Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Experimental and Theoretical Study of Biosurfactants Functionalized Gold Nanoparticles for Mixture Detection and Chiral Recognition of Tryptophan by UV-VIS Spectroscopy

Author(s): Xiangzong Wu, Yanxia Li, Yiting Chen, Zhenli Qiu and Lu Huang*

Volume 19, Issue 5, 2023

Published on: 08 May, 2023

Page: [432 - 440] Pages: 9

DOI: 10.2174/1573412919666230427110327

Price: $65

Abstract

Background: Tryptophan (Trp) is an essential amino acid and plays important roles in biological processes. The detection of Trp is very important for its biological and chemical study. Moreover, Trp is a chiral compound; due to its importance in biological processes, researchers have been long committed to the chiral recognition and sensing of Trp enantiomers.

Methods: Two biosurfactants, sodium cholate and sodium deoxycholate, were used for the preparation of functionalized gold nanoparticles (AuNPs) which were characterized by transmission electron microscope and potentiometer. UV-Vis spectra of functionalized gold nanoparticle solutions with different concentrations of Trp, tyrosine, phenylalanine, D-Trp, and L-Trp were analyzed. Then, the discrimination mechanism was further investigated, and the promotion mechanism of biosurfactants was studied by density functional theory (DFT).

Results: Trp could induce the aggregation of unmodified AuNPs in 2 h, while phenylalanine and tyrosine could not. Adding biosurfactants promoted the aggregation process, and D- Trp rather than LTrp was found to be responsible for the aggregation. Therefore, there were interaction differences not only between Trp, phenylalanine, and tyrosine but also between Trp enantiomers.

Conclusion: UV-vis spectroscopy could be applied for the direct detection of Trp in mixtures as well as the chiral recognition of Trp enantiomers. DFT calculations proved that the interactions of D-Trp with biosurfactants were the strongest, which contributes to the promotion of aggregation.

« Previous
Graphical Abstract

[1]
Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov., 2019, 18(5), 379-401.
[http://dx.doi.org/10.1038/s41573-019-0016-5] [PMID: 30760888]
[2]
Zhong, Y.F.; Bao, G.M.; Xia, Y.F.; Peng, X.X.; Peng, J.F.; He, J.X.; Lin, S.; Zeng, L.; Fan, Q.; Xiao, W.; Yuan, H.Q. Recyclable europium functionalized metal-organic fluorescent probe for detection of tryptophan in biological fluids and food products. Anal. Chim. Acta, 2021, 1180, 338897.
[http://dx.doi.org/10.1016/j.aca.2021.338897] [PMID: 34538312]
[3]
Whiley, L.; Nye, L.C.; Grant, I.; Andreas, N.; Chappell, K.E.; Sarafian, M.H.; Misra, R.; Plumb, R.S.; Lewis, M.R.; Nicholson, J.K.; Holmes, E.; Swann, J.R.; Wilson, I.D. Ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionization quantification of tryptophan metabolites and markers of gut health in serum and plasma—application to clinical and epidemiology cohorts. Anal. Chem., 2019, 91(8), 5207-5216.
[http://dx.doi.org/10.1021/acs.analchem.8b05884] [PMID: 30848589]
[4]
Wang, Y.; Li, S.; Zhang, L.; Qi, S.; Guan, H.; Liu, W.; Cheng, X.; Liu, L.; Cheng, L.; Wang, C. Chemical fingerprint analysis and simultaneous determination of nucleosides and amino acids in kang fu xin liquid by high performance liquid chromatography with diode array detector. Curr. Pharm. Anal., 2020, 16(7), 831-843.
[http://dx.doi.org/10.2174/1573412915666190328215231]
[5]
Perquis, L.; Ta, H.Y.; Ong-Meang, V.; Poinso, A.; Collin, F.; Poinsot, V.; Couderc, F. Capillary electrophoresis/visible‐LED induced fluorescence of tryptophan: What’s new? Electrophoresis, 2019, 40(18-19), elps.201900058.
[http://dx.doi.org/10.1002/elps.201900058] [PMID: 31162686]
[6]
Murugan, E.; Kumar, K. Fabrication of SnS/TiO2@ GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal. Chem., 2019, 91(9), 5667-5676.
[http://dx.doi.org/10.1021/acs.analchem.8b05531] [PMID: 30946567]
[7]
Deng, K.; Chen, S.; Song, H. Chiral recognition of tryptophan enantiomers with UV–Vis spectrophotometry approach by using L-cysteine modified ZnFe2O4 nanoparticles in the presence of Cu2+. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 270, 120847.
[http://dx.doi.org/10.1016/j.saa.2021.120847] [PMID: 35016061]
[8]
Fahimi-Kashani, N.; Jafar-Nezhad Ivrigh, Z.; Bigdeli, A.; Hormozi-Nezhad, M.R. Visual recognition of tryptophan enantiomers using chiral self assemblies of quantum dots. ACS Appl. Nano Mater., 2022, 5(1), 1460-1471.
[http://dx.doi.org/10.1021/acsanm.1c02928]
[9]
Li, H.; Wang, L.; Yan, S.; Chen, J.; Zhang, M.; Zhao, R.; Niu, X.; Wang, K. Fusiform-like metal-organic framework for enantioselective discrimination of tryptophan enantiomers. Electrochim. Acta, 2022, 419, 140409.
[http://dx.doi.org/10.1016/j.electacta.2022.140409]
[10]
Santos, P.J.; Gabrys, P.A.; Zornberg, L.Z.; Lee, M.S.; Macfarlane, R.J. Macroscopic materials assembled from nanoparticle superlattices. Nature, 2021, 591(7851), 586-591.
[http://dx.doi.org/10.1038/s41586-021-03355-z] [PMID: 33762767]
[11]
Yang, C.L.; Wang, L.N.; Yin, P.; Liu, J.; Chen, M.X.; Yan, Q.Q.; Wang, Z.S.; Xu, S.L.; Chu, S.Q.; Cui, C.; Ju, H.; Zhu, J.; Lin, Y.; Shui, J.; Liang, H.W. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science, 2021, 374(6566), 459-464.
[http://dx.doi.org/10.1126/science.abj9980] [PMID: 34672731]
[12]
Esim, O.; Hascicek, C. Albumin-based Nanoparticles as Promising Drug Delivery Systems for Cancer Treatment. Curr. Pharm. Anal., 2021, 17(3), 346-359.
[http://dx.doi.org/10.2174/1573412916999200421142008]
[13]
Topal, B.D.; Sener, C.E.; Kaya, B.; Ozkan, S.A. Nano-sized metal and metal oxide modified electrodes for pharmaceuticals analysis. Curr. Pharm. Anal., 2021, 17(3), 421-436.
[http://dx.doi.org/10.2174/1573412916999200513110313]
[14]
Nguyen, V.P.; Qian, W.; Li, Y.; Liu, B.; Aaberg, M.; Henry, J.; Zhang, W.; Wang, X.; Paulus, Y.M. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat. Commun., 2021, 12(1), 34.
[http://dx.doi.org/10.1038/s41467-020-20276-z] [PMID: 33397947]
[15]
Wang, H.; Wang, L.; Lin, D.; Feng, X.; Niu, Y.; Zhang, B.; Xiao, F.S. Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat. Catal., 2021, 4(5), 418-424.
[http://dx.doi.org/10.1038/s41929-021-00611-3]
[16]
Xue, C.; Hu, S.; Gao, Z.H.; Wang, L.; Luo, M.X.; Yu, X.; Li, B.F.; Shen, Z.; Wu, Z.S. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted delivery of siRNAs. Nat. Commun., 2021, 12(1), 2928.
[http://dx.doi.org/10.1038/s41467-021-23250-5] [PMID: 34006888]
[17]
Bagheri, N.; Mazzaracchio, V.; Cinti, S.; Colozza, N.; Di Natale, C.; Netti, P.A.; Saraji, M.; Roggero, S.; Moscone, D.; Arduini, F. Electroanalytical sensor based on gold-nanoparticle-decorated paper for sensitive detection of copper ions in sweat and serum. Anal. Chem., 2021, 93(12), 5225-5233.
[http://dx.doi.org/10.1021/acs.analchem.0c05469] [PMID: 33739824]
[18]
Deng, Z.; Jin, W.; Yin, Q.; Huang, J.; Huang, Z.; Fu, H.; Yuan, Y.; Zou, J.; Nie, J.; Zhang, Y. Ultrasensitive visual detection of Hg 2+ ions via the Tyndall effect of gold nanoparticles. Chem. Commun. (Camb.), 2021, 57(21), 2613-2616.
[http://dx.doi.org/10.1039/D0CC08003A] [PMID: 33621285]
[19]
Xi, S.S.; Sun, Y.Y.; Wang, Z.W.; Liu, Y.; Liu, H.; Chen, X. Electrochemical Determination of 2,4,6-Trinitrotoluene by Linear Sweep Voltammetry Using a Gold Nanoparticle/Mesoporous Graphitic Carbon Nitride Modified Glassy Carbon Electrode. Anal. Lett., 2022, 55(17), 2683-2696.
[http://dx.doi.org/10.1080/00032719.2022.2068565]
[20]
Zahra, Q.A.; Luo, Z.; Ali, R.; Khan, M.I.; Li, F.; Qiu, B. Advances in gold nanoparticles-based colorimetric aptasensors for the detection of antibiotics: An overview of the past decade. Nanomaterials, 2021, 11(4), 840.
[http://dx.doi.org/10.3390/nano11040840] [PMID: 33806173]
[21]
Li, L.; Lin, D.; Yang, F.; Xiao, Y.; Yang, L.; Yu, S.; Jiang, C. Gold nanoparticle-based peroxyoxalate chemiluminescence system for highly sensitive and rapid detection of thiram pesticides. ACS Appl. Nano Mater., 2021, 4(4), 3932-3939.
[http://dx.doi.org/10.1021/acsanm.1c00305]
[22]
Zhang, Y.; Chen, M.; Liu, C.; Chen, J.; Luo, X.; Xue, Y.; Liang, Q.; Zhou, L.; Tao, Y.; Li, M.; Wang, D.; Zhou, J.; Wang, J. Sensitive and rapid on-site detection of SARS-CoV-2 using a gold nanoparticle-based high-throughput platform coupled with CRISPR/Cas12-assisted RT-LAMP. Sens. Actuators B Chem., 2021, 345, 130411.
[http://dx.doi.org/10.1016/j.snb.2021.130411] [PMID: 34248284]
[23]
Lew, T.T.S.; Aung, K.M.M.; Ow, S.Y.; Amrun, S.N.; Sutarlie, L.; Ng, L.F.P.; Su, X. Epitope-functionalized gold nanoparticles for rapid and selective detection of SARS-CoV-2 IgG antibodies. ACS Nano, 2021, 15(7), 12286-12297.
[http://dx.doi.org/10.1021/acsnano.1c04091] [PMID: 34133128]
[24]
Pinheiro, T.; Marques, A.C.; Carvalho, P.; Martins, R.; Fortunato, E. Paper microfluidics and tailored gold nanoparticles for nonenzymatic, colorimetric multiplex biomarker detection. ACS Appl. Mater. Interfaces, 2021, 13(3), 3576-3590.
[http://dx.doi.org/10.1021/acsami.0c19089] [PMID: 33449630]
[25]
Zhu, R.; Feng, H.; Li, Q.; Su, L.; Fu, Q.; Li, J.; Song, J.; Yang, H. Asymmetric core–shell gold nanoparticles and controllable assemblies for SERS ratiometric detection of microRNA. Angew. Chem. Int. Ed., 2021, 60(22), 12560-12568.
[http://dx.doi.org/10.1002/anie.202102893] [PMID: 33769682]
[26]
Kumar, G.; Tibbitts, L.; Newell, J.; Panthi, B.; Mukhopadhyay, A.; Rioux, R.M.; Pursell, C.J.; Janik, M.; Chandler, B.D. Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies. Nat. Chem., 2018, 10(3), 268-274.
[http://dx.doi.org/10.1038/nchem.2911] [PMID: 29461519]
[27]
Huang, L.; Lin, Q.; Li, Y.; Zheng, G.; Chen, Y. Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes. Anal. Bioanal. Chem., 2019, 411(2), 471-478.
[http://dx.doi.org/10.1007/s00216-018-1464-1] [PMID: 30450507]
[28]
Tian, D.; Denny, S.R.; Li, K.; Wang, H.; Kattel, S.; Chen, J.G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev., 2021, 50(22), 12338-12376.
[http://dx.doi.org/10.1039/D1CS00590A] [PMID: 34580693]
[29]
Liao, X.; Lu, R.; Xia, L.; Liu, Q.; Wang, H.; Zhao, K.; Wang, Z.; Zhao, Y. Density functional theory for electrocatalysis. Energy Environ. Mater., 2022, 5(1), 157-185.
[http://dx.doi.org/10.1002/eem2.12204]
[30]
Ghosh, S.; Makeev, M.A.; Qi, Z.; Wang, H.; Rajput, N.N.; Martha, S.K.; Pol, V.G. Rapid upcycling of waste polyethylene terephtha-late to energy storing disodium terephthalate flowers with DFT calculations. ACS Sustain. Chem.& Eng., 2020, 8(16), 6252-6262.
[http://dx.doi.org/10.1021/acssuschemeng.9b07684]
[31]
St John, P.C.; Guan, Y.; Kim, Y.; Kim, S.; Paton, R.S. Publisher Correction: Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nat. Commun., 2020, 11(1), 3066.
[http://dx.doi.org/10.1038/s41467-020-16706-7] [PMID: 32528011]
[32]
Dorn, R.W.; Marro, E.A.; Hanrahan, M.P.; Klausen, R.S.; Rossini, A.J. Investigating the Microstructure of Poly(cyclosilane) by 29 Si Solid-State NMR Spectroscopy and DFT Calculations. Chem. Mater., 2019, 31(21), 9168-9178.
[http://dx.doi.org/10.1021/acs.chemmater.9b03606]
[33]
Carbonnière, P.; Erba, A.; Richter, F.; Dovesi, R.; Rérat, M. Calculation of Anharmonic IR and Raman Intensities for Periodic Systems from DFT Calculations: Implementation and Validation. J. Chem. Theory Comput., 2020, 16(5), 3343-3351.
[http://dx.doi.org/10.1021/acs.jctc.9b01061] [PMID: 32275427]
[34]
Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M. Gaussian 16, Revision A. 03; Gaussian. Inc.: Wallingford, CT, USA, 2016.
[35]
Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120(1-3), 215-241.
[http://dx.doi.org/10.1007/s00214-007-0310-x]
[36]
Marques, M.A.L.; Oliveira, M.J.T.; Burnus, T. Libxc: A library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun., 2012, 183(10), 2272-2281.
[http://dx.doi.org/10.1016/j.cpc.2012.05.007]
[37]
GaussView. Version 5; Gaussian, Inc: Wallingford, CT, USA, 2009.

© 2024 Bentham Science Publishers | Privacy Policy