, G.; Schratt, G. MicroRNA function in neuronal development, plasticity and disease. Biochim. Biophys. Acta. Gene Regul. Mech., 2008, 1779(8), 471-478.
[http://dx.doi.org/10.1016/j.bbagrm.2007.12.006] [PMID: 18194678]
[56]
Suster, I.; Feng, Y. Multifaceted regulation of MicroRNA biogenesis: Essential roles and functional integration in neuronal and glial development. Int. J. Mol. Sci., 2021, 22(13), 6765.
[http://dx.doi.org/10.3390/ijms22136765] [PMID: 34201807]
[57]
Liu, H.; Wang, L.; Dai, L.; Feng, F.; Xiao, Y. CaMK II/Ca2+ dependent endoplasmic reticulum stress mediates apoptosis of hepatic stellate cells stimulated by transforming growth factor beta 1. Int. J. Biol. Macromol., 2021, 172, 321-329.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.071] [PMID: 33454324]
[58]
Atakhorrami, M.; Rahimi-Aliabadi, S.; Jamshidi, J.; Moslemi, E.; Movafagh, A.; Ohadi, M.; Mirabzadeh, A.; Emamalizadeh, B.; Ghaedi, H.; Gholipour, F.; Fazeli, A.; Motallebi, M.; Taghavi, S.; Ahmadifard, A.; Mohammadihosseinabad, S.; Shafiei Zarneh, A.E.; Shahmohammadibeni, N.; Madadi, F.; Andarva, M.; Darvish, H. A genetic variant in CAMKK2 gene is possibly associated with increased risk of bipolar disorder. J. Neural Transm. (Vienna), 2016, 123(3), 323-328.
[http://dx.doi.org/10.1007/s00702-015-1456-7] [PMID: 26354101]
[59]
Anderson, K.A.; Ribar, T.J.; Lin, F.; Noeldner, P.K.; Green, M.F.; Muehlbauer, M.J.; Witters, L.A.; Kemp, B.E.; Means, A.R. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab., 2008, 7(5), 377-388.
[http://dx.doi.org/10.1016/j.cmet.2008.02.011] [PMID: 18460329]
[60]
Kushwah, N.; Jain, V.; Kadam, M.; Kumar, R.; Dheer, A.; Prasad, D.; Kumar, B.; Khan, N. Ginkgo biloba L. Prevents hypobaric hypoxia-induced spatial memory deficit through small conductance calcium-activated potassium channel inhibition: The role of ERK/CaMKII/CREB signaling. Front. Pharmacol., 2021, 12, 669701.
[http://dx.doi.org/10.3389/fphar.2021.669701] [PMID: 34326768]
[61]
Mehta, S.L.; Manhas, N.; Raghubir, R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res. Brain Res. Rev., 2007, 54(1), 34-66.
[http://dx.doi.org/10.1016/j.brainresrev.2006.11.003] [PMID: 17222914]
[62]
Yu, P.; Chen, X.; Zhao, W.; Zhang, Z.; Zhang, Q.; Han, B.; Zhai, J.; Chen, M.; Du, B.; Deng, X.; Ji, F.; Wang, C.; Xiang, Y.T.; Li, D.; Wu, H.; Li, J.; Dong, Q.; Chen, C. Effect of rs1063843 in the CAMKK2 gene on the dorsolateral prefrontal cortex. Hum. Brain Mapp., 2016, 37(7), 2398-2406.
[http://dx.doi.org/10.1002/hbm.23181] [PMID: 27004598]
[63]
Fogarty, S.; Ross, F.A.; Vara Ciruelos, D.; Gray, A.; Gowans, G.J.; Hardie, D.G. AMPK causes cell cycle arrest in LKB1-deficient cells via activation of CAMKK2. Mol. Cancer Res., 2016, 14(8), 683-695.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0479] [PMID: 27141100]
[64]
Zhang, Y.; Xu, N.; Ding, Y.; Zhang, Y.; Li, Q.; Flores, J.; Haghighiabyaneh, M.; Doycheva, D.; Tang, J.; Zhang, J.H. Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain Behav. Immun., 2018, 70, 179-193.
[http://dx.doi.org/10.1016/j.bbi.2018.02.015] [PMID: 29499303]
[65]
Jing, Z.; He, X.; Jia, Z.; Sa, Y.; Yang, B.; Liu, P. NCAPD2 inhibits autophagy by regulating Ca2+/CAMKK2/AMPK/mTORC1 pathway and PARP-1/SIRT1 axis to promote colorectal cancer. Cancer Lett., 2021, 520, 26-37.
[http://dx.doi.org/10.1016/j.canlet.2021.06.029] [PMID: 34229059]
[66]
Wu, S.; Zou, M.H. AMPK, mitochondrial function, and cardiovascular disease. Int. J. Mol. Sci., 2020, 21(14), 4987.
[http://dx.doi.org/10.3390/ijms21144987] [PMID: 32679729]
[67]
Li, F.J.; Xu, Z.S.; Soo, A.D.S.; Lun, Z.R.; He, C.Y. ATP-driven and AMPK-independent autophagy in an early branching eukaryotic parasite. Autophagy, 2017, 13(4), 715-729.
[http://dx.doi.org/10.1080/15548627.2017.1280218] [PMID: 28121493]
[68]
Harley, G.; Katerelos, M.; Gleich, K.; de Souza, D.P.; Narayana, V.K.; Kemp, B.E.; Power, D.A.; Mount, P.F. Blocking AMPK signalling to acetyl-CoA carboxylase increases cisplatin-induced acute kidney injury and suppresses the benefit of metformin. Biomed. Pharmacother., 2022, 153, 113377.
[http://dx.doi.org/10.1016/j.biopha.2022.113377] [PMID: 36076520]
[69]
Zhang, Y.; Xu, N.; Ding, Y.; Doycheva, D.M.; Zhang, Y.; Li, Q.; Flores, J.; Haghighiabyaneh, M.; Tang, J.; Zhang, J.H. Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic–ischemic encephalopathy. Cell Death Dis., 2019, 10(2), 97.
[http://dx.doi.org/10.1038/s41419-019-1374-y] [PMID: 30718467]
[70]
Zhu, Y.; Huang, J.; Chen, X.; Xie, J.; Yang, Q.; Wang, J.; Deng, X. Senkyunolide I alleviates renal Ischemia-Reperfusion injury by inhibiting oxidative stress, endoplasmic reticulum stress and apoptosis. Int. Immunopharmacol., 2022, 102, 108393.
[http://dx.doi.org/10.1016/j.intimp.2021.108393] [PMID: 34857480]
[71]
Akpınar, K.; Aslan, D.; Fenkçi, S.M.; Caner, V. miR-21-3p and miR-192-5p in patients with type 2 diabetic nephropathy. Diagnosis (Berl.), 2022, 9(4), 499-507.
[http://dx.doi.org/10.1515/dx-2022-0036] [PMID: 35976169]
[72]
Zhang, Y.Q.; Chen, R.L.; Shang, L.Q.; Yang, S.M. Nicotine induced miR 21 3p promotes chemoresistance in lung cancer by negatively regulating FOXO3a. Oncol. Lett., 2022, 24(2), 260.
[http://dx.doi.org/10.3892/ol.2022.13380] [PMID: 35765274]
[73]
Guo, W.; Wu, Z.; Chen, J.; Guo, S.; You, W.; Wang, S.; Ma, J.; Wang, H.; Wang, X.; Wang, H.; Ma, J.; Yang, Y.; Tian, Y.; Shi, Q.; Gao, T.; Yi, X.; Li, C. Nanoparticle delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. J. Immunother. Cancer, 2022, 10(6), e004381.
[http://dx.doi.org/10.1136/jitc-2021-004381] [PMID: 35738798]
[74]
Dixit, A.K.; Sarver, A.E.; Yuan, Z.; George, J.; Barlass, U.; Cheema, H.; Sareen, A.; Banerjee, S.; Dudeja, V.; Dawra, R.; Subramanian, S.; Saluja, A.K. Comprehensive analysis of microRNA signature of mouse pancreatic acini: Overexpression of miR-21-3p in acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 311(5), G974-G980.
[http://dx.doi.org/10.1152/ajpgi.00191.2016] [PMID: 27686613]
[75]
Wang, Y.; Ding, Y.; Sun, P.; Zhang, W.; Xin, Q.; Wang, N.; Niu, Y.; Chen, Y.; Luo, J.; Lu, J.; Zhou, J.; Xu, N.; Zhang, Y.; Xie, W. Empagliflozin-enhanced antioxidant defense attenuates lipotoxicity and protects hepatocytes by promoting FoxO3a- and Nrf2-mediated nuclear translocation via the CAMKK2/AMPK pathway. Antioxidants, 2022, 11(5), 799.
[http://dx.doi.org/10.3390/antiox11050799] [PMID: 35624663]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy