Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Non-small Cell Lung Cancer Survival Estimation Through Multi-omic Two-layer SVM: A Multi-omics and Multi-Sources Integrative Model

Author(s): Lorenzo Manganaro*, Gianmarco Sabbatini, Selene Bianco, Paolo Bironzo, Claudio Borile, Davide Colombi, Paolo Falco, Luca Primo, Shaji Vattakunnel, Federico Bussolino and Giorgio Vittorio Scagliotti

Volume 18, Issue 8, 2023

Published on: 28 July, 2023

Page: [658 - 669] Pages: 12

DOI: 10.2174/1574893618666230502102712

Price: $65

Abstract

Background: The new paradigm of precision medicine brought an increasing interest in survival prediction based on the integration of multi-omics and multi-sources data. Several models have been developed to address this task, but their performances are widely variable depending on the specific disease and are often poor on noisy datasets, such as in the case of non-small cell lung cancer (NSCLC).

Objective: The aim of this work is to introduce a novel computational approach, named multi-omic twolayer SVM (mtSVM), and to exploit it to get a survival-based risk stratification of NSCLC patients from an ongoing observational prospective cohort clinical study named PROMOLE.

Methods: The model implements a model-based integration by means of a two-layer feed-forward network of FastSurvivalSVMs, and it can be used to get individual survival estimates or survival-based risk stratification. Despite being designed for NSCLC, its range of applicability can potentially cover the full spectrum of survival analysis problems where integration of different data sources is needed, independently of the pathology considered.

Results: The model is here applied to the case of NSCLC, and compared with other state-of-the-art methods, proving excellent performance. Notably, the model, trained on data from The Cancer Genome Atlas (TCGA), has been validated on an independent cohort (from the PROMOLE study), and the results were consistent. Gene-set enrichment analysis of the risk groups, as well as exome analysis, revealed well-defined molecular profiles, such as a prognostic mutational gene signature with potential implications in clinical practice.

Graphical Abstract

[1]
Jorde LB, Carey JC, Bamshad MJ, White RL. Medical genetics. Amsterdam: Elsevier 2006.
[2]
Pujol P, Barberis M, Beer P, et al. Clinical practice guidelines for BRCA1 and BRCA2 genetic testing. Eur J Cancer 2021; 146: 30-47.
[http://dx.doi.org/10.1016/j.ejca.2020.12.023] [PMID: 33578357]
[3]
Wenzel C, Herold S, Wermke M, Aust DE, Baretton GB. Routine molecular pathology diagnostics in precision oncology. Dtsch Arztebl Int 2021; 118: 255-61.
[http://dx.doi.org/10.3238/arztebl.m2021.0025] [PMID: 33536117]
[4]
Romero A, Carrier PL, Erraqabi A, et al. Diet networks: Thin parameters for fat genomics. Proceedings of the Workshop of the 5th International Conference on Learning Representations (ICLR). Toulon, France. 2017; pp. 1-11.
[5]
Wang P, Li Y, Reddy CK. Machine learning for survival analysis. ACM Comput Surv 2019; 51(6): 1-36.
[http://dx.doi.org/10.1145/3214306]
[6]
Lock EF, Hoadley KA, Marron JS, Nobel AB. Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann Appl Stat 2013; 7(1): 523-42.
[http://dx.doi.org/10.1214/12-AOAS597] [PMID: 23745156]
[7]
Argelaguet R, Arnol D, Bredikhin D, et al. MOFA+: A statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol 2020; 21(1): 111.
[http://dx.doi.org/10.1186/s13059-020-02015-1] [PMID: 32393329]
[8]
Cox DR. Analysis of Survival Data. Oxfordshire, UK: Taylor and Francis Group 2018.
[http://dx.doi.org/10.1201/9781315137438]
[9]
Huang Z, Zhan X, Xiang S, et al. SALMON: Survival analysis learning with multi-omics neural networks on breast cancer. Front Genet 2019; 10: 166.
[http://dx.doi.org/10.3389/fgene.2019.00166] [PMID: 30906311]
[10]
Zhu B, Song N, Shen R, et al. Integrating clinical and multiple omics data for prognostic assessment across human cancers. Sci Rep 2017; 7(1): 16954.
[http://dx.doi.org/10.1038/s41598-017-17031-8] [PMID: 29209073]
[11]
Ching T, Zhu X, Garmire LX. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLOS Comput Biol 2018; 14(4): e1006076.
[http://dx.doi.org/10.1371/journal.pcbi.1006076] [PMID: 29634719]
[12]
Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499(7457): 214-8.
[http://dx.doi.org/10.1038/nature12213] [PMID: 23770567]
[13]
Kim S, Kim K, Choe J, Lee I, Kang J. Improved survival analysis by learning shared genomic information from pan-cancer data. Bioinformatics 2020; 36 (Suppl. 1): i389-98.
[http://dx.doi.org/10.1093/bioinformatics/btaa462] [PMID: 32657401]
[14]
Brière G, Darbo É, Thébault P, Uricaru R. Consensus clustering applied to multi-omics disease subtyping. BMC Bioinformatics 2021; 22(1): 361.
[http://dx.doi.org/10.1186/s12859-021-04279-1] [PMID: 34229612]
[15]
Pölsterl S, Navab N, Katouzian A. Fast training of support vector machines for survival analysis, In Machine Learning and Knowledge Discovery in Database, ECML PKDD; Porto, Portugal. Lecture Notes in Computer Science. Berlin: Springer 2015; 9285: pp. 243-59.
[16]
Harrell F Jr, Lee KL, Mark DB, Lee KL, Rosati RA. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15(4): 361-87.
[http://dx.doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4] [PMID: 8668867]
[17]
Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (389 eighth) edition of the TNM 390 classification for lung cancer. J Thorac Oncol 2016; 11: 39-51.
[http://dx.doi.org/10.1016/j.jtho.2015.09.009] [PMID: 26762738]
[18]
Bironzo P, Primo L, Novello S, et al. Clinical-molecular prospective cohort study in Non-Small Cell Lung Cancer (PROMOLE study): A comprehensive approach to identify new predictive markers of pharmacological response. Clin Lung Cancer 2022; 23(6): e347-52.
[http://dx.doi.org/10.1016/j.cllc.2022.05.007] [PMID: 35697558]
[19]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[20]
Sabbatini G, Manganaro L. On potential limitations of differential expression analysis with non-linear machine learning models. EMBnet J 2023; 28: e1035.
[http://dx.doi.org/10.14806/ej.28.0.1035]
[21]
Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?" explaining the predictions of any classifier. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. San Diego, California . San Diego, CA: Association for Computational Linguistics 2016; pp. 97-101.
[22]
Raudvere U, Kolberg L, Kuzmin I, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 2019; 47(W1): W191-8.
[http://dx.doi.org/10.1093/nar/gkz369] [PMID: 31066453]
[23]
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: Tool for the unification of biology. Nat Genet 2000; 25(1): 25-9.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[24]
Guibert N, Ilie M, Long E, et al. KRAS mutations in lung adenocarcinoma: Molecular and epidemiological characteristics, methods for detection, and therapeutic strategy perspectives. Curr Mol Med 2015; 15(5): 418-32.
[http://dx.doi.org/10.2174/1566524015666150505161412] [PMID: 25941815]
[25]
Laderian B, Mundi P, Fojo TE, Bates S. Emerging therapeutic implications of STK11 mutation: Case series. Oncologist 2020; 25(9): 733-7.
[http://dx.doi.org/10.1634/theoncologist.2019-0846] [PMID: 32396674]
[26]
Kurppa KJ, Denessiouk K, Johnson MS, Elenius K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene 2016; 35(10): 1283-91.
[http://dx.doi.org/10.1038/onc.2015.185] [PMID: 26050618]
[27]
Yao Z, Lin A, Yi Y, Shen W, Zhang J, Luo P. THSD7B mutation induces platinum resistance in small cell lung cancer patients. Drug Des Devel Ther 2022; 16: 1679-95.
[http://dx.doi.org/10.2147/DDDT.S363665] [PMID: 35685767]
[28]
Iwakawa R, Kohno T, Totoki Y, et al. Expression and clinical significance of genes frequently mutated in small cell lung cancers defined by whole exome/RNA sequencing. Carcinogenesis 2015; 36(6): 616-21.
[http://dx.doi.org/10.1093/carcin/bgv026] [PMID: 25863124]
[29]
Szczepanski AP, Zhao Z, Sosnowski T, Goo YA, Bartom ET, Wang L. ASXL3 bridges BRD4 to BAP1 complex and governs enhancer activity in small cell lung cancer. Genome Med 2020; 12(1): 63.
[http://dx.doi.org/10.1186/s13073-020-00760-3] [PMID: 32669118]
[30]
Takahashi T, Sonobe M, Menju T, et al. Mutations in Keap1 are a potential prognostic factor in resected non-small cell lung cancer. J Surg Oncol 2010; 101(6): 500-6.
[http://dx.doi.org/10.1002/jso.21520] [PMID: 20213688]
[31]
Yan G, Chen V, Lu X, Lu S. A signal-based method for finding driver modules of breast cancer metastasis to the lung. Sci Rep 2017; 7(1): 10023.
[http://dx.doi.org/10.1038/s41598-017-09951-2] [PMID: 28855549]
[32]
Sohn M, Shin S, Yoo JY, Goh Y, Lee IH, Bae YS. Ahnak promotes tumor metastasis through transforming growth factor-β-mediated epithelial-mesenchymal transition. Sci Rep 2018; 8(1): 14379.
[http://dx.doi.org/10.1038/s41598-018-32796-2] [PMID: 30258109]
[33]
Wawrzyniak D, Grabowska M, Głodowicz P, et al. Down-regulation of tenascin-C inhibits breast cancer cells development by cell growth, migration, and adhesion impairment. PLoS One 2020; 15(8): e0237889.
[http://dx.doi.org/10.1371/journal.pone.0237889] [PMID: 32817625]
[34]
Muroi M, Osada H. Proteomics-based target identification of natural products affecting cancer metabolism. J Antibiot 2021; 74(10): 639-50.
[http://dx.doi.org/10.1038/s41429-021-00437-y] [PMID: 34282314]
[35]
Xia L, Oyang L, Lin J, et al. The cancer metabolic reprogramming and immune response. Mol Cancer 2021; 20(1): 28.
[http://dx.doi.org/10.1186/s12943-021-01316-8] [PMID: 33546704]
[36]
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev 2018; 32(19-20): 1267-84.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy