Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Herbal Drugs Inducing Autophagy for the Management of Cancer: Mechanism and Utilization

Author(s): Shivam Rajput, Pramod Kumar Sharma and Rishabha Malviya*

Volume 25, Issue 1, 2024

Published on: 22 May, 2023

Page: [1 - 15] Pages: 15

DOI: 10.2174/1389201024666230428114740

Price: $65

Abstract

When compared to chemical medicines, herbal medicines have the greatest therapeutic benefit while having fewer harmful side effects. Many different components in herbs have an anticancer impact, but the exact mechanism of how they work is unknown. Some herbal medicines have even been shown to trigger autophagy, a process that has shown promise as a potential cancer treatment. In the past ten years, autophagy has come to be recognised as a crucial mechanism in the maintenance of cellular homeostasis, which has led to the discovery of its implications in the pathology of the majority of cellular environments as well as human disorders. Autophagy is a catabolic process that is used by cells to maintain their homeostasis. This process involves the degradation of misfolded, damaged, and excessive proteins, as well as nonfunctional organelles, foreign pathogens, and other cellular components. Autophagy is a highly conserved process. In this review article, several naturally occurring chemicals are discussed. These compounds offer excellent prospects for autophagy inducers, which are substances that can hasten the death of cells when used as a complementary or alternative treatment for cancer. It requires additional exploration in preclinical and clinical investigations, notwithstanding recent advances in therapeutic medications or agents of natural products in numerous cancers. These advancements have been made despite the need for further investigation.

Next »
Graphical Abstract

[1]
Takeshige, K.; Baba, M.; Tsuboi, S.; Noda, T.; Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol., 1992, 119(2), 301-311.
[http://dx.doi.org/10.1083/jcb.119.2.301] [PMID: 1400575]
[2]
Gubas, A.; Dikic, I. A guide to the regulation of selective autophagy receptors. FEBS J., 2022, 289(1), 75-89.
[http://dx.doi.org/10.1111/febs.15824] [PMID: 33730405]
[3]
Galati, S.; Boni, C.; Gerra, M.C.; Lazzaretti, M.; Buschini, A. Autophagy: A player in response to oxidative stress and DNA damage. Oxid. Med. Cell. Longev., 2019, 2019, 5692958.
[http://dx.doi.org/10.1155/2019/5692958] [PMID: 31467633]
[4]
Mercer, T.J.; Gubas, A.; Tooze, S.A. A molecular perspective of mammalian autophagosome biogenesis. J. Biol. Chem., 2018, 293(15), 5386-5395.
[http://dx.doi.org/10.1074/jbc.R117.810366] [PMID: 29371398]
[5]
Farré, J.C.; Subramani, S. Mechanistic insights into selective autophagy pathways: Lessons from yeast. Nat. Rev. Mol. Cell Biol., 2016, 17(9), 537-552.
[http://dx.doi.org/10.1038/nrm.2016.74] [PMID: 27381245]
[6]
Kirkin, V.; Rogov, V.V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell, 2019, 76(2), 268-285.
[http://dx.doi.org/10.1016/j.molcel.2019.09.005] [PMID: 31585693]
[7]
Johansen, T.; Lamark, T. Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J. Mol. Biol., 2020, 432(1), 80-103.
[http://dx.doi.org/10.1016/j.jmb.2019.07.016] [PMID: 31310766]
[8]
Edelman, G.M. Origins and mechanisms of specificity in clonal selection. Soc. Gen. Physiol. Ser., 1974, 29, 1-38.
[PMID: 4139761]
[9]
Mizushima, N.; Noda, T.; Yoshimori, T.; Tanaka, Y.; Ishii, T.; George, M.D.; Klionsky, D.J.; Ohsumi, M.; Ohsumi, Y. A protein conjugation system essential for autophagy. Nature, 1998, 395(6700), 395-398.
[http://dx.doi.org/10.1038/26506] [PMID: 9759731]
[10]
Nance, M.A.; Berry, S.A. Cockayne syndrome: Review of 140 cases. Am. J. Med. Genet., 1992, 42(1), 68-84.
[http://dx.doi.org/10.1002/ajmg.1320420115] [PMID: 1308368]
[11]
Losier, T.T.; Akuma, M.; McKee-Muir, O.C.; LeBlond, N.D.; Suk, Y.; Alsaadi, R.M.; Guo, Z.; Reshke, R.; Sad, S.; Campbell-Valois, F.X.; Gibbings, D.J.; Fullerton, M.D.; Russell, R.C. AMPK promotes xenophagy through priming of autophagic kinases upon detection of bacterial outer membrane vesicles. Cell Rep., 2019, 26(8), 2150-2165.
[http://dx.doi.org/10.1016/j.celrep.2019.01.062] [PMID: 30784596]
[12]
Stamenkovic, M.; Janjetovic, K.; Paunovic, V.; Ciric, D.; Kravic-Stevovic, T.; Trajkovic, V. Comparative analysis of cell death mechanisms induced by lysosomal autophagy inhibitors. Eur. J. Pharmacol., 2019, 859, 172540.
[http://dx.doi.org/10.1016/j.ejphar.2019.172540] [PMID: 31310755]
[13]
Matsuura, A.; Tsukada, M.; Wada, Y.; Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 1997, 192(2), 245-250.
[http://dx.doi.org/10.1016/S0378-1119(97)00084-X] [PMID: 9224897]
[14]
Kim, B.W.; Jin, Y.; Kim, J.; Kim, J.H.; Jung, J.; Kang, S.; Kim, I.Y.; Kim, J.; Cheong, H.; Song, H.K. The C-terminal region of ATG101 bridges ULK1 and PtdIns3K complex in autophagy initiation. Autophagy, 2018, 14(12), 2104-2116.
[http://dx.doi.org/10.1080/15548627.2018.1504716] [PMID: 30081750]
[15]
Morselli, E.; Shen, S.; Ruckenstuhl, C.; Bauer, M.A. Mariٌo, G.; Galluzzi, L.; Criollo, A.; Michaud, M.; Maiuri, M.C.; Chano, T.; Madeo, F.; Kroemer, G. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle, 2011, 10(16), 2763-2769.
[http://dx.doi.org/10.4161/cc.10.16.16868] [PMID: 21775823]
[16]
Suzuki, S.W.; Yamamoto, H.; Oikawa, Y.; Kondo-Kakuta, C.; Kimura, Y.; Hirano, H.; Ohsumi, Y. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3350-3355.
[http://dx.doi.org/10.1073/pnas.1421092112] [PMID: 25737544]
[17]
Puente, C.; Hendrickson, R.C.; Jiang, X. Nutrient-regulated phosphorylation of ATG13 starvation-induced autophagy. J. Biol. Chem., 2016, 291(11), 6026-6035.
[http://dx.doi.org/10.1074/jbc.M115.689646] [PMID: 26801615]
[18]
Li, W.; Zhang, L. Regulation of ATG and autophagy initiation. In: Autophagy: Biology and Diseases; Springer: Singapore, 2019, pp. 41-65.
[http://dx.doi.org/10.1007/978-981-15-0602-4_2]
[19]
Blommaart, E.F.C.; Krause, U.; Schellens, J.P.M. Vreeling-Sindelárová, H.; Meijer, A.J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem., 1997, 243(1-2), 240-246.
[http://dx.doi.org/10.1111/j.1432-1033.1997.0240a.x] [PMID: 9030745]
[20]
Panaretou, C.; Domin, J.; Cockcroft, S.; Waterfield, M.D. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J. Biol. Chem., 1997, 272(4), 2477-2485.
[http://dx.doi.org/10.1074/jbc.272.4.2477] [PMID: 8999962]
[21]
Kihara, A.; Kabeya, Y.; Ohsumi, Y.; Yoshimori, T. Beclin–phosphatidylinositol 3‐kinase complex functions at the trans ‐Golgi network. EMBO Rep., 2001, 2(4), 330-335.
[http://dx.doi.org/10.1093/embo-reports/kve061] [PMID: 11306555]
[22]
Petiot, A.; Ogier-Denis, E.; Blommaart, E.F.C.; Meijer, A.J.; Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem., 2000, 275(2), 992-998.
[http://dx.doi.org/10.1074/jbc.275.2.992] [PMID: 10625637]
[23]
Qi, S.; Kim, D.J.; Stjepanovic, G.; Hurley, J.H. Structure of the human Atg13-Atg101 HORMA heterodimer: An interaction hub within the ULK1 complex. Structure, 2015, 23(10), 1848-1857.
[http://dx.doi.org/10.1016/j.str.2015.07.011] [PMID: 26299944]
[24]
Gao, D.; Xu, Z.; Kuang, X.; Qiao, P.; Liu, S.; Zhang, L.; He, P.; Jadwiga, W.S.; Wang, Y.; Min, W. Molecular characterization and expression analysis of the autophagic gene Beclin 1 from the purse red common carp (Cyprinus carpio) exposed to cadmium. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2014, 160, 15-22.
[http://dx.doi.org/10.1016/j.cbpc.2013.11.004] [PMID: 24291087]
[25]
Mamet-Bratley, M.D.; Karska-Wysocki, B. Role of 3-methyladenine-DNA glycosylase in host-cell reactivation of methylated T7 bacteriophage. Biochim. Biophys. Acta Gene Struct. Expr., 1982, 698(1), 29-34.
[http://dx.doi.org/10.1016/0167-4781(82)90180-4] [PMID: 7052130]
[26]
Salminen, A.; Kaarniranta, K.; Kauppinen, A.; Ojala, J.; Haapasalo, A.; Soininen, H.; Hiltunen, M. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog. Neurobiol., 2013, 106-107, 33-54.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.002] [PMID: 23827971]
[27]
Strappazzon, F.; Di Rita, A.; Peschiaroli, A.; Leoncini, P.P.; Locatelli, F.; Melino, G.; Cecconi, F. HUWE1 controls MCL1 stability to unleash AMBRA1-induced mitophagy. Cell Death Differ., 2020, 27(4), 1155-1168.
[http://dx.doi.org/10.1038/s41418-019-0404-8] [PMID: 31434979]
[28]
Han, S.H.; Korm, S.; Han, Y.G.; Choi, S.Y.; Kim, S.H.; Chung, H.J.; Park, K.; Kim, J.Y.; Myung, K.; Lee, J.Y.; Kim, H.; Kim, D.W. GCA links TRAF6-ULK1-dependent autophagy activation in resistant chronic myeloid leukemia. Autophagy, 2019, 15(12), 2076-2090.
[http://dx.doi.org/10.1080/15548627.2019.1596492] [PMID: 30929559]
[29]
Lee, N.R.; Ban, J.; Lee, N.J.; Yi, C.M.; Choi, J.Y.; Kim, H.; Lee, J.K.; Seong, J.; Cho, N.H.; Jung, J.U.; Inn, K.S. Activation of RIG-I-mediated antiviral signaling triggers autophagy through the MAVS-TRAF6-Beclin-1 signaling axis. Front. Immunol., 2018, 9, 2096.
[http://dx.doi.org/10.3389/fimmu.2018.02096] [PMID: 30258449]
[30]
Ma, B.; Cao, W.; Li, W.; Gao, C.; Qi, Z.; Zhao, Y.; Du, J.; Xue, H.; Peng, J.; Wen, J.; Chen, H.; Ning, Y.; Huang, L.; Zhang, H.; Gao, X.; Yu, L.; Chen, Y.G. Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation. Cell Res., 2014, 24(8), 912-924.
[http://dx.doi.org/10.1038/cr.2014.84] [PMID: 24980960]
[31]
Li, X.; He, L.; Che, K.H.; Funderburk, S.F.; Pan, L.; Pan, N.; Zhang, M.; Yue, Z.; Zhao, Y. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat. Commun., 2012, 3(1), 662.
[http://dx.doi.org/10.1038/ncomms1648] [PMID: 22314358]
[32]
Kim, Y.M.; Jung, C.H.; Seo, M.; Kim, E.K.; Park, J.M.; Bae, S.S.; Kim, D.H. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol. Cell, 2015, 57(2), 207-218.
[http://dx.doi.org/10.1016/j.molcel.2014.11.013] [PMID: 25533187]
[33]
Tanida, I.; Tanida-Miyake, E.; Ueno, T.; Kominami, E. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem., 2001, 276(3), 1701-1706.
[http://dx.doi.org/10.1074/jbc.C000752200] [PMID: 11096062]
[34]
Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J., 2000, 19(21), 5720-5728.
[http://dx.doi.org/10.1093/emboj/19.21.5720] [PMID: 11060023]
[35]
Mariño, G.; Uría, J.A.; Puente, X.S.; Quesada, V.; Bordallo, J.; López-Otín, C. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J. Biol. Chem., 2003, 278(6), 3671-3678.
[http://dx.doi.org/10.1074/jbc.M208247200] [PMID: 12446702]
[36]
Hemelaar, J.; Lelyveld, V.S.; Kessler, B.M.; Ploegh, H.L. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J. Biol. Chem., 2003, 278(51), 51841-51850.
[http://dx.doi.org/10.1074/jbc.M308762200] [PMID: 14530254]
[37]
Mizushima, N.; Yoshimori, T.; Ohsumi, Y. Role of the Apg12 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol., 2003, 35(5), 553-561.
[http://dx.doi.org/10.1016/S1357-2725(02)00343-6] [PMID: 12672448]
[38]
Cao, W.; Li, J.; Yang, K.; Cao, D. An overview of autophagy: Mechanism, regulation and research progress. Bull. Cancer, 2021, 108(3), 304-322.
[http://dx.doi.org/10.1016/j.bulcan.2020.11.004] [PMID: 33423775]
[39]
Ohsumi, Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol., 2001, 2(3), 211-216.
[http://dx.doi.org/10.1038/35056522] [PMID: 11265251]
[40]
Nemoto, T.; Tanida, I.; Tanida-Miyake, E.; Minematsu-Ikeguchi, N.; Yokota, M.; Ohsumi, M.; Ueno, T.; Kominami, E. The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification. J. Biol. Chem., 2003, 278(41), 39517-39526.
[http://dx.doi.org/10.1074/jbc.M300550200] [PMID: 12890687]
[41]
Shintani, T.; Mizushima, N.; Ogawa, Y.; Matsuura, A.; Noda, T.; Ohsumi, Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J., 1999, 18(19), 5234-5241.
[http://dx.doi.org/10.1093/emboj/18.19.5234] [PMID: 10508157]
[42]
Mizushima, N.; Noda, T.; Ohsumi, Y. Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO J., 1999, 18(14), 3888-3896.
[http://dx.doi.org/10.1093/emboj/18.14.3888] [PMID: 10406794]
[43]
Kharaziha, P.; Panaretakis, T. Dynamics of Atg5–Atg12–Atg16L1 aggregation and deaggregation. In: Methods in Enzymology; Academic Press: Massachusetts, US, 2017, 587, pp. 247-255.
[http://dx.doi.org/10.1016/bs.mie.2016.09.059]
[44]
Kuma, A.; Mizushima, N.; Ishihara, N.; Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem., 2002, 277(21), 18619-18625.
[http://dx.doi.org/10.1074/jbc.M111889200] [PMID: 11897782]
[45]
Komatsu, M.; Tanida, I.; Ueno, T.; Ohsumi, M.; Ohsumi, Y.; Kominami, E. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1-E2 complex formation. J. Biol. Chem., 2001, 276(13), 9846-9854.
[http://dx.doi.org/10.1074/jbc.M007737200] [PMID: 11139573]
[46]
Mizushima, N.; Sugita, H.; Yoshimori, T.; Ohsumi, Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem., 1998, 273(51), 33889-33892.
[http://dx.doi.org/10.1074/jbc.273.51.33889] [PMID: 9852036]
[47]
Holm, T.M.; Braun, A.; Trigatti, B.L.; Brugnara, C.; Sakamoto, M.; Krieger, M.; Andrews, N.C. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood, 2002, 99(5), 1817-1824.
[http://dx.doi.org/10.1182/blood.V99.5.1817.h8001817_1817_1824] [PMID: 11861300]
[48]
Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762), 672-676.
[http://dx.doi.org/10.1038/45257] [PMID: 10604474]
[49]
Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; Cattoretti, G.; Levine, B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest., 2003, 112(12), 1809-1820.
[http://dx.doi.org/10.1172/JCI20039] [PMID: 14638851]
[50]
Liang, X.H.; Yu, J.; Brown, K.; Levine, B. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res., 2001, 61(8), 3443-3449.
[PMID: 11309306]
[51]
Inbal, B.; Bialik, S.; Sabanay, I.; Shani, G.; Kimchi, A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J. Cell Biol., 2002, 157(3), 455-468.
[http://dx.doi.org/10.1083/jcb.200109094] [PMID: 11980920]
[52]
Ogier-Denis, E.; Codogno, P. Autophagy: A barrier or an adaptive response to cancer. Biochimica et Biophysica Acta (BBA)-. Rev. Can., 2003, 1603(2), 113-128.
[53]
Ishiguro, K.; Ando, T.; Maeda, O.; Ohmiya, N.; Niwa, Y.; Kadomatsu, K.; Goto, H. Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. Biochem. Biophys. Res. Commun., 2007, 362(1), 218-223.
[http://dx.doi.org/10.1016/j.bbrc.2007.08.012] [PMID: 17706603]
[54]
Tan, B.S.; Kang, O.; Mai, C.W.; Tiong, K.H.; Khoo, A.S.B.; Pichika, M.R.; Bradshaw, T.D.; Leong, C.O. 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor γ (PPARγ). Cancer Lett., 2013, 336(1), 127-139.
[http://dx.doi.org/10.1016/j.canlet.2013.04.014] [PMID: 23612072]
[55]
Gan, F.F.; Nagle, A.A.; Ang, X.; Ho, O.H.; Tan, S.H.; Yang, H.; Chui, W.K.; Chew, E.H. Shogaols at proapoptotic concentrations induce G2/M arrest and aberrant mitotic cell death associated with tubulin aggregation. Apoptosis, 2011, 16(8), 856-867.
[http://dx.doi.org/10.1007/s10495-011-0611-3] [PMID: 21598039]
[56]
Ishiguro, K.; Ando, T.; Watanabe, O.; Goto, H. Specific reaction of α,β-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage. FEBS Lett., 2008, 582(23-24), 3531-3536.
[http://dx.doi.org/10.1016/j.febslet.2008.09.027] [PMID: 18805415]
[57]
Li, H.; Guan, S.B.; Lu, Y.; Wang, F. MiR-140-5p inhibits synovial fibroblasts proliferation and inflammatory cytokines secretion through targeting TLR4. Biomed. Pharmacother., 2017, 96, 208-214.
[http://dx.doi.org/10.1016/j.biopha.2017.09.079] [PMID: 28987944]
[58]
Chen, C.Y.; Liu, T.Z.; Liu, Y.W.; Tseng, W.C.; Liu, R.H.; Lu, F.J.; Lin, Y.S.; Kuo, S.H.; Chen, C.H. 6-shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. J. Agric. Food Chem., 2007, 55(3), 948-954.
[http://dx.doi.org/10.1021/jf0624594] [PMID: 17263498]
[59]
Hung, J.Y.; Hsu, Y.L.; Li, C.T.; Ko, Y.C.; Ni, W.C.; Huang, M.S.; Kuo, P.L. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J. Agric. Food Chem., 2009, 57(20), 9809-9816.
[http://dx.doi.org/10.1021/jf902315e] [PMID: 19799425]
[60]
Ling, H.; Yang, H.; Tan, S-H.; Chui, W-K.; Chew, E-H. 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation. Br. J. Pharmacol., 2010, 161(8), 1763-1777.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00991.x] [PMID: 20718733]
[61]
Ray, A.; Vasudevan, S.; Sengupta, S. 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of Notch signaling pathway and induction of autophagic cell death. PLoS One, 2015, 10(9), e0137614.
[http://dx.doi.org/10.1371/journal.pone.0137614] [PMID: 26355461]
[62]
Nazim, U.M.; Park, S.Y. Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS. Int. J. Mol. Med., 2019, 43(2), 701-708.
[PMID: 30483736]
[63]
Bahri, S.; Jameleddine, S.; Shlyonsky, V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed. Pharmacother., 2016, 84, 569-582.
[http://dx.doi.org/10.1016/j.biopha.2016.09.067] [PMID: 27694001]
[64]
D’Alesio, C.; Bellese, G.; Gagliani, M.C.; Aiello, C.; Grasselli, E.; Marcocci, G.; Bisio, A.; Tavella, S.; Daniele, T.; Cortese, K.; Castagnola, P. Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 154.
[http://dx.doi.org/10.1186/s13046-017-0615-0] [PMID: 29100552]
[65]
El-Huneidi, W.; Bajbouj, K.; Muhammad, J.S.; Vinod, A.; Shafarin, J.; Khoder, G.; Saleh, M.A.; Taneera, J.; Abu-Gharbieh, E. Carnosic acid induces apoptosis and inhibits Akt/mTOR signaling in human gastric cancer cell lines. Pharmaceuticals, 2021, 14(3), 230.
[http://dx.doi.org/10.3390/ph14030230] [PMID: 33800129]
[66]
Su, K.; Wang, C.; Zhang, Y.; Cai, Y.; Zhang, Y.; Zhao, Q. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway. Biomed. Pharmacother., 2016, 82, 180-191.
[http://dx.doi.org/10.1016/j.biopha.2016.04.056] [PMID: 27470354]
[67]
de Vasconcelos, C. Braz, J.; de Carvalho, F.O.; de Vasconcelos C Meneses, D.; Calixto, F.A.F.; Santana, H.S.R.; Almeida, I.B.; de Aquino, L.A.G.; de Souza Araújo, A.A.; Serafini, M.R. Mechanism of action of limonene in tumor cells: A systematic review and meta-analysis. Curr. Pharm. Des., 2021, 27(26), 2956-2965.
[http://dx.doi.org/10.2174/1381612826666201026152902] [PMID: 33106139]
[68]
Russo, R.; Cassiano, M.G.V.; Ciociaro, A.; Adornetto, A.; Varano, G.P.; Chiappini, C.; Berliocchi, L.; Tassorelli, C.; Bagetta, G.; Corasaniti, M.T. Role of D-Limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells. PLoS One, 2014, 9(11), e113682.
[http://dx.doi.org/10.1371/journal.pone.0113682] [PMID: 25419658]
[69]
Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S. Neffe-Skocińska, K.; Zielińska, D.; Salehi, B.; Setzer, W.N.; Dosoky, N.S.; Taheri, Y.; El Beyrouthy, M.; Martorell, M.; Ostrander, E.A.; Suleria, H.A.R.; Cho, W.C.; Maroyi, A.; Martins, N. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol., 2020, 11, 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[70]
Zhang, L.; Xu, S.; Cheng, X.; Wu, J.; Wu, L.; Wang, Y.; Wang, X.; Bao, J.; Yu, H. Curcumin induces autophagic cell death in human thyroid cancer cells. Toxicol. In Vitro, 2022, 78, 105254.
[http://dx.doi.org/10.1016/j.tiv.2021.105254] [PMID: 34634291]
[71]
Kim, J.Y.; Cho, T.J.; Woo, B.H.; Choi, K.U.; Lee, C.H.; Ryu, M.H.; Park, H.R. Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch. Oral Biol., 2012, 57(8), 1018-1025.
[http://dx.doi.org/10.1016/j.archoralbio.2012.04.005] [PMID: 22554995]
[72]
Li, W.; Zhou, Y.; Yang, J.; Li, H.; Zhang, H.; Zheng, P. Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells. Oncol. Rep., 2017, 37(6), 3459-3466.
[http://dx.doi.org/10.3892/or.2017.5637] [PMID: 28498433]
[73]
Zhu, Y.; Bu, S. Curcumin induces autophagy, apoptosis, and cell cycle arrest in human pancreatic cancer cells; Evidence-Based Complementary and Alternative Medicine, 2017, Available from: https://www.hindawi.com/journals/ecam/2017/5787218/
[http://dx.doi.org/10.1155/2017/5787218]
[74]
Kim, H.S.; Quon, M.J.; Kim, J. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[75]
Lambert, J.D.; Lee, M.J.; Diamond, L.; Ju, J.; Hong, J.; Bose, M.; Newmark, H.L.; Yang, C.S. Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metab. Dispos., 2006, 34(1), 8-11.
[http://dx.doi.org/10.1124/dmd.104.003434] [PMID: 16204466]
[76]
Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. In: Seminars in cell & developmental biology; Academic Press: Massachusetts, US, 2018, 80, pp. 50-64.
[http://dx.doi.org/10.1016/j.semcdb.2017.05.023]
[77]
Helfinger, V. Schröder, K. Redox control in cancer development and progression. Mol. Aspects Med., 2018, 63, 88-98.
[http://dx.doi.org/10.1016/j.mam.2018.02.003] [PMID: 29501614]
[78]
Mukhtar, H.; Ahmad, N. Tea polyphenols: Prevention of cancer and optimizing health. Am. J. Clin. Nutr., 2000, 71(Suppl. 6), 1698S-1702S.
[http://dx.doi.org/10.1093/ajcn/71.6.1698S] [PMID: 10837321]
[79]
Alam, M.; Ali, S.; Ashraf, G.M.; Bilgrami, A.L.; Yadav, D.K.; Hassan, M.I. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem., 2022, 379, 132135.
[http://dx.doi.org/10.1016/j.foodchem.2022.132135] [PMID: 35063850]
[80]
Ferrari, E.; Bettuzzi, S.; Naponelli, V. The Potential of Epigallocatechin Gallate (EGCG) in targeting autophagy for cancer treatment: A narrative review. Int. J. Mol. Sci., 2022, 23(11), 6075.
[http://dx.doi.org/10.3390/ijms23116075] [PMID: 35682754]
[81]
Hou, Z.; Lambert, J.D.; Chin, K.V.; Yang, C.S. Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutat. Res., 2004, 555(1-2), 3-19.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.06.040] [PMID: 15476848]
[82]
Minnelli, C.; Cianfruglia, L.; Laudadio, E.; Mobbili, G.; Galeazzi, R.; Armeni, T. Effect of epigallocatechin-3-gallate on egfr signaling and migration in non-small cell lung cancer. Int. J. Mol. Sci., 2021, 22(21), 11833.
[http://dx.doi.org/10.3390/ijms222111833] [PMID: 34769263]
[83]
Hu, F.; Wei, F.; Wang, Y.; Wu, B.; Fang, Y.; Xiong, B. EGCG synergizes the therapeutic effect of cisplatin and oxaliplatin through autophagic pathway in human colorectal cancer cells. J. Pharmacol. Sci., 2015, 128(1), 27-34.
[http://dx.doi.org/10.1016/j.jphs.2015.04.003] [PMID: 26003085]
[84]
Leone, M.; Zhai, D.; Sareth, S.; Kitada, S.; Reed, J.C.; Pellecchia, M. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res., 2003, 63(23), 8118-8121.
[PMID: 14678963]
[85]
Li, M.; Li, J.J.; Gu, Q.H. an, J.; Cao, L.M.; Yang, H.P.; Hu, C.P. EGCG induces lung cancer A549 cell apoptosis by regulating Ku70 acetylation. Oncol. Rep., 2016, 35(4), 2339-2347.
[http://dx.doi.org/10.3892/or.2016.4587] [PMID: 26794417]
[86]
Huang, J.; Chen, S.; Shi, Y.; Li, C.H.; Wang, X.J.; Li, F.J.; Wang, C.H.; Meng, Q.H.; Zhong, J.N.; Liu, M.; Wang, Z.M. Epigallocatechin gallate from green tea exhibits potent anticancer effects in A-549 non-small lung cancer cells by inducing apoptosis, cell cycle arrest and inhibition of cell migration. J. BUON, 2017, 22(6), 1422-1427.
[PMID: 29332333]
[87]
Cunha, L.; Coelho, S.C.; Pereira, M.C.; Coelho, M.A.N. Nanocarriers based on gold nanoparticles for epigallocatechin gallate delivery in cancer cells. Pharmaceutics, 2022, 14(3), 491.
[http://dx.doi.org/10.3390/pharmaceutics14030491] [PMID: 35335868]
[88]
Sharma, A.; Vaghasiya, K.; Ray, E.; Gupta, P.; Gupta, U.D.; Singh, A.K.; Verma, R.K. Targeted pulmonary delivery of the green tea polyphenol Epigallocatechin Gallate controls the growth of mycobacterium tuberculosis by enhancing the autophagy and suppressing bacterial burden. ACS Biomater. Sci. Eng., 2020, 6(7), 4126-4140.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00823] [PMID: 33463343]
[89]
Zhu, J.; Jiang, Y.; Yang, X.; Wang, S.; Xie, C.; Li, X.; Li, Y.; Chen, Y.; Wang, X.; Meng, Y.; Zhu, M.; Wu, R.; Huang, C.; Ma, X.; Geng, S.; Wu, J.; Zhong, C. Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochem. Biophys. Res. Commun., 2017, 482(1), 15-21.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.038] [PMID: 27836540]
[90]
Modernelli, A.; Naponelli, V.; Giovanna Troglio, M.; Bonacini, M.; Ramazzina, I.; Bettuzzi, S.; Rizzi, F. EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism. Sci. Rep., 2015, 5(1), 15270.
[http://dx.doi.org/10.1038/srep15270] [PMID: 26471237]
[91]
Lee, L.T.; Huang, Y.T.; Hwang, J.J.; Lee, P.P.; Ke, F.C.; Nair, M.P.; Kanadaswam, C.; Lee, M.T. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res., 2002, 22(3), 1615-1627.
[PMID: 12168845]
[92]
Choi, J.A.; Kim, J.Y.; Lee, J.Y.; Kang, C.M.; Kwon, H.J.; Yoo, Y.D.; Kim, T.W.; Lee, Y.S.; Lee, S.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol., 2001, 19(4), 837-844.
[http://dx.doi.org/10.3892/ijo.19.4.837] [PMID: 11562764]
[93]
Horbowicz, M. Method of quercetin extraction from dry scales of onion. Vegetable Crops Research Bulletin., 2002, 57, 119-124.
[94]
O’Leary, K.A.; Pascual-Tereasa, S.; Needs, P.W.; Bao, Y.P.; O’Brien, N.M.; Williamson, G. Effect of flavonoids and Vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat. Res., 2004, 551(1-2), 245-254.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.01.015] [PMID: 15225597]
[95]
Murphy, B.T.; MacKinnon, S.L.; Yan, X.; Hammond, G.B.; Vaisberg, A.J.; Neto, C.C. Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). J. Agric. Food Chem., 2003, 51(12), 3541-3545.
[http://dx.doi.org/10.1021/jf034114g] [PMID: 12769521]
[96]
He, Y.; Cao, X.; Guo, P.; Li, X.; Shang, H.; Liu, J.; Xie, M.; Xu, Y.; Liu, X. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic. Biol. Med., 2017, 103, 165-176.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.016] [PMID: 27979659]
[97]
Ramos, S. Alía, M.; Bravo, L.; Goya, L. Comparative effects of food-derived polyphenols on the viability and apoptosis of a human hepatoma cell line (HepG2). J. Agric. Food Chem., 2005, 53(4), 1271-1280.
[http://dx.doi.org/10.1021/jf0490798] [PMID: 15713052]
[98]
Richter, M.; Ebermann, R.; Marian, B. Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr. Cancer, 1999, 34(1), 88-99.
[http://dx.doi.org/10.1207/S15327914NC340113] [PMID: 10453447]
[99]
Ranelletti, F.O.; Maggiano, N.; Serra, F.G.; Ricci, R.; Larocca, L.M.; Lanza, P.; Scambia, G.; Fattorossi, A.; Capelli, A.; Piantelli, M. Quercetin inhibits p21-RAS expression in human colon cancer cell lines and in primary colorectal tumors. Int. J. Cancer, 2000, 85(3), 438-445.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000201)85:3<438:AID-IJC22>3.0.CO;2-F] [PMID: 10652438]
[100]
Morrow, D.M.P.; Fitzsimmons, P.E.E.; Chopra, M.; McGlynn, H. Dietary supplementation with the anti-tumour promoter quercetin: its effects on matrix metalloproteinase gene regulation. Mutat. Res., 2001, 480-481, 269-276.
[http://dx.doi.org/10.1016/S0027-5107(01)00184-1] [PMID: 11506819]
[101]
Harris, D.M.; Besselink, E.; Henning, S.M.; Go, V.L.W.; Heber, D. Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells. Exp. Biol. Med., 2005, 230(8), 558-568.
[http://dx.doi.org/10.1177/153537020523000807] [PMID: 16118406]
[102]
Guo, H.; Ding, H.; Tang, X.; Liang, M.; Li, S.; Zhang, J.; Cao, J. Quercetin induces pro‐apoptotic autophagy viaSIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac. Cancer, 2021, 12(9), 1415-1422.
[http://dx.doi.org/10.1111/1759-7714.13925] [PMID: 33709560]
[103]
Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557.
[http://dx.doi.org/10.1007/s10495-016-1334-2] [PMID: 28188387]
[104]
Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol., 1976, 9(1), 77-86.
[http://dx.doi.org/10.1016/0048-4059(76)90077-1]
[105]
Takaoka, M. Of the phenolic substrate of hellebore (Veratrum grandiflorum Loes. fil.). J Fac Sci Hokkaido Imper Univ., 1940, 3, 1-6.
[106]
Pezzuto, J.M.; Kondratyuk, T.P.; Ogas, T. Resveratrol derivatives: A patent review (2009 – 2012). Expert Opin. Ther. Pat., 2013, 23(12), 1529-1546.
[http://dx.doi.org/10.1517/13543776.2013.834888] [PMID: 24032623]
[107]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.; Fong, H.H.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[108]
Thomasset, S.C.; Berry, D.P.; Garcea, G.; Marczylo, T.; Steward, W.P.; Gescher, A.J. Dietary polyphenolic phytochemicals—promising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer, 2007, 120(3), 451-458.
[http://dx.doi.org/10.1002/ijc.22419] [PMID: 17131309]
[109]
Fan, E.; Zhang, L.; Jiang, S.; Bai, Y. Beneficial effects of resveratrol on atherosclerosis. J. Med. Food, 2008, 11(4), 610-614.
[http://dx.doi.org/10.1089/jmf.2007.0091] [PMID: 19053850]
[110]
Yang, R.; Dong, H.; Jia, S.; Yang, Z. Resveratrol as a modulatory of apoptosis and autophagy in cancer therapy. Clin. Transl. Oncol., 2022, 24(7), 1219-1230.
[http://dx.doi.org/10.1007/s12094-021-02770-y] [PMID: 35038152]
[111]
Hsu, K.F.; Wu, C.L.; Huang, S.C.; Wu, C.M.; Hsiao, J.R.; Yo, Y.T.; Chen, Y.H.; Shiau, A.L.; Chou, C.Y. Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy, 2009, 5(4), 451-460.
[http://dx.doi.org/10.4161/auto.5.4.7666] [PMID: 19164894]
[112]
Opipari, A.W., Jr; Tan, L.; Boitano, A.E.; Sorenson, D.R.; Aurora, A.; Liu, J.R. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res., 2004, 64(2), 696-703.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2404] [PMID: 14744787]
[113]
Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol., 2012, 40(4), 1020-1028.
[http://dx.doi.org/10.3892/ijo.2012.1325] [PMID: 22218562]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy