Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Proteins in Complement, Immune, and Clotting Cascades and their Role in Preterm Births

Author(s): Shubham Thakur and Subheet Kumar Jain*

Volume 24, Issue 5, 2023

Published on: 15 May, 2023

Page: [423 - 435] Pages: 13

DOI: 10.2174/1389203724666230427112149

Price: $65

Abstract

Preterm birth (PTB) (< 37 completed weeks gestation) is a pathological outcome of pregnancy and its associated complications are the leading global cause of death in children younger than 5 years of age. Babies born prematurely have an elevated risk for short- and long-term adverse effects of medical and neurodevelopmental sequelae. Substantial evidence suggests that multiple sets of symptoms are allied with PTB etiology, and the exact mechanism cannot be recognized. Notably, various proteins, especially (i) complement cascade; (ii) immune system; and (iii) clotting cascade, have become attractive research targets that are associated with PTB. Further, a small imbalance of these proteins in maternal or foetal circulation could serve as a marker/precursor in a series of events that lead to PTBs. Thus, the present review lightens the basic description of the circulating proteins, their role in PTB, and current concepts for future development. Further, deepening the research on these proteins will lead to a better understanding of PTB etiology and alleviate scientists' confidence in the early identification of PTB mechanisms and biological markers.

Graphical Abstract

[1]
Centers for Disease Control and Prevention. Premature Birth., 2023. Available from: https://www.cdc.gov/reproductivehealth/features/premature-birth/index.html [Accessed on: Mar 1 2023]
[2]
Preterm birth. Available from: https://www.who.int/news-room/fact-sheets/detail/preterm-birth [Accessed on: Oct 3 2022].
[3]
Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; Lawn, J.E. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet, 2012, 379(9832), 2162-2172.
[http://dx.doi.org/10.1016/S0140-6736(12)60820-4] [PMID: 22682464]
[4]
World Health Organization. Newborn health: Preterm babies. 2023. Available from: https://www.who.int/news-room/questions-and-answers/item/newborn-health-preterm-babies [Accessed on: Mar 4 2023].
[5]
Thakur, S.; Kaur, A.P.; Singh, K.; Kaur, R.; Kaur, M.; Jain, S.K. Reference range of plasma fatty acids in North Indian pregnant population. Indian J. Clin. Biochem., 2022, 1-9.
[http://dx.doi.org/10.1007/s12291-022-01071-7]
[6]
Girardi, G; Lingo, JJ; Fleming, SD; Regal, JF Essential role of complement in pregnancy: From implantation to parturition and beyond. Front. Immunol., 2020, 11, 1681.
[7]
Goldstein, J.A.; Gallagher, K.; Beck, C.; Kumar, R.; Gernand, A.D. Maternal-fetal inflammation in the placenta and the developmental origins of health and disease. Front. Immunol., 2020, 11, 531543.
[http://dx.doi.org/10.3389/fimmu.2020.531543] [PMID: 33281808]
[8]
Galindo-Sevilla, N.; Reyes-Arroyo, F.; Mancilla-Ramírez, J. The role of complement in preterm birth and prematurity. J. Perinat. Med., 2019, 47(8), 793-803.
[http://dx.doi.org/10.1515/jpm-2019-0175] [PMID: 31494635]
[9]
Morelli, S.; Mandal, M.; Goldsmith, L.T.; Kashani, B.N.; Ponzio, N.M. The maternal immune system during pregnancy and its influence on fetal development. Res. Rep. Biol., 2015, 6, 171-189.
[http://dx.doi.org/10.2147/RRB.S80652]
[10]
Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev., 2009, 22(2), 240-273.
[http://dx.doi.org/10.1128/CMR.00046-08]
[11]
Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol., 2018, 391, 391-412.
[12]
Klaitman, V.; Beer-Wiesel, R.; Rafaeli, T.; Mazor, M.; Erez, O.; Klaitman, V. The Role of the Coagulation System in Preterm Parturition. 2013. Available from: https://www.intechopen.com/state.item.id [Acessed on: Oct 3 2022].
[http://dx.doi.org/10.5772/54843]
[13]
Frey, H.A.; Stout, M.J.; Pearson, L.N.; Tuuli, M.G.; Cahill, A.G.; Strauss, J.F. Genetic variation associated with preterm birth in African-American women. Am. J. Obstet. Gynecol., 2016, 215(2), 235.
[http://dx.doi.org/10.1016/j.ajog.2016.03.008]
[14]
Ghanaie, M.M.; Afzali, S.A.; Morady, A.; Ghanaie, R.M.; Ghalebin, S.M.A.; Rafiei, E. Intrauterine growth restriction with and without pre-eclampsia: Pregnancy outcome and placental findings. J. Obstetrics, Gynecol. Cancer Research (JOGCR), 2022, 7(3), 177-185.
[15]
Lamont, R.F.; Jørgensen, J.S. Safety and Efficacy of Tocolytics for the Treatment of Spontaneous Preterm Labour. Curr. Pharm. Des., 2019, 25(5), 577-592.
[http://dx.doi.org/10.2174/1381612825666190329124214] [PMID: 30931850]
[16]
Sibai, B.; Saade, G.R.; Das, A.F.; Gudeman, J. Safety review of hydroxyprogesterone caproate in women with a history of spontaneous preterm birth. J. Perinatol., 2021, 41(4), 718-725.
[http://dx.doi.org/10.1038/s41372-020-00849-y]
[17]
Rood, K.M.; Buhimschi, C.S. Genetics, hormonal influences, and preterm birth. Semin. Perinatol., 2017, 41(7), 401-408.
[http://dx.doi.org/10.1053/j.semperi.2017.07.011] [PMID: 28886866]
[18]
Sheikh, I.A.; Ahmad, E.; Jamal, M.S.; Rehan, M.; Assidi, M.; Tayubi, I.A. Spontaneous preterm birth and single nucleotide gene polymorphisms: A recent update. BMC Genomics, 2016, 17(9), 39-50.
[http://dx.doi.org/10.1186/s12864-016-3089-0]
[19]
Wadon, M; Modi, N; Wong, HS; Thapar, A; O’Donovan, MC Recent advances in the genetics of preterm birth. Ann. Hum. Genet., 2020, 84(3), 205-213.
[http://dx.doi.org/10.1111/ahg.12373]
[20]
Gonçalves, L.F.; Chaiworapongsa, T.; Romero, R. Intrauterine infection and prematurity. Ment. Retard. Dev. Disabil. Res. Rev., 2002, 8(1), 3-13.
[http://dx.doi.org/10.1002/mrdd.10008] [PMID: 11921380]
[21]
Gelaye, B.; Kirschbaum, C.; Zhong, Q.Y.; Sanchez, S.E.; Rondon, M.B.; Koenen, K.C.; Williams, M.A. Chronic HPA activity in mothers with preterm delivery: A pilot nested case-control study. J. Neonatal Perinatal Med., 2020, 13(3), 313-321.
[http://dx.doi.org/10.3233/NPM-180139] [PMID: 31744018]
[22]
Schatz, F.; Guzeloglu-Kayisli, O.; Arlier, S.; Kayisli, U.A.; Lockwood, C.J. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum. Reprod. Update, 2016, 22(4), 497-515.
[http://dx.doi.org/10.1093/humupd/dmw004] [PMID: 26912000]
[23]
European Medical. Uterine Overdistension-Preterm Birth. 2023. Available from: https://www.europeanmedical.info/preterm-birth/uterine-overdistension.html [Accessed on: Mar 4 2023].
[24]
Garred, P; Tenner, AJ; Mollnes, TE Therapeutic targeting of the complement system: from rare diseases to pandemics. Pharmacol. Rev., 2021, 73(2), 792.
[25]
Heesterbeek, D.A.C.; Angelier, M.L.; Harrison, R.A.; Rooijakkers, S.H.M. Complement and bacterial infections: From molecular mechanisms to therapeutic applications. J. Innate Immun., 2018, 10(5-6), 455-464.
[http://dx.doi.org/10.1159/000491439] [PMID: 30149378]
[26]
Charles, A.; Janeway, J.; Travers, P.; Walport, M.; Shlomchik, M.J. The complement system and innate immunity 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27100/ [Accessed on: Oct 4 2022].
[27]
Killick, J.; Morisse, G.; Sieger, D.; Astier, A.L. Complement as a regulator of adaptive immunity. Semin. Immunopathol., 2018, 40(1), 37-48.
[http://dx.doi.org/10.1007/s00281-017-0644-y] [PMID: 28842749]
[28]
Deshmukh, H.; Way, S.S. Immunological basis for recurrent fetal loss and pregnancy complications. Annu. Rev. Pathol., 2019, 14, 185-210.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012743]
[29]
Abu-Raya, B.; Michalski, C.; Sadarangani, M.; Lavoie, P.M. Maternal immunological adaptation during normal pregnancy. Front. Immunol., 2020, 11, 575197.
[http://dx.doi.org/10.3389/fimmu.2020.575197] [PMID: 33133091]
[30]
Bulla, R.; Bossi, F.; Tedesco, F. The complement system at the embryo implantation site: Friend or foe? Front. Immunol., 2012, 3, 55.
[31]
Cho, HY; Park, HS; Ko, EJ; Ryu, CS; Kim, JO Kim, YR Association of complement Factor D and H polymorphisms with recurrent pregnancy loss. Int. J. Mol. Sci., 2020, 21(1), 17.
[32]
Geller, A.; Yan, J. The role of membrane bound complement regulatory proteins in tumor development and cancer immunotherapy. Front. Immunol., 2019, 10, 1074.
[http://dx.doi.org/10.3389/fimmu.2019.01074] [PMID: 31164885]
[33]
Xu, C.; Mao, D.; Holers, V.M.; Palanca, B.; Cheng, A.M.; Molina, H. A critical role for murine complement regulator Crry in fetomaternal tolerance. Science (1979), 2000, 287(5452), 498-501.
[34]
Chighizola, CB; Lonati, PA; Trespidi, L; Meroni, PL; Tedesco, F The complement system in the pathophysiology of pregnancy and in systemic autoimmune rheumatic diseases during pregnancy. Front. Immunol., 2020, 11, 2084.
[http://dx.doi.org/10.3389/fimmu.2020.02084]
[35]
Gonzalez, J.M.; Dong, Z.; Romero, R.; Girardi, G. Cervical remodeling/ripening at term and preterm delivery: The same mechanism initiated by different mediators and different effector cells. PLoS One, 2011, 6(11), e26877.
[http://dx.doi.org/10.1371/journal.pone.0026877] [PMID: 22073213]
[36]
Gonzalez, J.; Franzke, C.; Yang, F. Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice. The American J. Pathol., 2011, 179(2), 838-849.
[37]
Yellon, S.M. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol. Reprod., 2017, 96(1), 13.
[http://dx.doi.org/10.1095/biolreprod.116.142844]
[38]
Mogami, H.; Kishore, A.H.; Word, R.A. Collagen type 1 accelerates healing of ruptured fetal membranes. Sci. Rep., 2018, 8(1), 696.
[39]
Nikolov, A.; Popovski, N. Role of gelatinases MMP-2 and MMP-9 in healthy and complicated pregnancy and their future potential as preeclampsia biomarkers. Diagnostics, 2021, 11(3), 480.
[40]
Lynch, A.M.; Gibbs, R.S.; Murphy, J.R.; Byers, T.; Neville, M.C.; Giclas, P.C. Complement activation fragment Bb in early pregnancy and spontaneous preterm birth. Am. J. Obstet. Gynecol., 2008, 199(4), 354.
[http://dx.doi.org/10.1016/j.ajog.2008.07.044]
[41]
Lynch, A.; Gibbs, R.; Murphy, J. Early elevations of the complement activation fragment C3a and adverse pregnancy outcomes. Obstet. Gynecol., 2011, 117(1), 75-83.
[42]
Vaisbuch, E.; Romero, R.; Erez, O.; Mazaki-Tovi, S.; Kusanovic, J.P.; Soto, E. Activation of the alternative pathway of complement is a feature of pre-term parturition but not of spontaneous labor at term. Am. J. Reprod. Immunol., 2010, 63(4), 318-330.
[43]
Hromadnikova, I.; Kotlabova, K. First trimester prediction of preterm delivery in the absence of other pregnancy-related complications using cardiovascular-disease associated MicroRNA biomarkers. Int. J. Mol. Sci., 2022, 23(7), 3951.
[44]
Soto, E.; Romero, R.; Richani, K.; Yoon, B.H.; Chaiworapongsa, T.; Vaisbuch, E. Evidence for complement activation in the amniotic fluid of women with spontaneous preterm labor and intra-amniotic infection. J. Matern. Fetal Neonatal Med., 2009, 22(11), 983.
[45]
Garcia-Flores, V.; Romero, R.; Xu, Y.; Theis, K.R.; Arenas-Hernandez, M.; Miller, D. Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2. Nat. Commun., 2022, 13(1), 1-20.
[46]
Yang, F.; Zheng, Q.; Jin, L. Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternal-fetal interface. Front. Immunol., 2019, 10, 2317.
[http://dx.doi.org/10.3389/fimmu.2019.02317] [PMID: 31681264]
[47]
Sharp, A.N.; Heazell, A.E.P.; Crocker, I.P.; Mor, G. Placental apoptosis in health and disease. Am. J. Reprod. Immunol., 2010, 64(3), 159-169.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00837.x]
[48]
Robinson, D.P.; Klein, S.L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav., 2012, 62(3), 263.
[http://dx.doi.org/10.1016/j.yhbeh.2012.02.023]
[49]
Meyyazhagan, A.; Bhotla, H.K.; Pappuswamy, M.; Tsibizova, V.; al Qasem, M.; di Renzo, G.C. Cytokine see-saw across pregnancy, its related complexities and consequences. Int. J. Gynaecol. Obstet., 2023, 160(2), 516-525.
[50]
Padron, J.G.; Saito Reis, C.A.; Kendal-Wright, C.E. The role of danger associated molecular patterns in human fetal membrane weakening. Front. Physiol., 2020, 11, 602.
[http://dx.doi.org/10.3389/fphys.2020.00602]
[51]
Wahid, H.H.; Dorian, C.L.; Chin, P.Y.; Hutchinson, M.R.; Rice, K.C.; Olson, D.M. Toll-like receptor 4 is an essential upstream regulator of on-time parturition and perinatal viability in mice. Endocrinology, 2015, 156(10), 3828-3841.
[http://dx.doi.org/10.1210/en.2015-1089]
[52]
Romero, R.; Miranda, J.; Chaemsaithong, P.; Chaiworapongsa, T.; Kusanovic, J.P.; Dong, Z. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med., 2015, 28(12), 1394.
[53]
Areia, A.L.; Moura, P.; Mota-Pinto, A. The role of innate immunity in spontaneous preterm labor: A systematic review. J. Reprod. Immunol., 2019, 136, 102616.
[http://dx.doi.org/10.1016/j.jri.2019.102616] [PMID: 31581042]
[54]
Dunn, A.J. The HPA Axis and the Immune System. NeuroImmune Biology, 2007, 7(C), 3-15.
[http://dx.doi.org/10.1016/S1567-7443(07)00201-3]
[55]
Gómez-Chávez, F. Correa, D; Navarrete-Meneses, P; Cancino-Diaz, JC; Cancino-Diaz, ME; Rodríguez-Martínez, S. NF-κB and its regulators during pregnancy. Front. Immunol., 2021, 12, 679106.
[56]
Laresgoiti-Servitje, E. A leading role for the immune system in the pathophysiology of preeclampsia. J. Leukoc. Biol., 2013, 94(2), 247-257.
[http://dx.doi.org/10.1189/jlb.1112603] [PMID: 23633414]
[57]
Han, C.; Han, L.; Huang, P.; Chen, Y.; Wang, Y.; Xue, F. Syncytiotrophoblast-derived extracellular vesicles in pathophysiology of preeclampsia. Front. Physiol., 2019, 10, 1236.
[http://dx.doi.org/10.3389/fphys.2019.01236]
[58]
Piccinni, M.P.; Scaletti, C.; Mavilia, C.; Lazzeri, E.; Romagnani, P. Natali, I Production of IL-4 and leukemia inhibitory factor by T cells of the cumulus oophorus: A favorable microenvironment for pre-implantation embryo development. Eur. J. Immunol., 2001, 31(8), 2431-2437.
[59]
Ribeiro, V.R.; Romao-Veiga, M.; Romagnoli, G.G.; Matias, M.L.; Nunes, P.R.; Borges, V.T.M. Association between cytokine profile and transcription factors produced by T-cell subsets in early- and late-onset pre-eclampsia. Immunology, 2017, 152(1), 163.
[60]
Cerdeira, A.S.; Kopcow, H.D.; Karumanchi, S.A. Regulatory T cells in preeclampsia: Some answers, more questions? Am. J. Pathol., 2012, 181(6), 1900.
[61]
Smith, S.A.; Travers, R.J.; Morrissey, J.H. How it all starts: Initiation of the clotting cascade. Crit. Rev. Biochem. Mol. Biol., 2015, 50(4), 326.
[http://dx.doi.org/10.3109/10409238.2015.1050550]
[62]
Wang, Y.; Zhao, S. Placental Blood Circulation. 2010. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53254/ [Accessed on: Oct 5, 2022].
[63]
Hellgren, M. Hemostasis during normal pregnancy and puerperium. Semin. Thromb. Hemost., 2003, 29(2), 125-130.
[http://dx.doi.org/10.1055/s-2003-38897] [PMID: 12709915]
[64]
Brenner, B. Haemostatic changes in pregnancy. Thromb. Res., 2004, 114(5-6), 409-414.
[http://dx.doi.org/10.1016/j.thromres.2004.08.004] [PMID: 15507271]
[65]
Mastrolia, S.A.; Mazor, M.; Loverro, G.; Klaitman, V.; Erez, O. Placental vascular pathology and increased thrombin generation as mechanisms of disease in obstetrical syndromes. PeerJ, 2014, 2(1)
[http://dx.doi.org/10.7717/peerj.653]
[66]
Kelly-robinson, G.A.; Reihill, J.A.; Lundy, F.T.; McGarvey, L.P.; Lockhart, J.C.; Litherland, G.J. The serpin superfamily and their role in the regulation and dysfunction of serine protease activity in COPD and other chronic lung diseases. Int. J. Molecular Sci., 2021, 22(12), 6351.
[http://dx.doi.org/10.3390/ijms22126351]
[67]
Comp, P.C.; Thurnau, G.R.; Welsh, J.; Esmon, C.T. Functional and immunologic protein S levels are decreased during pregnancy. Blood, 1986, 68(4), 881-885.
[http://dx.doi.org/10.1182/blood.V68.4.881.881] [PMID: 2944555]
[68]
Faramarzi, S.; Kayisli, U.A.; Kayisli, O.; Basar, M.; Shapiro, J.; Semerci, N. Decidual cell expressed tissue factor promotes endometrial hemostasis while mediating abruption associated preterm birth. Adv. Reprod. Sci., 2013, 1(3)
[http://dx.doi.org/10.4236/arsci.2013.13007]
[69]
Salafia, C.M.; Vogel, C.A.; Vintzileos, A.M.; Bantham, K.F.; Pezzullo, J.; Silberman, L. Placental pathologic findings in preterm birth. Am. J. Obstet. Gynecol., 1991, 165(4), 934-938.
[http://dx.doi.org/10.1016/0002-9378(91)90443-U] [PMID: 1951558]
[70]
Gualdoni, G.S.; Jacobo, P.V.; Barril, C.; Ventureira, M.R.; Cebral, E. Early Abnormal Placentation and Evidence of Vascular Endothelial Growth Factor System Dysregulation at the Feto-Maternal Interface After Periconceptional Alcohol Consumption. Front. Physiol., 2022, 12, 815760.
[http://dx.doi.org/10.3389/fphys.2021.815760] [PMID: 35185604]
[71]
Catov, J.M.; Bodnar, L.M.; Hackney, D.; Roberts, J.M.; Simhan, H.N. Activation of the fibrinolytic cascade early in pregnancy among women with spontaneous preterm birth. Obstet. Gynecol., 2008, 112(5), 1116-1122.
[http://dx.doi.org/10.1097/AOG.0b013e31818aa5b5] [PMID: 18978114]
[72]
Hidalgo-Lopezosa, P.; Jiménez-Ruz, A.; Carmona-Torres, J.M.; Hidalgo-Maestre, M.; Rodríguez-Borrego, M.A.; López-Soto, P.J. Sociodemographic factors associated with preterm birth and low birth weight: A cross-sectional study. Women Birth, 2019, 32(6), e538-e543.
[http://dx.doi.org/10.1016/j.wombi.2019.03.014] [PMID: 30979615]
[73]
Tocolysis for Preterm Labor. Available from: https://clinicaltrials. gov/ct2/show/NCT00811057 [Accessed on: Oct 5 2022].
[74]
Mayer, C.; Apodaca-Ramos, I. Tocolysis. In: StatPearls; , 2022. Available from:https://www.ncbi.nlm.nih.gov/books/NBK562212/ [Accessed on: Oct 5 2022].
[75]
Alfirevic, Z.; Keeney, E.; Dowswell, T.; Welton, NJ.; Dias, S. Labour induction with prostaglandins: A systematic review and network meta-analysis. BMJ, 2015, 350.
[76]
Haas, D.M.; Caldwell, D.M.; Kirkpatrick, P.; McIntosh, J.J.; Welton, N.J. Tocolytic therapy for preterm delivery: systematic review and network meta-analysis. BMJ, 2012, 345(oct09 2), e6226.
[http://dx.doi.org/10.1136/bmj.e6226] [PMID: 23048010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy