Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Chemical Strategies Toward Prodrugs and Fluorescent Probes for Gasotransmitters

Author(s): Ma Su, Xingyue Ji, Feng Liu*, Zhang Li and Duanyang Yan

Volume 24, Issue 3, 2024

Published on: 12 May, 2023

Page: [300 - 329] Pages: 30

DOI: 10.2174/1389557523666230427152234

Price: $65

Abstract

Three gaseous molecules are widely accepted as important gasotransmitters in mammalian cells, namely NO, CO and H2S. Due to the pharmacological effects observed in preclinical studies, these three gasotransmitters represent promising drug candidates for clinical translation. Fluorescent probes of the gasotransmitters are also in high demand; however, the mechanisms of actions or the roles played by gasotransmitters under both physiological and pathological conditions remain to be answered. In order to bring these challenges to the attention of both chemists and biologists working in this field, we herein summarize the chemical strategies used for the design of both probes and prodrugs of these three gasotransmitters.

Graphical Abstract

[1]
Wang, R. Two’s company, three’s a crowd: Can H2 S be the third endogenous gaseous transmitter? FASEB J., 2002, 16(13), 1792-1798.
[http://dx.doi.org/10.1096/fj.02-0211hyp] [PMID: 12409322]
[2]
Wang, R. Overview of gasotransmitters and the related signaling network. In: Gasotransmitters; The Royal Society of Chemistry; London, UK, 2018; pp. 1-28.
[3]
Wang, R. Appendix gasotransmitters: Growing pains and Joys. In: Gasotransmitters; The Royal Society of Chemistry, London UK., 2018; pp. 283-295.
[http://dx.doi.org/10.1039/9781788013000-00283]
[4]
Wang, R. Gasotransmitters: Growing pains and joys. Trends Biochem. Sci., 2014, 39(5), 227-232.
[http://dx.doi.org/10.1016/j.tibs.2014.03.003] [PMID: 24767680]
[5]
Ji, X.; El-labbad, E.M.; Ji, K.; Lasheen, D.S.; Serya, R.A.T.; Abouzid, K.A.; Wang, B. Click and release: SO2 prodrugs with tunable release rates. Org. Lett., 2017, 19(4), 818-821.
[http://dx.doi.org/10.1021/acs.orglett.6b03805] [PMID: 28133965]
[6]
Lu, D.; Wang, L.; Liu, G.; Wang, S.; Wang, Y.; Wu, Y.; Wang, J.; Sun, X. Role of hydrogen sulfide in subarachnoid hemorrhage. CNS Neurosci. Ther., 2022, 28(6), 805-817.
[http://dx.doi.org/10.1111/cns.13828] [PMID: 35315575]
[7]
Wang, R. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol. Rev., 2012, 92(2), 791-896.
[http://dx.doi.org/10.1152/physrev.00017.2011] [PMID: 22535897]
[8]
Ji, X.; Damera, K.; Zheng, Y.; Yu, B.; Otterbein, L.E.; Wang, B. Toward carbon monoxide–based therapeutics: critical drug delivery and developability issues. J. Pharm. Sci., 2016, 105(2), 406-416.
[http://dx.doi.org/10.1016/j.xphs.2015.10.018] [PMID: 26869408]
[9]
Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov., 2010, 9(9), 728-743.
[http://dx.doi.org/10.1038/nrd3228] [PMID: 20811383]
[10]
Zheng, Y.; Ji, X.; Ji, K.; Wang, B. Hydrogen sulfide prodrugs—a review. Acta Pharm. Sin. B, 2015, 5(5), 367-377.
[http://dx.doi.org/10.1016/j.apsb.2015.06.004] [PMID: 26579468]
[11]
Muscará, M.N.; Wallace, J.L. Nitric Oxide. V. therapeutic potential of nitric oxide donors and inhibitors. Am. J. Physiol., 1999, 276(6), G1313-G1316.
[PMID: 10362633]
[12]
Hopper, C.P.; De La Cruz, L.K.; Lyles, K.V.; Wareham, L.K.; Gilbert, J.A.; Eichenbaum, Z.; Magierowski, M.; Poole, R.K.; Wollborn, J.; Wang, B. Role of carbon monoxide in host–gut microbiome communication. Chem. Rev., 2020, 120(24), 13273-13311.
[http://dx.doi.org/10.1021/acs.chemrev.0c00586] [PMID: 33089988]
[13]
Ma, X. Sayed, N.; Beuve, A.; van den Akker, F. NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism. EMBO J., 2007, 26(2), 578-588.
[http://dx.doi.org/10.1038/sj.emboj.7601521] [PMID: 17215864]
[14]
Hourihan, J.M.; Kenna, J.G.; Hayes, J.D. The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613. Antioxid. Redox Signal., 2013, 19(5), 465-481.
[http://dx.doi.org/10.1089/ars.2012.4944] [PMID: 23145493]
[15]
Wang, B.; Cao, W.; Biswal, S.; Doré, S. Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke, 2011, 42(9), 2605-2610.
[http://dx.doi.org/10.1161/STROKEAHA.110.607101] [PMID: 21852618]
[16]
Winsor, T.; Berger, H.J. Oral nitroglycerin as a prophylactic antianginal drug: Clinical, physiologic, and statistical evidence of efficacy based on a three-phase experimental design. Am. Heart J., 1975, 90(5), 611-626.
[http://dx.doi.org/10.1016/0002-8703(75)90226-4] [PMID: 811102]
[17]
Zheng, Y.; Yu, B.; De La Cruz, L.K.; Roy Choudhury, M.; Anifowose, A.; Wang, B. Toward hydrogen sulfide based therapeutics: critical drug delivery and developability issues. Med. Res. Rev., 2018, 38(1), 57-100.
[http://dx.doi.org/10.1002/med.21433] [PMID: 28240384]
[18]
Yu, B.; Zheng, Y.; Yuan, Z.; Li, S.; Zhu, H.; De La Cruz, L.K.; Zhang, J.; Ji, K.; Wang, S.; Wang, B. Toward direct protein Spersulfidation: A prodrug approach that directly delivers hydrogen persulfide. J. Am. Chem. Soc., 2018, 140(1), 30-33.
[http://dx.doi.org/10.1021/jacs.7b09795] [PMID: 29211467]
[19]
Yang, M.; Fan, J.; Du, J.; Peng, X. Small-molecule fluorescent probes for imaging gaseous signaling molecules: Current progress and future implications. Chem. Sci., 2020, 11(20), 5127-5141.
[http://dx.doi.org/10.1039/D0SC01482F] [PMID: 34122970]
[20]
Kumar, N.; Bhalla, V.; Kumar, M. Recent developments of fluorescent probes for the detection of gasotransmitters (NO, CO and H2S). Coord. Chem. Rev., 2013, 257(15-16), 2335-2347.
[http://dx.doi.org/10.1016/j.ccr.2013.02.028]
[21]
Zhao, Y.; Biggs, T.D.; Xian, M. Hydrogen sulfide (H 2 S) releasing agents: chemistry and biological applications. Chem. Commun., 2014, 50(80), 11788-11805.
[http://dx.doi.org/10.1039/C4CC00968A] [PMID: 25019301]
[22]
Chen, Y. Recent developments of fluorescent probes for detection and bioimaging of nitric oxide. Nitric Oxide, 2020, 98, 1-19.
[http://dx.doi.org/10.1016/j.niox.2020.02.002] [PMID: 32088286]
[23]
Amilan Jose, D.; Sharma, N.; Sakla, R.; Kaushik, R.; Gadiyaram, S. Fluorescent nanoprobes for the sensing of gasotransmitters hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO). Methods, 2019, 168, 62-75.
[http://dx.doi.org/10.1016/j.ymeth.2019.06.003] [PMID: 31176771]
[24]
SoRelle, R. Nobel prize awarded to scientists for nitric oxide discoveries. Circulation, 1998, 98(22), 2365-2366.
[http://dx.doi.org/10.1161/01.CIR.98.22.2365] [PMID: 9832478]
[25]
Huang, Z.; Fu, J.; Zhang, Y. Nitric oxide donor-based cancer therapy: Advances and prospects. J. Med. Chem., 2017, 60(18), 7617-7635.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01672] [PMID: 28505442]
[26]
Wang, P.G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A.J. Nitric oxide donors: Chemical activities and biological applications. Chem. Rev., 2002, 102(4), 1091-1134.
[http://dx.doi.org/10.1021/cr000040l] [PMID: 11942788]
[27]
Yasuda, H. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: Novel strategy for cancer therapy: Nitric oxide donor as a therapeutic enhancer. Nitric Oxide, 2008, 19(2), 205-216.
[http://dx.doi.org/10.1016/j.niox.2008.04.026] [PMID: 18503779]
[28]
Thatcher, R.J.G. NO problem for nitroglycerin: Organic nitrate chemistry and therapy. Chem. Soc. Rev., 1998, 27(5), 331-337.
[http://dx.doi.org/10.1039/a827331z]
[29]
Naimi, E.; Zhou, A.; Khalili, P.; Wiebe, L.I.; Balzarini, J.; De Clercq, E.; Knaus, E.E. Synthesis of 3′- and 5′-nitrooxy pyrimidine nucleo-side nitrate esters: “Nitric oxide donor” agents for evaluation as anticancer and antiviral agents. J. Med. Chem., 2003, 46(6), 995-1004.
[http://dx.doi.org/10.1021/jm020299r] [PMID: 12620076]
[30]
Ranatunge, R.R.; Augustyniak, M.; Bandarage, U.K.; Earl, R.A.; Ellis, J.L.; Garvey, D.S.; Janero, D.R.; Letts, L.G.; Martino, A.M.; Murty, M.G.; Richardson, S.K.; Schroeder, J.D.; Shumway, M.J.; Tam, S.W.; Trocha, A.M.; Young, D.V. Synthesis and selective cyclooxygenase-2 inhibitory activity of a series of novel, nitric oxide donor-containing pyrazoles. J. Med. Chem., 2004, 47(9), 2180-2193.
[http://dx.doi.org/10.1021/jm030276s] [PMID: 15084117]
[31]
Gao, L.; Dong, B.; Zhang, J.; Chen, Y.; Qiao, H.; Liu, Z.; Chen, E.; Dong, Y.; Cao, C.; Huang, D.; Chen, W. Functional biodegradable nitric oxide donor-containing polycarbonate-based micelles for reduction-triggered drug release and overcoming multidrug resistance. ACS Macro Lett., 2019, 8(12), 1552-1558.
[http://dx.doi.org/10.1021/acsmacrolett.9b00758] [PMID: 35619381]
[32]
Konter, J.; Abuo-Rahma, G.E.D.A.A.; El-Emam, A.; Lehmann, J. Synthesis of diazen-1-ium-1,2-diolates monitored by the “NOtizer” apparatus: Relationship between formation rates, molecular structure and the release of nitric oxide. Eur. J. Org. Chem., 2007, 2007(4), 616-624.
[http://dx.doi.org/10.1002/ejoc.200600662]
[33]
Saavedra, J.E.; Southan, G.J.; Davies, K.M.; Lundell, A.; Markou, C.; Hanson, S.R.; Adrie, C.; Hurford, W.E.; Zapol, W.M.; Keefer, L.K. Localizing antithrombotic and vasodilatory activity with a novel, ultrafast nitric oxide donor. J. Med. Chem., 1996, 39(22), 4361-4365.
[http://dx.doi.org/10.1021/jm960616s] [PMID: 8893830]
[34]
Chakrapani, H.; Showalter, B.M.; Citro, M.L.; Keefer, L.K.; Saavedra, J.E. Nitric oxide prodrugs: diazeniumdiolate anions of hindered secondary amines. Org. Lett., 2007, 9(22), 4551-4554.
[http://dx.doi.org/10.1021/ol7019636] [PMID: 17918856]
[35]
Hrabie, J.A.; Keefer, L.K. Chemistry of the nitric oxide-releasing diazeniumdiolate (“nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives. Chem. Rev., 2002, 102(4), 1135-1154.
[http://dx.doi.org/10.1021/cr000028t] [PMID: 11942789]
[36]
Chakrapani, H.; Showalter, B.M.; Kong, L.; Keefer, L.K.; Saavedra, J.E. V-PROLI/NO, a prodrug of the nitric oxide donor, PROLI/NO. Org. Lett., 2007, 9(17), 3409-3412.
[http://dx.doi.org/10.1021/ol701419a] [PMID: 17658755]
[37]
Cai, T.B.; Lu, D.; Landerholm, M.; Wang, P.G. Sialated diazeniumdiolate: A new sialidase-activated nitric oxide donor. Org. Lett., 2004, 6(23), 4203-4205.
[http://dx.doi.org/10.1021/ol048397p] [PMID: 15524443]
[38]
Traving, C.; Schauer, R. Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci., 1998, 54(12), 1330-1349.
[http://dx.doi.org/10.1007/s000180050258] [PMID: 9893709]
[39]
Jovené, C.; Chugunova, E.A.; Goumont, R. The properties and the use of substituted benzofuroxans in pharmaceutical and medicinal chemistry: A comprehensive review. Mini Rev. Med. Chem., 2013, 13(8), 1089-1136.
[http://dx.doi.org/10.2174/1389557511313080001] [PMID: 23544466]
[40]
Chugunova, E.; Burilov, A. Novel structural hybrids on the base of benzofuroxans and furoxans. Mini-Rev. Curr. Top. Med. Chem., 2017, 17(9), 986-1005.
[http://dx.doi.org/10.2174/1568026616666160927145822] [PMID: 27697059]
[41]
Moharram, S.; Zhou, A.; Wiebe, L.I.; Knaus, E.E. Design and synthesis of 3′- and 5′-O-(3-benzenesulfonylfuroxan-4-yl)-2′-deoxyuridines: Biological evaluation as hybrid nitric oxide donor-nucleoside anticancer agents. J. Med. Chem., 2004, 47(7), 1840-1846.
[http://dx.doi.org/10.1021/jm030544m] [PMID: 15027876]
[42]
Duan, W.; Li, J.; Inks, E.S.; Chou, C.J.; Jia, Y.; Chu, X.; Li, X.; Xu, W.; Zhang, Y. Design, synthesis, and antitumor evaluation of novel histone deacetylase inhibitors equipped with a phenylsulfonylfuroxan module as a nitric oxide donor. J. Med. Chem., 2015, 58(10), 4325-4338.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00317] [PMID: 25906087]
[43]
Seymour, C.P.; Tohda, R.; Tsubaki, M.; Hayashi, M.; Matsubara, R. Photosensitization of fluorofuroxans and its application to the development of visible light-triggered nitric oxide donor. J. Org. Chem., 2017, 82(18), 9647-9654.
[http://dx.doi.org/10.1021/acs.joc.7b01709] [PMID: 28837775]
[44]
Zhang, Q.; Milliken, P.; Kulczynska, A.; Slawin, A.M.Z.; Gordon, A.; Kirkby, N.S.; Webb, D.J.; Botting, N.P.; Megson, I.L. Development and characterization of glutamyl-protected N-hydroxyguanidines as reno-active nitric oxide donor drugs with therapeutic potential in acute renal failure. J. Med. Chem., 2013, 56(13), 5321-5334.
[http://dx.doi.org/10.1021/jm400146r] [PMID: 23782349]
[45]
Cabrales, P.; Scicinski, J.; Reid, T.; Kuypers, F.; Larkin, S.; Fens, M.; Oronsky, A.; Oronsky, B. A look inside the mechanistic black box: Are red blood cells the critical effectors of RRx-001 cytotoxicity? Med. Oncol., 2016, 33(7), 63.
[http://dx.doi.org/10.1007/s12032-016-0775-3] [PMID: 27229330]
[46]
Reid, T.; Oronsky, B.; Scicinski, J.; Scribner, C.L.; Knox, S.J.; Ning, S.; Peehl, D.M.; Korn, R.; Stirn, M.; Carter, C.A.; Oronsky, A.; Taylor, M.J.; Fitch, W.L.; Cabrales, P.; Kim, M.M.; Burris, H.A., III; Lao, C.D.; Abrouk, N.E.D.; Fanger, G.R.; Infante, J.R. Safety and activity of RRx-001 in patients with advanced cancer: A first-in-human, open-label, dose-escalation phase 1 study. Lancet Oncol., 2015, 16(9), 1133-1142.
[http://dx.doi.org/10.1016/S1470-2045(15)00089-3] [PMID: 26296952]
[47]
Carter, C.A.; Oronsky, B.; Caroen, S.; Scicinski, J.; Cabrales, P.; Degesys, A.; Brzezniak, C. Partial response to carboplatin in an RRx-001 pretreated patient with EGFR-inhibitor-resistance and T790M-negative NSCLC. Respir. Med. Case Rep., 2016, 18, 62-65.
[http://dx.doi.org/10.1016/j.rmcr.2016.04.007] [PMID: 27330954]
[48]
Wey, S.J.; Augustyniak, M.E.; Cochran, E.D.; Ellis, J.L.; Fang, X.; Garvey, D.S.; Janero, D.R.; Letts, L.G.; Martino, A.M.; Melim, T.L.; Murty, M.G.; Richardson, S.K.; Schroeder, J.D.; Selig, W.M.; Trocha, A.M.; Wexler, R.S.; Young, D.V.; Zemtseva, I.S.; Zifcak, B.M. Structure-based design, synthesis, and biological evaluation of indomethacin derivatives as cyclooxygenase-2 inhibiting nitric oxide donors. J. Med. Chem., 2007, 50(25), 6367-6382.
[http://dx.doi.org/10.1021/jm0611861] [PMID: 17994684]
[49]
Borgini, M.; Zamperini, C.; Poggialini, F.; Ferrante, L.; Summa, V.; Botta, M.; Fabio, R.D. Synthesis and antiproliferative activity of nitric oxide-donor Largazole prodrugs. ACS Med. Chem. Lett., 2020, 11(5), 846-851.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00643] [PMID: 32435394]
[50]
He, M.; Wang, D.; Xu, Y.; Jiang, F.; Zheng, J.; Feng, Y.; Cao, J.; Zhou, X. Nitric oxide-releasing platforms for treating cardiovascular disease. Pharmaceutics, 2022, 14(7), 1345.
[http://dx.doi.org/10.3390/pharmaceutics14071345] [PMID: 35890241]
[51]
Paul, S.; Pan, S.; Mukherjee, A.; De, P. Nitric oxide releasing delivery platforms: design, detection, biomedical applications, and future possibilities. Mol. Pharm., 2021, 18(9), 3181-3205.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00486] [PMID: 34433264]
[52]
Zhang, Q.Y.; Wang, Z.Y.; Wen, F.; Ren, L.; Li, J.; Teoh, S.H.; Thian, E.S. Gelatin-siloxane nanoparticles to deliver nitric oxide for vascular cell regulation: Synthesis, cytocompatibility, and cellular responses. J. Biomed. Mater. Res. A, 2015, 103(3), 929-938.
[http://dx.doi.org/10.1002/jbm.a.35239] [PMID: 24853642]
[53]
Tao, Y.; Li, X.; Wu, Z.; Chen, C.; Tan, K.; Wan, M.; Zhou, M.; Mao, C. Nitric oxide-driven nanomotors with bowl-shaped mesoporous silica for targeted thrombolysis. J. Colloid Interface Sci., 2022, 611, 61-70.
[http://dx.doi.org/10.1016/j.jcis.2021.12.065] [PMID: 34929439]
[54]
Polizzi, M.A.; Stasko, N.A.; Schoenfisch, M.H. Water-soluble nitric oxide-releasing gold nanoparticles. Langmuir, 2007, 23(9), 4938-4943.
[http://dx.doi.org/10.1021/la0633841] [PMID: 17375944]
[55]
Kandoth, N.; Vittorino, E.; Sortino, S. Gold nanoparticles decorated with a photoactivable nitric oxide donor/cyclodextrin host/guest complex. New J. Chem., 2011, 35(1), 52-56.
[http://dx.doi.org/10.1039/C0NJ00690D]
[56]
Riccio, D.A.; Schoenfisch, M.H. Nitric oxide release: Part I. Macromolecular scaffolds. Chem. Soc. Rev., 2012, 41(10), 3731-3741.
[http://dx.doi.org/10.1039/c2cs15272j] [PMID: 22362355]
[57]
Vong, L.B.; Bui, T.Q.; Tomita, T.; Sakamoto, H.; Hiramatsu, Y.; Nagasaki, Y. Novel angiogenesis therapeutics by redox injectable hydrogel - Regulation of local nitric oxide generation for effective cardiovascular therapy. Biomaterials, 2018, 167, 143-152.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.023] [PMID: 29571050]
[58]
Liu, S.; Cai, X.; Xue, W.; Ma, D.; Zhang, W. Chitosan derivatives co-delivering nitric oxide and methicillin for the effective therapy to the methicillin-resistant S. aureus infection. Carbohydr. Polym., 2020, 234, 115928.
[http://dx.doi.org/10.1016/j.carbpol.2020.115928] [PMID: 32070544]
[59]
Paul, S.; Pan, S.; Chakraborty, A.; De, P.; Mukherjee, A. Ultraviolet light- or pH-triggered nitric oxide release from a water-soluble polymeric scaffold. ACS Appl. Polym. Mater., 2021, 3(5), 2310-2315.
[http://dx.doi.org/10.1021/acsapm.0c01375]
[60]
Hetrick, E.M.; Schoenfisch, M.H. Analytical chemistry of nitric oxide. Annu. Rev. Anal. Chem., 2009, 2(1), 409-433.
[http://dx.doi.org/10.1146/annurev-anchem-060908-155146] [PMID: 20636069]
[61]
Nagano, T.; Yoshimura, T. Bioimaging of nitric oxide. Chem. Rev., 2002, 102(4), 1235-1270.
[http://dx.doi.org/10.1021/cr010152s] [PMID: 11942795]
[62]
Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem., 1998, 70(13), 2446-2453.
[http://dx.doi.org/10.1021/ac9801723] [PMID: 9666719]
[63]
Sasaki, E.; Kojima, H.; Nishimatsu, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano, T. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc., 2005, 127(11), 3684-3685.
[http://dx.doi.org/10.1021/ja042967z] [PMID: 15771488]
[64]
Zhou, T.; Wang, J.; Xu, J.; Zheng, C.; Niu, Y.; Wang, C.; Xu, F.; Yuan, L.; Zhao, X.; Liang, L.; Xu, P. A smart fluorescent probe for NO detection and application in myocardial fibrosis imaging. Anal. Chem., 2020, 92(7), 5064-5072.
[http://dx.doi.org/10.1021/acs.analchem.9b05435] [PMID: 32122120]
[65]
Hilderbrand, S.A.; Lippard, S.J. Nitric oxide reactivity of fluorophore coordinated carboxylate-bridged diiron(II) and dicobalt(II) complexes. Inorg. Chem., 2004, 43(17), 5294-5301.
[http://dx.doi.org/10.1021/ic049649l] [PMID: 15310207]
[66]
McQuade, L.E.; Lippard, S.J. Fluorescence-based nitric oxide sensing by Cu(II) complexes that can be trapped in living cells. Inorg. Chem., 2010, 49(16), 7464-7471.
[http://dx.doi.org/10.1021/ic100802q] [PMID: 20690755]
[67]
Franz, K.J.; Singh, N.; Spingler, B.; Lippard, S.J. Aminotroponiminates as ligands for potential metal-based nitric oxide sensors. Inorg. Chem., 2000, 39(18), 4081-4092.
[http://dx.doi.org/10.1021/ic000344q] [PMID: 11198863]
[68]
Lim, M.H.; Lippard, S.J. Fluorescence-based nitric oxide detection by ruthenium porphyrin fluorophore complexes. Inorg. Chem., 2004, 43(20), 6366-6370.
[http://dx.doi.org/10.1021/ic035418n] [PMID: 15446885]
[69]
Lim, M.H.; Wong, B.A.; Pitcock, W.H., Jr; Mokshagundam, D.; Baik, M.H.; Lippard, S.J. Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. J. Am. Chem. Soc., 2006, 128(44), 14364-14373.
[http://dx.doi.org/10.1021/ja064955e] [PMID: 17076510]
[70]
Katayama, Y.; Takahashi, S.; Maeda, M. Design, synthesis and characterization of a novel fluorescent probe for nitric oxide (nitrogen monoxide). Anal. Chim. Acta, 1998, 365(1-3), 159-167.
[http://dx.doi.org/10.1016/S0003-2670(98)00089-0]
[71]
Gunasekar, P.G.; Kanthasamy, A.G.; Borowitz, J.L.; Isom, G.E. Monitoring intracellular nitric oxide formation by dichlorofluorescin in neuronal cells. J. Neurosci. Methods, 1995, 61(1-2), 15-21.
[http://dx.doi.org/10.1016/0165-0270(95)00018-P] [PMID: 8618413]
[72]
Korth, H.G.; Ingold, K.U.; Sustmann, R.; de Groot, H.; Sies, H. Tetramethyl-ortho-quinodimethane, first member of a family of custom-tailored cheletropic spin traps for nitric oxide. Angew. Chem. Int. Ed. Engl., 1992, 31(7), 891-893.
[http://dx.doi.org/10.1002/anie.199208911]
[73]
Düppe, P.M.; Talbierski, P.M.; Hornig, F.S.; Rauen, U.; Korth, H.G.; Wille, T.; Boese, R.; Omlor, T.; de Groot, H.; Sustmann, R. Pyrene-based fluorescent nitric oxide cheletropic traps (FNOCTs) for the detection of nitric oxide in cell cultures and tissues. Chemistry, 2010, 16(36), 11121-11132.
[http://dx.doi.org/10.1002/chem.201000029] [PMID: 20680937]
[74]
Meineke, P.; Rauen, U.; de Groot, H.; Korth, H.G.; Sustmann, R. Cheletropic traps for the fluorescence spectroscopic detection of nitric oxide (nitrogen monoxide) in biological systems. Chemistry, 1999, 5(6), 1738-1747.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990604)5:6<1738:AID-CHEM1738>3.0.CO;2-T]
[75]
Ling, K.; Men, F.; Wang, W.C.; Zhou, Y.Q.; Zhang, H.W.; Ye, D.W. Carbon monoxide and its controlled release: Therapeutic application, detection, and development of carbon monoxide releasing molecules (CORMs). J. Med. Chem., 2018, 61(7), 2611-2635.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01153] [PMID: 28876065]
[76]
Schatzschneider, U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). Br. J. Pharmacol., 2015, 172(6), 1638-1650.
[http://dx.doi.org/10.1111/bph.12688] [PMID: 24628281]
[77]
Heinemann, S.H.; Hoshi, T.; Westerhausen, M.; Schiller, A. Carbon monoxide – physiology, detection and controlled release. Chem. Commun., 2014, 50(28), 3644-3660.
[http://dx.doi.org/10.1039/C3CC49196J] [PMID: 24556640]
[78]
García-Gallego, S.; Bernardes, G.J.L. Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. Angew. Chem. Int. Ed., 2014, 53(37), 9712-9721.
[http://dx.doi.org/10.1002/anie.201311225] [PMID: 25070185]
[79]
Romão, C.C.; Blättler, W.A.; Seixas, J.D.; Bernardes, G.J.L. Developing drug molecules for therapy with carbon monoxide. Chem. Soc. Rev., 2012, 41(9), 3571-3583.
[http://dx.doi.org/10.1039/c2cs15317c] [PMID: 22349541]
[80]
Abeyrathna, N.; Washington, K.; Bashur, C.; Liao, Y. Nonmetallic carbon monoxide releasing molecules (CORMs). Org. Biomol. Chem., 2017, 15(41), 8692-8699.
[http://dx.doi.org/10.1039/C7OB01674C] [PMID: 28948260]
[81]
Wright, M. A.; Wright, J. A. PhotoCORMs: CO release moves into the visible. Dalton transact., 2016, 45(16), 6801-6811.
[82]
Slanina, T.; Šebej, P. Visible-light-activated photoCORMs: Rational design of CO-releasing organic molecules absorbing in the tissue-transparent window. Photochem. Photobiol. Sci., 2018, 17(6), 692-710.
[http://dx.doi.org/10.1039/c8pp00096d] [PMID: 29796556]
[83]
Lazarus, L.S.; Benninghoff, A.D.; Berreau, L.M. Development of triggerable, trackable, and targetable carbon monoxide releasing molecules. Acc. Chem. Res., 2020, 53(10), 2273-2285.
[http://dx.doi.org/10.1021/acs.accounts.0c00402] [PMID: 32929957]
[84]
Alberto, R.; Ortner, K.; Wheatley, N.; Schibli, R.; Schubiger, A.P. Synthesis and properties of boranocarbonate: A convenient in situ CO source for the aqueous preparation of [(99m)Tc(OH(2))3(CO)3]+. J. Am. Chem. Soc., 2001, 123(13), 3135-3136.
[http://dx.doi.org/10.1021/ja003932b] [PMID: 11457025]
[85]
Motterlini, R.; Sawle, P.; Bains, S.; Hammad, J.; Alberto, R.; Foresti, R.; Green, C.J. CORM‐A1: A new pharmacologically active carbon monoxide‐releasing molecule. FASEB J., 2005, 19(2), 1-24.
[http://dx.doi.org/10.1096/fj.04-2169fje] [PMID: 15556971]
[86]
Babu, D.; Leclercq, G.; Goossens, V.; Remijsen, Q.; Vandenabeele, P.; Motterlini, R.; Lefebvre, R.A. Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells. Toxicol. Appl. Pharmacol., 2015, 288(2), 161-178.
[http://dx.doi.org/10.1016/j.taap.2015.07.007] [PMID: 26187750]
[87]
Ryan, M.; Jernigan, N.; Drummond, H.; McLemore, G., Jr; Rimoldi, J.; Poreddy, S.; Gadepalli, R.; Stec, D. Renal vascular responses to CORM-A1 in the mouse. Pharmacol. Res., 2006, 54(1), 24-29.
[http://dx.doi.org/10.1016/j.phrs.2006.01.012] [PMID: 16524742]
[88]
Nikolic, I.; Vujicic, M.; Stojanovic, I.; Stosic-Grujicic, S.; Saksida, T. Carbon monoxide-releasing molecule-A1 inhibits Th1/Th17 and stimulates Th2 differentiation in vitro. Scand. J. Immunol., 2014, 80(2), 95-100.
[http://dx.doi.org/10.1111/sji.12189] [PMID: 24845722]
[89]
Ohta, S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Curr. Pharm. Des., 2011, 17(22), 2241-2252.
[http://dx.doi.org/10.2174/138161211797052664] [PMID: 21736547]
[90]
Ohta, S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol. Ther., 2014, 144(1), 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2014.04.006] [PMID: 24769081]
[91]
Ayudhya, T.I.; Raymond, C.C.; Dingra, N.N. Hexamethylenetetramine carboxyborane: Synthesis, structural characterization and CO releasing properties. Dalton Trans., 2017, 46(3), 882-889.
[http://dx.doi.org/10.1039/C6DT03856E] [PMID: 28004050]
[92]
Ayudhya, T.I.; Pellechia, P.J.; Dingra, N.N. ROS-mediated carbon monoxide and drug release from drug-conjugated carboxyboranes. Dalton Trans., 2018, 47(2), 538-543.
[http://dx.doi.org/10.1039/C7DT03581K] [PMID: 29238784]
[93]
Ji, X.; Wang, B. Strategies toward organic carbon monoxide prodrugs. Acc. Chem. Res., 2018, 51(6), 1377-1385.
[http://dx.doi.org/10.1021/acs.accounts.8b00019] [PMID: 29762011]
[94]
Wang, D.; Viennois, E.; Ji, K.; Damera, K.; Draganov, A.; Zheng, Y.; Dai, C.; Merlin, D.; Wang, B. A click-and-release approach to CO prodrugs. Chem. Commun., 2014, 50(100), 15890-15893.
[http://dx.doi.org/10.1039/C4CC07748B] [PMID: 25376496]
[95]
Ji, X.; Ji, K.; Chittavong, V.; Aghoghovbia, R.E.; Zhu, M.; Wang, B. Click and fluoresce: A bioorthogonally activated smart probe for wash-free fluorescent labeling of biomolecules. J. Org. Chem., 2017, 82(3), 1471-1476.
[http://dx.doi.org/10.1021/acs.joc.6b02654] [PMID: 28067514]
[96]
Ji, X.; Aghoghovbia, R.E.; De La Cruz, L.K.C.; Pan, Z.; Yang, X.; Yu, B.; Wang, B. Click and release: A high-content bioorthogonal pro-drug with multiple outputs. Org. Lett., 2019, 21(10), 3649-3652.
[http://dx.doi.org/10.1021/acs.orglett.9b01086] [PMID: 31063383]
[97]
Ji, X.; Pan, Z.; Yu, B.; De La Cruz, L.K.; Zheng, Y.; Ke, B.; Wang, B. Click and release: Bioorthogonal approaches to “on-demand” activation of prodrugs. Chem. Soc. Rev., 2019, 48(4), 1077-1094.
[http://dx.doi.org/10.1039/C8CS00395E] [PMID: 30724944]
[98]
Zheng, Y.; Ji, X.; Yu, B.; Ji, K.; Gallo, D.; Csizmadia, E.; Zhu, M.; Choudhury, M.R.; De La Cruz, L.K.C.; Chittavong, V.; Pan, Z.; Yuan, Z.; Otterbein, L.E.; Wang, B. Enrichment-triggered prodrug activation demonstrated through mitochondria-targeted delivery of doxorubicin and carbon monoxide. Nat. Chem., 2018, 10(7), 787-794.
[http://dx.doi.org/10.1038/s41557-018-0055-2] [PMID: 29760413]
[99]
Ji, X.; Zhou, C.; Ji, K.; Aghoghovbia, R.E.; Pan, Z.; Chittavong, V.; Ke, B.; Wang, B. Click and Release: A chemical strategy toward developing gasotransmitter prodrugs by using an intramolecular Diels–Alder reaction. Angew. Chem. Int. Ed., 2016, 55(51), 15846-15851.
[http://dx.doi.org/10.1002/anie.201608732] [PMID: 27879021]
[100]
Wang, M.; Yang, X.; Pan, Z.; Wang, Y.; De La Cruz, L.K.; Wang, B.; Tan, C. Towards “CO in a pill”: Pharmacokinetic studies of carbon monoxide prodrugs in mice. J. Control. Release, 2020, 327, 174-185.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.040] [PMID: 32745568]
[101]
Pan, Z.; Chittavong, V.; Li, W.; Zhang, J.; Ji, K.; Zhu, M.; Ji, X.; Wang, B. Organic CO prodrugs: Structure-CO-release rate relationship studies. Chemistry, 2017, 23(41), 9838-9845.
[http://dx.doi.org/10.1002/chem.201700936] [PMID: 28544290]
[102]
Bakalarz, D.; Surmiak, M.; Yang, X.; Wójcik, D.; Korbut, E.; Śliwowski, Z.; Ginter, G.; Buszewicz, G.; Brzozowski, T.; Cieszkowski, J.; Głowacka, U.; Magierowska, K.; Pan, Z.; Wang, B.; Magierowski, M. Organic carbon monoxide prodrug, BW-CO-111, in protection against chemically-induced gastric mucosal damage. Acta Pharm. Sin. B, 2021, 11(2), 456-475.
[http://dx.doi.org/10.1016/j.apsb.2020.08.005] [PMID: 33643824]
[103]
De La Cruz, L.K.C.; Benoit, S.L.; Pan, Z.; Yu, B.; Maier, R.J.; Ji, X.; Wang, B. Click, release, and fluoresce: A chemical strategy for a cas-cade prodrug system for codelivery of carbon monoxide, a drug payload, and a fluorescent reporter. Org. Lett., 2018, 20(4), 897-900.
[http://dx.doi.org/10.1021/acs.orglett.7b03348] [PMID: 29380605]
[104]
Ji, X.; Ji, K.; Chittavong, V.; Yu, B.; Pan, Z.; Wang, B. An esterase-activated click and release approach to metal-free CO-prodrugs. Chem. Commun., 2017, 53(59), 8296-8299.
[http://dx.doi.org/10.1039/C7CC03832A] [PMID: 28685779]
[105]
Lazarus, L.S.; Simons, C.R.; Arcidiacono, A.; Benninghoff, A.D.; Berreau, L.M. Extracellular vs intracellular delivery of CO: does it matter for a stable, diffusible gasotransmitter? J. Med. Chem., 2019, 62(21), 9990-9995.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01254] [PMID: 31577143]
[106]
Kueh, J.T.B.; Stanley, N.J.; Hewitt, R.J.; Woods, L.M.; Larsen, L.; Harrison, J.C.; Rennison, D.; Brimble, M.A.; Sammut, I.A.; Larsen, D.S. Norborn-2-en-7-ones as physiologically-triggered carbon monoxide-releasing prodrugs. Chem. Sci., 2017, 8(8), 5454-5459.
[http://dx.doi.org/10.1039/C7SC01647F] [PMID: 28970925]
[107]
Ji, X.; De La Cruz, L.K.C.; Pan, Z.; Chittavong, V.; Wang, B. pH-Sensitive metal-free carbon monoxide prodrugs with tunable and predic-table release rates. Chem. Commun., 2017, 53(69), 9628-9631.
[http://dx.doi.org/10.1039/C7CC04866A] [PMID: 28809970]
[108]
Ji, X.; Pan, Z.; Li, C.; Kang, T.; De La Cruz, L.K.C.; Yang, L.; Yuan, Z.; Ke, B.; Wang, B. Esterase-sensitive and pH-controlled carbon monoxide prodrugs for treating systemic inflammation. J. Med. Chem., 2019, 62(6), 3163-3168.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00073] [PMID: 30816714]
[109]
Pan, Z.; Zhang, J.; Ji, K.; Chittavong, V.; Ji, X.; Wang, B. Organic CO prodrugs activated by endogenous ROS. Org. Lett., 2018, 20(1), 8-11.
[http://dx.doi.org/10.1021/acs.orglett.7b02775] [PMID: 29111756]
[110]
Sun, Y.; Neary, W.J.; Burke, Z.P.; Qian, H.; Zhu, L.; Moore, J.S. Mechanically triggered carbon monoxide release with turn-on aggrega-tion-induced emission. J. Am. Chem. Soc., 2022, 144(3), 1125-1129.
[http://dx.doi.org/10.1021/jacs.1c12108] [PMID: 35019277]
[111]
De La Cruz, L.K.; Yang, X.; Menshikh, A.; Brewer, M.; Lu, W.; Wang, M.; Wang, S.; Ji, X.; Cachuela, A.; Yang, H.; Gallo, D.; Tan, C.; Otterbein, L.; de Caestecker, M.; Wang, B. Adapting decarbonylation chemistry for the development of prodrugs capable of in vivo delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chem. Sci., 2021, 12(31), 10649-10654.
[http://dx.doi.org/10.1039/D1SC02711E] [PMID: 34447558]
[112]
Michel, B.W.; Lippert, A.R.; Chang, C.J. A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation. J. Am. Chem. Soc., 2012, 134(38), 15668-15671.
[http://dx.doi.org/10.1021/ja307017b] [PMID: 22970765]
[113]
Morstein, J.; Höfler, D.; Ueno, K.; Jurss, J.W.; Walvoord, R.R.; Bruemmer, K.J.; Rezgui, S.P.; Brewer, T.F.; Saitoe, M.; Michel, B.W.; Chang, C.J. Ligand-directed approach to activity-based sensing: developing palladacycle fluorescent probes that enable endogenous carbon monoxide detection. J. Am. Chem. Soc., 2020, 142(37), 15917-15930.
[http://dx.doi.org/10.1021/jacs.0c06405] [PMID: 32872768]
[114]
Sun, M.; Yu, H.; Zhang, K.; Wang, S.; Hayat, T.; Alsaedi, A.; Huang, D. Palladacycle based fluorescence turn-on probe for sensitive detection of carbon monoxide. ACS Sens., 2018, 3(2), 285-289.
[http://dx.doi.org/10.1021/acssensors.7b00835] [PMID: 29392928]
[115]
Li, Y.; Wang, X.; Yang, J.; Xie, X.; Li, M.; Niu, J.; Tong, L.; Tang, B. Fluorescent probe based on azobenzene-cyclopalladium for the selective imaging of endogenous carbon monoxide under hypoxia conditions. Anal. Chem., 2016, 88(22), 11154-11159.
[http://dx.doi.org/10.1021/acs.analchem.6b03376] [PMID: 27748113]
[116]
Zheng, K.; Lin, W.; Tan, L.; Chen, H.; Cui, H. A unique carbazole–coumarin fused two-photon platform: development of a robust two-photon fluorescent probe for imaging carbon monoxide in living tissues. Chem. Sci., 2014, 5(9), 3439-3448.
[http://dx.doi.org/10.1039/C4SC00283K]
[117]
Liu, K.; Kong, X.; Ma, Y.; Lin, W. Preparation of a Nile Red–Pd-based fluorescent CO probe and its imaging applications in vitro and in vivo. Nat. Protoc., 2018, 13(5), 1020-1033.
[http://dx.doi.org/10.1038/nprot.2018.013] [PMID: 29674754]
[118]
Liu, K.; Kong, X.; Ma, Y.; Lin, W. Rational design of a robust fluorescent probe for the detection of endogenous carbon monoxide in living zebrafish embryos and mouse tissue. Angew. Chem. Int. Ed., 2017, 56(43), 13489-13492.
[http://dx.doi.org/10.1002/anie.201707518] [PMID: 28851036]
[119]
Xu, S.; Liu, H.W.; Yin, X.; Yuan, L.; Huan, S.Y.; Zhang, X.B. A cell membrane-anchored fluorescent probe for monitoring carbon monoxide release from living cells. Chem. Sci., 2019, 10(1), 320-325.
[http://dx.doi.org/10.1039/C8SC03584A] [PMID: 30713640]
[120]
Li, J.; Chen, P.R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol., 2016, 12(3), 129-137.
[http://dx.doi.org/10.1038/nchembio.2024] [PMID: 26881764]
[121]
Völker, T.; Meggers, E. Transition-metal-mediated uncaging in living human cells — an emerging alternative to photolabile protecting groups. Curr. Opin. Chem. Biol., 2015, 25, 48-54.
[http://dx.doi.org/10.1016/j.cbpa.2014.12.021] [PMID: 25561021]
[122]
Pal, S.; Mukherjee, M.; Sen, B.; Mandal, S.K.; Lohar, S.; Chattopadhyay, P.; Dhara, K. A new fluorogenic probe for the selective detection of carbon monoxide in aqueous medium based on Pd(0) mediated reaction. Chem. Commun., 2015, 51(21), 4410-4413.
[http://dx.doi.org/10.1039/C5CC00902B] [PMID: 25679752]
[123]
Shi, G.; Yoon, T.; Cha, S.; Kim, S.; Yousuf, M.; Ahmed, N.; Kim, D.; Kang, H.W.; Kim, K.S. Turn-on and turn-off fluorescent probes for carbon monoxide detection and blood carboxyhemoglobin determination. ACS Sens., 2018, 3(6), 1102-1108.
[http://dx.doi.org/10.1021/acssensors.8b00083] [PMID: 29767518]
[124]
Gong, S.; Hong, J.; Zhou, E.; Feng, G. A near-infrared fluorescent probe for imaging endogenous carbon monoxide in living systems with a large Stokes shift. Talanta, 2019, 201, 40-45.
[http://dx.doi.org/10.1016/j.talanta.2019.03.111] [PMID: 31122441]
[125]
Feng, W.; Feng, G. A readily available colorimetric and near-infrared fluorescent turn-on probe for detection of carbon monoxide in living cells and animals. Sens. Actuators B Chem., 2018, 255, 2314-2320.
[http://dx.doi.org/10.1016/j.snb.2017.09.049]
[126]
Zhou, E.; Gong, S.; Feng, G. Rapid detection of CO in vitro and in vivo with a ratiometric probe showing near-infrared turn-on fluorescence, large Stokes shift, and high signal-to-noise ratio. Sens. Actuators B Chem., 2019, 301, 127075.
[http://dx.doi.org/10.1016/j.snb.2019.127075]
[127]
Yan, L.; Nan, D.; Lin, C.; Wan, Y.; Pan, Q.; Qi, Z. A near-infrared fluorescent probe for rapid detection of carbon monoxide in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 202, 284-289.
[http://dx.doi.org/10.1016/j.saa.2018.05.059] [PMID: 29800891]
[128]
Wang, Z.; Zhao, Z.; Liu, C.; Geng, Z.; Duan, Q.; Jia, P.; Li, Z.; Zhu, H.; Zhu, B.; Sheng, W. A long-wavelength ultrasensitive colorimetric fluorescent probe for carbon monoxide detection in living cells. Photochem. Photobiol. Sci., 2019, 18(7), 1851-1857.
[http://dx.doi.org/10.1039/c9pp00222g] [PMID: 31214682]
[129]
Wang, J.; Li, C.; Chen, Q.; Li, H.; Zhou, L.; Jiang, X.; Shi, M.; Zhang, P.; Jiang, G.; Tang, B.Z. An easily available ratiometric reaction-based AIE probe for carbon monoxide light-up imaging. Anal. Chem., 2019, 91(15), 9388-9392.
[http://dx.doi.org/10.1021/acs.analchem.9b02691] [PMID: 31315395]
[130]
Zhang, Y.; Kong, X.; Tang, Y.; Li, M.; Yin, Y.; Lin, W. The development of a hemicyanine-based ratiometric CO fluorescent probe with a long emission wavelength and its applications for imaging CO in vitro and in vivo. New J. Chem., 2020, 44(28), 12107-12112.
[http://dx.doi.org/10.1039/D0NJ00677G]
[131]
Wang, Z.; Zhao, Z.; Wang, R.; Yuan, R.; Liu, C.; Duan, Q.; Zhu, W.; Li, X.; Zhu, B. A mitochondria-targetable colorimetric and farred fluorescent probe for the sensitive detection of carbon monoxide in living cells. Anal. Methods, 2019, 11(3), 288-295.
[http://dx.doi.org/10.1039/C8AY02152J]
[132]
Li, S.J.; Zhou, D.Y.; Li, Y.F.; Yang, B.; Ou-Yang, J.; Jie, J.; Liu, J.; Li, C.Y. Mitochondria-targeted near-infrared fluorescent probe for the detection of carbon monoxide in vivo. Talanta, 2018, 188, 691-700.
[http://dx.doi.org/10.1016/j.talanta.2018.06.046] [PMID: 30029433]
[133]
Dhara, K.; Lohar, S.; Patra, A.; Roy, P.; Saha, S.K.; Sadhukhan, G.C.; Chattopadhyay, P. A new lysosome-targetable turn-on fluorogenic probe for carbon monoxide imaging in living cells. Anal. Chem., 2018, 90(4), 2933-2938.
[http://dx.doi.org/10.1021/acs.analchem.7b05331] [PMID: 29353475]
[134]
Wang, Z.; Liu, C.; Wang, X.; Duan, Q.; Jia, P.; Zhu, H.; Li, Z.; Zhang, X.; Ren, X.; Zhu, B.; Sheng, W. A metal-free near-infrared fluorescent probe for tracking the glucose-induced fluctuations of carbon monoxide in living cells and zebrafish. Sens. Actuators B Chem., 2019, 291, 329-336.
[http://dx.doi.org/10.1016/j.snb.2019.04.084]
[135]
Tang, Z.; Song, B.; Ma, H.; Luo, T.; Guo, L.; Yuan, J. Mitochondria-targetable ratiometric time-gated luminescence probe for carbon monoxide based on lanthanide complexes. Anal. Chem., 2019, 91(4), 2939-2946.
[http://dx.doi.org/10.1021/acs.analchem.8b05127] [PMID: 30674191]
[136]
Yuan, Z.; Yang, X.; De La Cruz, L.K.; Wang, B. Nitro reduction-based fluorescent probes for carbon monoxide require reactivity involving a ruthenium carbonyl moiety. Chem. Commun., 2020, 56(14), 2190-2193.
[http://dx.doi.org/10.1039/C9CC08296D] [PMID: 31971171]
[137]
Zhang, C.; Xie, H.; Zhan, T.; Zhang, J.; Chen, B.; Qian, Z.; Zhang, G.; Zhang, W.; Zhou, J. A new mitochondrion targetable fluorescent probe for carbon monoxide-specific detection and live cell imaging. Chem. Commun., 2019, 55(64), 9444-9447.
[http://dx.doi.org/10.1039/C9CC03909K] [PMID: 31287465]
[138]
Xu, H.; Xu, H.; Ma, S.; Chen, X.; Huang, L.; Chen, J.; Gao, F.; Wang, R.; Lou, K.; Wang, W. Analyte regeneration fluorescent probes for formaldehyde enabled by regiospecific formaldehyde-induced intramolecularity. J. Am. Chem. Soc., 2018, 140(48), 16408-16412.
[http://dx.doi.org/10.1021/jacs.8b09794] [PMID: 30457848]
[139]
Steiger, A.K.; Pardue, S.; Kevil, C.G.; Pluth, M.D. Self-immolative thiocarbamates provide access to triggered H2S donors and analyte replacement fluorescent probes. J. Am. Chem. Soc., 2016, 138(23), 7256-7259.
[http://dx.doi.org/10.1021/jacs.6b03780] [PMID: 27218691]
[140]
Popova, M.; Lazarus, L.S.; Benninghoff, A.D.; Berreau, L.M. CO sense and release flavonols: progress toward the development of an analyte replacement photoCORM for use in living cells. ACS Omega, 2020, 5(17), 10021-10033.
[http://dx.doi.org/10.1021/acsomega.0c00409] [PMID: 32391490]
[141]
Zanardo, R.C.O.; Brancaleone, V.; Distrutti, E.; Fiorucci, S.; Cirino, G.; Wallace, J.L.; Zanardo, R.C.O.; Brancaleone, V.; Distrutti, E.; Fiorucci, S.; Cirino, G.; Wallace, J.L. Hydrogen sulfide is an endogenous modulator of leukocyte‐mediated inflammation. FASEB J., 2006, 20(12), 2118-2120.
[http://dx.doi.org/10.1096/fj.06-6270fje] [PMID: 16912151]
[142]
Li, L.; Whiteman, M.; Guan, Y.Y.; Neo, K.L.; Cheng, Y.; Lee, S.W.; Zhao, Y.; Baskar, R.; Tan, C.H.; Moore, P.K. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): New insights into the biology of hydrogen sulfide. Circulation, 2008, 117(18), 2351-2360.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.753467] [PMID: 18443240]
[143]
Li, L.; Hsu, A.; Moore, P.K. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation — a tale of three gases! Pharmacol. Ther., 2009, 123(3), 386-400.
[http://dx.doi.org/10.1016/j.pharmthera.2009.05.005] [PMID: 19486912]
[144]
Szabó, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov., 2007, 6(11), 917-935.
[http://dx.doi.org/10.1038/nrd2425] [PMID: 17948022]
[145]
Wallace, J.L.; Dicay, M.; McKnight, W.; Martin, G.R. Hydrogen sulfide enhances ulcer healing in rats. FASEB J., 2007, 21(14), 4070-4076.
[http://dx.doi.org/10.1096/fj.07-8669com] [PMID: 17634391]
[146]
Song, Z.L.; Zhao, L.; Ma, T.; Osama, A.; Shen, T.; He, Y.; Fang, J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med. Res. Rev., 2022, 42(5), 1930-1977.
[http://dx.doi.org/10.1002/med.21913] [PMID: 35657029]
[147]
Zhou, Z.; von Wantoch Rekowski, M.; Coletta, C.; Szabo, C.; Bucci, M.; Cirino, G.; Topouzis, S.; Papapetropoulos, A.; Giannis, A. Thioglycine and l-thiovaline: Biologically active H2S-donors. Bioorg. Med. Chem., 2012, 20(8), 2675-2678.
[http://dx.doi.org/10.1016/j.bmc.2012.02.028] [PMID: 22436388]
[148]
Nicolau, L.A.D.; Silva, R.O.; Damasceno, S.R.B.; Carvalho, N.S.; Costa, N.R.D.; Aragão, K.S.; Barbosa, A.L.R.; Soares, P.M.G.; Souza, M.H.L.P.; Medeiros, J.V.R. The hydrogen sulfide donor, Lawesson’s reagent, prevents alendronate-induced gastric damage in rats. Braz. J. Med. Biol. Res., 2013, 46(8), 708-714.
[http://dx.doi.org/10.1590/1414-431X20133030] [PMID: 23969974]
[149]
Ekundi-Valentim, E.; Santos, K.T.; Camargo, E.A.; Denadai-Souza, A.; Teixeira, S.A.; Zanoni, C.I.; Grant, A.D.; Wallace, J.L.; Muscará, M.N.; Costa, S.K. Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat. Br. J. Pharmacol., 2010, 159(7), 1463-1474.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00640.x] [PMID: 20136840]
[150]
Salim, A.S. Sulphydryl-containing agents stimulate the healing of duodenal ulceration in man. Pharmacology, 1992, 45(3), 170-180.
[http://dx.doi.org/10.1159/000138995] [PMID: 1438525]
[151]
Sousa, F.B.M.; Souza, L.K.M.; Sousa, N.A.; Araújo, T.S.L.; de Araújo, S.; Pacífico, D.M.; Silva, I.S.; Silva, R.O.; Nicolau, L.A.D.; Souza, F.M.; Filgueiras, M.C.; Oliveira, J.S.; Souza, M.H.L.P.; Medeiros, J.V.R. H2S is a key antisecretory molecule against cholera toxin-induced diarrhoea in mice: Evidence for non-involvement of the AC/cAMP/PKA pathway and AMPK. Nitric Oxide, 2018, 76, 152-163.
[http://dx.doi.org/10.1016/j.niox.2017.09.007] [PMID: 28943473]
[152]
Spiller, F.; Orrico, M.I.L.; Nascimento, D.C.; Czaikoski, P.G.; Souto, F.O.; Alves-Filho, J.C.; Freitas, A.; Carlos, D.; Montenegro, M.F.; Neto, A.F.; Ferreira, S.H.; Rossi, M.A.; Hothersall, J.S.; Assreuy, J.; Cunha, F.Q. Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am. J. Respir. Crit. Care Med., 2010, 182(3), 360-368.
[http://dx.doi.org/10.1164/rccm.200907-1145OC] [PMID: 20339148]
[153]
Park, C.M.; Zhao, Y.; Zhu, Z.; Pacheco, A.; Peng, B.; Devarie-Baez, N.O.; Bagdon, P.; Zhang, H.; Xian, M. Synthesis and evaluation of phosphorodithioate-based hydrogen sulfide donors. Mol. Biosyst., 2013, 9(10), 2430-2434.
[http://dx.doi.org/10.1039/c3mb70145j] [PMID: 23917226]
[154]
Chuah, S.C.; Moore, P.K.; Zhu, Y.Z. S -allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(5), H2693-H2701.
[http://dx.doi.org/10.1152/ajpheart.00853.2007] [PMID: 17766469]
[155]
Benavides, G.A.; Squadrito, G.L.; Mills, R.W.; Patel, H.D.; Isbell, T.S.; Patel, R.P.; Darley-Usmar, V.M.; Doeller, J.E.; Kraus, D.W. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA, 2007, 104(46), 17977-17982.
[http://dx.doi.org/10.1073/pnas.0705710104] [PMID: 17951430]
[156]
Amagase, H. Clarifying the real bioactive constituents of garlic. J. Nutr., 2006, 136(3)(Suppl. 1), S716-S725.
[http://dx.doi.org/10.1093/jn/136.3.716S] [PMID: 16484550]
[157]
Fujii, K.; Sakuragawa, T.; Kashiba, M.; Sugiura, Y.; Kondo, M.; Maruyama, K.; Goda, N.; Nimura, Y.; Suematsu, M. Hydrogen sulfide as an endogenous modulator of biliary bicarbonate excretion in the rat liver. Antioxid. Redox Signal., 2005, 7(5-6), 788-794.
[http://dx.doi.org/10.1089/ars.2005.7.788] [PMID: 15890026]
[158]
Pan, J.; Devarie-Baez, N.O.; Xian, M. Facile amide formation via S-nitrosothioacids. Org. Lett., 2011, 13(5), 1092-1094.
[http://dx.doi.org/10.1021/ol1031393] [PMID: 21271725]
[159]
Wang, P.; Danishefsky, S.J. Promising general solution to the problem of ligating peptides and glycopeptides. J. Am. Chem. Soc., 2010, 132(47), 17045-17051.
[http://dx.doi.org/10.1021/ja1084628] [PMID: 21049949]
[160]
Liu, R.; Orgel, L.E. Oxidative acylation using thioacids. Nature, 1997, 389(6646), 52-54.
[http://dx.doi.org/10.1038/37944] [PMID: 9288964]
[161]
Roger, T.; Raynaud, F.; Bouillaud, F.; Ransy, C.; Simonet, S.; Crespo, C.; Bourguignon, M.P.; Villeneuve, N.; Vilaine, J.P.; Artaud, I.; Galardon, E. New biologically active hydrogen sulfide donors. ChemBioChem, 2013, 14(17), 2268-2271.
[http://dx.doi.org/10.1002/cbic.201300552] [PMID: 24115650]
[162]
Shukla, N.; Rossoni, G.; Hotston, M.; Sparatore, A.; Del Soldato, P.; Tazzari, V.; Persad, R.; Angelini, G.D.; Jeremy, J.Y. Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int., 2009, 103(11), 1522-1529.
[http://dx.doi.org/10.1111/j.1464-410X.2009.08415.x] [PMID: 19245441]
[163]
Distrutti, E.; Sediari, L.; Mencarelli, A.; Renga, B.; Orlandi, S.; Russo, G.; Caliendo, G.; Santagada, V.; Cirino, G.; Wallace, J.L.; Fiorucci, S. 5-Amino-2-hydroxybenzoic acid 4-(5-thioxo-5H-[1,2]dithiol-3yl)-phenyl ester (ATB-429), a hydrogen sulfide-releasing derivative of mesalamine, exerts antinociceptive effects in a model of postinflammatory hypersensitivity. J. Pharmacol. Exp. Ther., 2006, 319(1), 447-458.
[http://dx.doi.org/10.1124/jpet.106.106435] [PMID: 16855178]
[164]
Fiorucci, S.; Orlandi, S.; Mencarelli, A.; Caliendo, G.; Santagada, V.; Distrutti, E.; Santucci, L.; Cirino, G.; Wallace, J.L. Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br. J. Pharmacol., 2007, 150(8), 996-1002.
[http://dx.doi.org/10.1038/sj.bjp.0707193] [PMID: 17339831]
[165]
Wallace, J.L. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci., 2007, 28(10), 501-505.
[http://dx.doi.org/10.1016/j.tips.2007.09.003] [PMID: 17884186]
[166]
Baskar, R.; Sparatore, A.; Del Soldato, P.; Moore, P.K. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur. J. Pharmacol., 2008, 594(1-3), 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2008.07.029] [PMID: 18680741]
[167]
Li, L.; Rossoni, G.; Sparatore, A.; Lee, L.C.; Del Soldato, P.; Moore, P.K. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic. Biol. Med., 2007, 42(5), 706-719.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.12.011] [PMID: 17291994]
[168]
Sparatore, A.; Perrino, E.; Tazzari, V.; Giustarini, D.; Rossi, R.; Rossoni, G.; Erdman, K.; Schröder, H.; Soldato, P.D. Pharmacological profile of a novel H2S-releasing aspirin. Free Radic. Biol. Med., 2009, 46(5), 586-592.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.013] [PMID: 19100325]
[169]
Chattopadhyay, M.; Kodela, R.; Nath, N.; Dastagirzada, Y.M.; Velázquez-Martínez, C.A.; Boring, D.; Kashfi, K. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: A general property and evidence of a tissue type-independent effect. Biochem. Pharmacol., 2012, 83(6), 715-722.
[http://dx.doi.org/10.1016/j.bcp.2011.12.018] [PMID: 22222427]
[170]
Liu, C.L.; Liao, S.J.; Zeng, J.S.; Lin, J.W.; Li, C.X.; Xie, L.C.; Shi, X.G.; Huang, R.X. dl-3n-butylphthalide prevents stroke via improvement of cerebral microvessels in RHRSP. J. Neurol. Sci., 2007, 260(1-2), 106-113.
[http://dx.doi.org/10.1016/j.jns.2007.04.025] [PMID: 17553527]
[171]
Zhu, X.Z.; Li, X.Y.; Liu, J. Recent pharmacological studies on natural products in China. Eur. J. Pharmacol., 2004, 500(1-3), 221-230.
[http://dx.doi.org/10.1016/j.ejphar.2004.07.027] [PMID: 15464035]
[172]
Xu, H.L.; Feng, Y.P. [Effects of 3-n-butylphthalide on thrombosis formation and platelet function in rats]. Yao Xue Xue Bao, 2001, 36(5), 329-333.
[PMID: 12584852]
[173]
Wang, X.; Wang, L.; Sheng, X.; Huang, Z.; Li, T.; Zhang, M.; Xu, J.; Ji, H.; Yin, J.; Zhang, Y. Design, synthesis and biological evaluation of hydrogen sulfide releasing derivatives of 3-n-butylphthalide as potential antiplatelet and antithrombotic agents. Org. Biomol. Chem., 2014, 12(31), 5995-6004.
[http://dx.doi.org/10.1039/C4OB00830H] [PMID: 24988475]
[174]
Mokudai, T.; Ayoub, I.A.; Sakakibara, Y.; Lee, E.J.; Ogilvy, C.S.; Maynard, K.I. Delayed treatment with nicotinamide (Vitamin B(3)) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke, 2000, 31(7), 1679-1685.
[http://dx.doi.org/10.1161/01.STR.31.7.1679] [PMID: 10884473]
[175]
Corvino, A.; Citi, V.; Fiorino, F.; Frecentese, F.; Magli, E.; Perissutti, E.; Santagada, V.; Calderone, V.; Martelli, A.; Gorica, E.; Brogi, S.; Colombo, F.F.; Capello, C.N.; Araujo Ferreira, H.H.; Rimoli, M.G.; Sodano, F.; Rolando, B.; Pavese, F.; Petti, A.; Muscará, M.N.; Caliendo, G.; Severino, B. H2S donating corticosteroids: Design, synthesis and biological evaluation in a murine model of asthma. J. Adv. Res., 2022, 35, 267-277.
[http://dx.doi.org/10.1016/j.jare.2021.05.008] [PMID: 35024201]
[176]
Coletta, C.; Papapetropoulos, A.; Erdelyi, K.; Olah, G.; Módis, K.; Panopoulos, P.; Asimakopoulou, A.; Gerö, D.; Sharina, I.; Martin, E.; Szabo, C. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl. Acad. Sci. USA, 2012, 109(23), 9161-9166.
[http://dx.doi.org/10.1073/pnas.1202916109] [PMID: 22570497]
[177]
Zhu, C.; Liu, Q.; Li, X.; Wei, R.; Ge, T.; Zheng, X.; Li, B.; Liu, K.; Cui, R. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front. Endocrinol., 2022, 13, 934231.
[http://dx.doi.org/10.3389/fendo.2022.934231] [PMID: 36034427]
[178]
Sharma, R.; Joubert, J.; Malan, S.F. Recent developments in drug design of NO-donor hybrid compounds. Mini Rev. Med. Chem., 2018, 18(14), 1175-1198.
[http://dx.doi.org/10.2174/1389557518666180416150005] [PMID: 29663881]
[179]
Hu, Q.; Wu, D.; Ma, F.; Yang, S.; Tan, B.; Xin, H.; Gu, X.; Chen, X.; Chen, S.; Mao, Y.; Zhu, Y.Z. Novel angiogenic activity and molecular mechanisms of ZYZ-803, a slow-releasing hydrogen sulfide–nitric oxide hybrid molecule. Antioxid. Redox Signal., 2016, 25(8), 498-514.
[http://dx.doi.org/10.1089/ars.2015.6607] [PMID: 27174595]
[180]
Xiong, Y.; Chang, L.; Tran, B.; Dai, T.; Zhong, R.; Mao, Y.; Zhu, Y. ZYZ-803, a novel hydrogen sulfide-nitric oxide conjugated donor, promotes angiogenesis via cross-talk between STAT3 and CaMKII. Acta Pharmacol. Sin., 2020, 41(2), 218-228.
[http://dx.doi.org/10.1038/s41401-019-0255-3] [PMID: 31316179]
[181]
Devarie-Baez, N.O.; Bagdon, P.E.; Peng, B.; Zhao, Y.; Park, C.M.; Xian, M. Light-induced hydrogen sulfide release from “caged” gem-dithiols. Org. Lett., 2013, 15(11), 2786-2789.
[http://dx.doi.org/10.1021/ol401118k] [PMID: 23697786]
[182]
Lukeman, M.; Scaiano, J.C. Carbanion-mediated photocages: Rapid and efficient photorelease with aqueous compatibility. J. Am. Chem. Soc., 2005, 127(21), 7698-7699.
[http://dx.doi.org/10.1021/ja0517062] [PMID: 15913358]
[183]
Fukushima, N.; Ieda, N.; Sasakura, K.; Nagano, T.; Hanaoka, K.; Suzuki, T.; Miyata, N.; Nakagawa, H. Synthesis of a photocontrollable hydrogen sulfide donor using ketoprofenate photocages. Chem. Commun., 2014, 50(5), 587-589.
[http://dx.doi.org/10.1039/C3CC47421F] [PMID: 24280741]
[184]
Steiger, A.K.; Zhao, Y.; Pluth, M.D. Emerging roles of carbonyl sulfide in chemical biology: Sulfide transporter or gasotransmitter? Antioxid. Redox Signal., 2018, 28(16), 1516-1532.
[http://dx.doi.org/10.1089/ars.2017.7119] [PMID: 28443679]
[185]
Chengelis, C.P.; Neal, R.A. Studies of carbonyl sulfide toxicity: Metabolism by carbonic anhydrase. Toxicol. Appl. Pharmacol., 1980, 55(1), 198-202.
[http://dx.doi.org/10.1016/0041-008X(80)90236-7] [PMID: 6775392]
[186]
Levinn, C.M.; Cerda, M.M.; Pluth, M.D. Development and application of carbonyl sulfide-based donors for H2S delivery. Acc. Chem. Res., 2019, 52(9), 2723-2731.
[http://dx.doi.org/10.1021/acs.accounts.9b00315] [PMID: 31390174]
[187]
Zhao, Y.; Pluth, M.D. Hydrogen sulfide donors activated by reactive oxygen species. Angew. Chem. Int. Ed., 2016, 55(47), 14638-14642.
[http://dx.doi.org/10.1002/anie.201608052] [PMID: 27774732]
[188]
Zhao, Y.; Bolton, S.G.; Pluth, M.D. Light-activated COS/H2S Donation from photocaged thiocarbamates. Org. Lett., 2017, 19(9), 2278-2281.
[http://dx.doi.org/10.1021/acs.orglett.7b00808] [PMID: 28414240]
[189]
Sharma, A.K.; Nair, M.; Chauhan, P.; Gupta, K.; Saini, D.K.; Chakrapani, H. Visible-light-triggered uncaging of carbonyl sulfide for hydrogen sulfide (H2S) release. Org. Lett., 2017, 19(18), 4822-4825.
[http://dx.doi.org/10.1021/acs.orglett.7b02259] [PMID: 28872885]
[190]
Chauhan, P.; Bora, P.; Ravikumar, G.; Jos, S.; Chakrapani, H. Esterase activated carbonyl sulfide/hydrogen sulfide (H2S) donors. Org. Lett., 2017, 19(1), 62-65.
[http://dx.doi.org/10.1021/acs.orglett.6b03336] [PMID: 27996277]
[191]
Zhao, Y.; Steiger, A.K.; Pluth, M.D. Cysteine-activated hydrogen sulfide (H 2 S) delivery through caged carbonyl sulfide (COS) donor motifs. Chem. Commun., 2018, 54(39), 4951-4954.
[http://dx.doi.org/10.1039/C8CC02428F] [PMID: 29701221]
[192]
Guo, W.; Cheng, Z.; Zhu, Y. Hydrogen sulfide and translational medicine. Acta Pharmacol. Sin., 2013, 34(10), 1284-1291.
[http://dx.doi.org/10.1038/aps.2013.127] [PMID: 24096643]
[193]
Paul, B.D.; Snyder, S.H. H2S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol., 2012, 13(8), 499-507.
[http://dx.doi.org/10.1038/nrm3391] [PMID: 22781905]
[194]
Eto, K.; Asada, T.; Arima, K.; Makifuchi, T.; Kimura, H. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2002, 293(5), 1485-1488.
[http://dx.doi.org/10.1016/S0006-291X(02)00422-9] [PMID: 12054683]
[195]
Kamoun, P.; Belardinelli, M.C.; Chabli, A.; Lallouchi, K.; Chadefaux-Vekemans, B. Endogenous hydrogen sulfide overproduction in Down syndrome. Am. J. Med. Genet., 2003, 116A(3), 310-311.
[http://dx.doi.org/10.1002/ajmg.a.10847] [PMID: 12503113]
[196]
Yang, W.; Yang, G.; Jia, X.; Wu, L.; Wang, R. Activation of K ATP channels by H 2 S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol., 2005, 569(2), 519-531.
[http://dx.doi.org/10.1113/jphysiol.2005.097642] [PMID: 16179362]
[197]
Bezner, B.J.; Ryan, L.S.; Lippert, A.R. Reaction-Based Luminescent Probes for Reactive Sulfur, Oxygen, and Nitrogen Species: Analytical Techniques and Recent Progress. Anal. Chem., 2020, 92(1), 309-326.
[http://dx.doi.org/10.1021/acs.analchem.9b04990] [PMID: 31679337]
[198]
Pak, Y.L.; Li, J.; Ko, K.C.; Kim, G.; Lee, J.Y.; Yoon, J. Mitochondria-targeted reaction-based fluorescent probe for hydrogen sulfide. Anal. Chem., 2016, 88(10), 5476-5481.
[http://dx.doi.org/10.1021/acs.analchem.6b00956] [PMID: 27094621]
[199]
Li, Y.; Chu, T.S. DFT/TDDFT Study on the sensing mechanism of a fluorescent probe for hydrogen sulfide: excited state intramolecular proton transfer coupled twisted intramolecular charge transfer. J. Phys. Chem. A, 2017, 121(28), 5245-5256.
[http://dx.doi.org/10.1021/acs.jpca.7b02606] [PMID: 28650637]
[200]
Wu, Z.; Liang, D.; Tang, X. Visualizing hydrogen sulfide in mitochondria and lysosome of living cells and in tumors of living mice with positively charged fluorescent chemosensors. Anal. Chem., 2016, 88(18), 9213-9218.
[http://dx.doi.org/10.1021/acs.analchem.6b02459] [PMID: 27537069]
[201]
Peng, H.; Cheng, Y.; Dai, C.; King, A.L.; Predmore, B.L.; Lefer, D.J.; Wang, B. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew. Chem. Int. Ed., 2011, 50(41), 9672-9675.
[http://dx.doi.org/10.1002/anie.201104236] [PMID: 21882324]
[202]
Fu, Y.J.; Yao, H.W.; Zhu, X.Y.; Guo, X.F.; Wang, H. A cell surface specific two-photon fluorescent probe for monitoring intercellular transmission of hydrogen sulfide. Anal. Chim. Acta, 2017, 994, 1-9.
[http://dx.doi.org/10.1016/j.aca.2017.09.030] [PMID: 29126463]
[203]
Chen, J.P.; Duan, Y.M.; Zheng, W.J.; Zhang, Q.; Zong, Q.; Chen, S.; Wang, K.P.; Hu, Z.Q. Perylenequinone-based “turn on” fluorescent probe for hydrogen sulfide with high sensitivity in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 218, 206-212.
[http://dx.doi.org/10.1016/j.saa.2019.03.112] [PMID: 30995578]
[204]
Zhang, X.; Hu, Q.; Xia, T.; Zhang, J.; Yang, Y.; Cui, Y.; Chen, B.; Qian, G. Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal–organic frameworks. ACS Appl. Mater. Interfaces, 2016, 8(47), 32259-32265.
[http://dx.doi.org/10.1021/acsami.6b12118] [PMID: 27933828]
[205]
Yao, Y.; Delgado-Rivera, L.; Samareh Afsari, H.; Yin, L.; Thatcher, G.R.J.; Moore, T.W.; Miller, L.W. Time-gated luminescence detection of enzymatically produced hydrogen sulfide: Design, synthesis, and application of a lanthanide-based probe. Inorg. Chem., 2018, 57(2), 681-688.
[http://dx.doi.org/10.1021/acs.inorgchem.7b02533] [PMID: 29281273]
[206]
Yu, L.; Wang, S.; Huang, K.; Liu, Z.; Gao, F.; Zeng, W. Fluorescent probes for dual and multi analyte detection. Tetrahedron, 2015, 71(29), 4679-4706.
[http://dx.doi.org/10.1016/j.tet.2015.04.115]
[207]
Komatsu, H.; Miki, T.; Citterio, D.; Kubota, T.; Shindo, Y.; Kitamura, Y.; Oka, K.; Suzuki, K. Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging. J. Am. Chem. Soc., 2005, 127(31), 10798-10799.
[http://dx.doi.org/10.1021/ja0528228] [PMID: 16076163]
[208]
Lv, Y.; Zhu, L.; Liu, H.; Wu, Y.; Chen, Z.; Fu, H.; Tian, Z. Single-fluorophore-based fluorescent probes enable dual-channel detection of Ag+ and Hg2+ with high selectivity and sensitivity. Anal. Chim. Acta, 2014, 839, 74-82.
[http://dx.doi.org/10.1016/j.aca.2014.06.010] [PMID: 25066721]
[209]
Dai, C.G.; Liu, X.L.; Du, X.J.; Zhang, Y.; Song, Q.H. Two-input fluorescent probe for thiols and hydrogen sulfide chemosensing and live cell imaging. ACS Sens., 2016, 1(7), 888-895.
[http://dx.doi.org/10.1021/acssensors.6b00291]
[210]
Yang, L.; Su, Y.; Geng, Y.; Zhang, Y.; Ren, X.; He, L.; Song, X. A triple-emission fluorescent probe for discriminatory detection of cysteine/homocysteine, glutathione/hydrogen sulfide, and thiophenol in living cells. ACS Sens., 2018, 3(9), 1863-1869.
[http://dx.doi.org/10.1021/acssensors.8b00685] [PMID: 30132654]
[211]
Howes, P.D.; Chandrawati, R.; Stevens, M.M. Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346(6205), 1247390.
[http://dx.doi.org/10.1126/science.1247390] [PMID: 25278614]
[212]
Zhang, Y.; Shen, H.Y.; Hai, X.; Chen, X.W.; Wang, J.H. Polyhedral oligomeric silsesquioxane polymer-caged silver nanoparticle as a smart colorimetric probe for the detection of hydrogen sulfide. Anal. Chem., 2017, 89(2), 1346-1352.
[http://dx.doi.org/10.1021/acs.analchem.6b04407] [PMID: 27936700]
[213]
Wang, P. Lux, L.; Jin, M.; Wan, Y.; Wang, W.; Hung, C.T.; Albaqami, F.H.; El-Toni, A.M.; Alhoshan, M.S.; Li, X.; Zhang, F. Au/Ag nanobox-based near-infrared surface-enhanced Raman scattering for hydrogen sulfide sensing. ACS Appl. Bio Mater., 2019, 2(1), 417-423.
[http://dx.doi.org/10.1021/acsabm.8b00634] [PMID: 35016304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy