Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Network Toxicology Prediction and Molecular Docking-based Strategy to Explore the Potential Toxicity Mechanism of Metformin Chlorination Byproducts in Drinking Water

Author(s): Gui-Hong Zhang, Hongwei Liu, Mei-Hua Liu, Yang-Cheng Liu, Jia-Qi Wang, Yang Wang, Xin Wang, Zheng Xiang and Wei Liu*

Volume 27, Issue 1, 2024

Published on: 22 May, 2023

Page: [101 - 117] Pages: 17

DOI: 10.2174/1386207326666230426105412

Price: $65

Abstract

Background: Metformin (MET), a worldwide used drug for treating type 2 diabetes but not metabolized by humans, has been found with the largest amount in the aquatic environment. Two MET chlorination byproducts, including Y and C, were transformed into drinking water during chlorination. However, the potential toxicity of the byproducts in hepatotoxicity and reproduction toxicity remains unclear.

Methods: The TOPKAT database predicted the toxicological properties of metformin disinfection by-products. The targets of metformin disinfection by-products were mainly obtained from the PharmMapper database, and then the targets of hepatotoxicity and reproductive toxicity were screened from GeneCards. The overlapping targets of toxic component targets and the hepatotoxicity or reproduction toxicity targets were regarded as the key targets. Then, the STRING database analyzed the key target to construct a protein-protein interaction network (PPI) and GO, and KEGG analysis was performed by the DAVID platform. Meanwhile, the PPI network and compound- target network were constructed by Cytoscape 3.9.1. Finally, Discovery Studio 2019 software was used for molecular docking verification of the two toxic compounds and the core genes.

Results: Y and C exhibited hepatotoxicity, carcinogenicity, and mutagenicity evaluated by TOPKAT. There were 22 potential targets relating to compound Y and hepatotoxicity and reproduction toxicity and 14 potential targets relating to compound C and hepatotoxicity and reproduction toxicity. PPI network analysis showed that SRC, MAPK14, F2, PTPN1, IL2, MMP3, HRAS, and RARA might be the key targets; the KEGG analysis indicated that compounds Y and C caused hepatotoxicity through Hepatitis B, Pathways in cancer, Chemical carcinogenesis-reactive oxygen species, Epstein-Barr virus infection; compound Y and C caused reproduction toxicity through GnRH signaling pathway, Endocrine resistance, Prostate cancer, Progesterone-mediated oocyte maturation. Molecular docking results showed that 2 compounds could fit in the binding pocket of the 7 hub genes.

Conclusion: This study preliminarily revealed the potential toxicity and possible toxicity mechanism of metformin disinfection by-products and provided a new idea for follow-up research.

[1]
Karise, I.; Bargut, T.C.; del Sol, M.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed. Pharmacother., 2019, 111, 1156-1165.
[http://dx.doi.org/10.1016/j.biopha.2019.01.021] [PMID: 30841429]
[2]
Lv, Z.; Guo, Y. Metformin and its benefits for various diseases. Front. Endocrinol., 2020, 11, 191.
[http://dx.doi.org/10.3389/fendo.2020.00191] [PMID: 32425881]
[3]
Singh, S. Anti-diabetic medications and the risk of hepatocellular cancer: A systematic review and meta-analysis. J. Am. Gastrol., 2013, 108(6), 881-891.
[http://dx.doi.org/10.1038/ajg.2013.5]
[4]
Bailey, C.J. Metformin: Historical overview. Diabetologia, 2017, 60(9), 1566-1576.
[http://dx.doi.org/10.1007/s00125-017-4318-z] [PMID: 28776081]
[5]
Lin, H.Z.; Yang, S.Q.; Chuckaree, C.; Kuhajda, F.; Ronnet, G.; Diehl, A.M. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat. Med., 2000, 6(9), 998-1003.
[http://dx.doi.org/10.1038/79697] [PMID: 10973319]
[6]
Mohan, M.; Al-Talabany, S.; McKinnie, A.; Mordi, I.R.; Singh, J.S.S.; Gandy, S.J.; Baig, F.; Hussain, M.S.; Bhalraam, U.; Khan, F.; Choy, A.M.; Matthew, S.; Houston, J.G.; Struthers, A.D.; George, J.; Lang, C.C. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: The MET-REMODEL trial. Eur. Heart J., 2019, 40(41), 3409-3417.
[http://dx.doi.org/10.1093/eurheartj/ehz203] [PMID: 30993313]
[7]
Algire, C.; Moiseeva, O.; Deschênes-Simard, X.; Amrein, L.; Petruccelli, L.; Birman, E.; Viollet, B.; Ferbeyre, G.; Pollak, M.N. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev. Res. (Phila.), 2012, 5(4), 536-543.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0536] [PMID: 22262811]
[8]
Lee, M.; Katerelos, M.; Gleich, K.; Galic, S.; Kemp, B.E.; Mount, P.F.; Power, D.A. Phosphorylation of acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin. J. Am. Soc. Nephrol., 2018, 29(9), 2326-2336.
[http://dx.doi.org/10.1681/ASN.2018010050] [PMID: 29976587]
[9]
Bell, S.; Farran, B.; McGurnaghan, S.; McCrimmon, R.J.; Leese, G.P.; Petrie, J.R.; McKeigue, P.; Sattar, N.; Wild, S.; McKnight, J.; Lindsay, R.; Colhoun, H.M.; Looker, H. Risk of acute kidney injury and survival in patients treated with Metformin: An observational cohort study. BMC Nephrol., 2017, 18(1), 163.
[http://dx.doi.org/10.1186/s12882-017-0579-5] [PMID: 28526011]
[10]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[11]
Caldwell, D.J.; D’Aco, V.; Davidson, T.; Kappler, K.; Murray-Smith, R.J.; Owen, S.F.; Robinson, P.F.; Simon-Hettich, B.; Straub, J.O.; Tell, J. Environmental risk assessment of metformin and its transformation product guanylurea: II. Occurrence in surface waters of Europe and the United States and derivation of predicted no-effect concentrations. Chemosphere, 2019, 216, 855-865.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.038] [PMID: 30385066]
[12]
Jacob, S.; Köhler, H-R.; Tisler, S.; Zwiener, C.; Triebskorn, R. Impact of the antidiabetic drug metformin and its transformation product guanylurea on the health of the big ramshorn snail (Planorbarius corneus). Front. Environ. Sci., 2019, 7, 45.
[http://dx.doi.org/10.3389/fenvs.2019.00045]
[13]
García-García, G.; Reyes-Carrillo, G.I.; Sarma, S.S.S.; Nandini, S. Population level responses of rotifers (Brachionus calyciflorus and Plationus patulus) to the anti-diabetic drug, metformin. J. Environ. Biol., 2017, 38(6(SI)), 1213-1219.
[http://dx.doi.org/10.22438/jeb/38/6(SI)/06]
[14]
Ussery, E.; Nielsen, K.M.; Pandelides, Z.; Kirkwood, A.E.; Guchardi, J.; Holdway, D. Developmental and full‐life cycle exposures to guanylurea and guanylurea–metformin mixtures results in adverse effects on Japanese Medaka (Oryzias latipes). Environ. Toxicol. Chem., 2019, 38(5), 1023-1028.
[http://dx.doi.org/10.1002/etc.4403] [PMID: 30835871]
[15]
Armbruster, D.; Happel, O.; Scheurer, M.; Harms, K.; Schmidt, T.C.; Brauch, H.J. Emerging nitrogenous disinfection byproducts: Transformation of the antidiabetic drug metformin during chlorine disinfection of water. Water Res., 2015, 79, 104-118.
[http://dx.doi.org/10.1016/j.watres.2015.04.020] [PMID: 25973582]
[16]
Zhang, R.; He, Y.; Yao, L.; Chen, J.; Zhu, S.; Rao, X.; Tang, P.; You, J.; Hua, G.; Zhang, L.; Ju, F.; Wu, L. Metformin chlorination byproducts in drinking water exhibit marked toxicities of a potential health concern. Environ. Int., 2021, 146, 106244.
[http://dx.doi.org/10.1016/j.envint.2020.106244] [PMID: 33157379]
[17]
Dong, W.; Zhang, Y.; Quan, X. Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere, 2020, 242, 125113.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125113] [PMID: 31896177]
[18]
Pena-Pereira, F.; Bendicho, C.; Pavlović, D.M.; Martín-Esteban, A.; Díaz-Álvarez, M.; Pan, Y.; Cooper, J.; Yang, Z.; Safarik, I.; Pospiskova, K.; Segundo, M.A.; Psillakis, E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern-A review. Anal. Chim. Acta, 2021, 1158, 238108.
[http://dx.doi.org/10.1016/j.aca.2020.11.040] [PMID: 33863416]
[19]
Gómez-Lechón, M.J.; Tolosa, L.; Conde, I.; Donato, M.T. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin. Drug Metab. Toxicol., 2014, 10(11), 1553-1568.
[http://dx.doi.org/10.1517/17425255.2014.967680] [PMID: 25297626]
[20]
Ma, Y.; He, X.; Qi, K.; Wang, T.; Qi, Y.; Cui, L.; Wang, F.; Song, M. Effects of environmental contaminants on fertility and reproductive health. J. Environ. Sci., 2019, 77, 210-217.
[http://dx.doi.org/10.1016/j.jes.2018.07.015] [PMID: 30573085]
[21]
Amereh, F.; Babaei, M.; Eslami, A.; Fazelipour, S.; Rafiee, M. The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity: From a hypothetical scenario to a global public health challenge. Environ. Pollut., 2020, 261, 114158.
[http://dx.doi.org/10.1016/j.envpol.2020.114158] [PMID: 32088433]
[22]
Rim, K.T. In silico prediction of toxicity and its applications for chemicals at work. Toxicol. Environ. Health Sci., 2020, 12(3), 191-202.
[http://dx.doi.org/10.1007/s13530-020-00056-4] [PMID: 32421081]
[23]
Li, Y.; Zhang, Y.; Wang, Y.; Li, Y.; Yang, F.; Zhang, P.; Zhang, Y.; Liu, C. A strategy for the discovery and validation of toxicity quality marker of Chinese medicine based on network toxicology. Phytomedicine, 2019, 54, 365-370.
[http://dx.doi.org/10.1016/j.phymed.2018.01.018] [PMID: 30217547]
[24]
Fang, X. On the establishment of network toxicology and network toxicology of Traditional Chinese medicine research ideas. Zhongguo Zhongyao Zazhi, 2011, 36(21), 2920-2922.
[PMID: 22308674]
[25]
Zhang, W. Network toxicology: A new science. Computational Ecology and Software, 2016, 6(2), 31.
[26]
Yan, J.H.; Xiao, Y.; Tan, D.Q.; Shao, X.T.; Wang, Z.; Wang, D.G. Wastewater analysis reveals spatial pattern in consumption of anti-diabetes drug metformin in China. Chemosphere, 2019, 222, 688-695.
[http://dx.doi.org/10.1016/j.chemosphere.2019.01.151] [PMID: 30735969]
[27]
Zhonghui, H.; Xiaomin, W. Prediction of toxicological properties of new products in sugar inhibition of PhIP by discovery studio (TOPKAT). J. Chinese Instit. Food Sci. Technol., 2020, 20(10), 247-253.
[28]
Merlot, C. Computational toxicology-a tool for early safety evaluation. Drug Discov. Today, 2010, 15(1-2), 16-22.
[http://dx.doi.org/10.1016/j.drudis.2009.09.010] [PMID: 19835978]
[29]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[30]
Zhang, H.; Cao, Z.X.; Li, M.; Li, Y.Z.; Peng, C. Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals. Food Chem. Toxicol., 2016, 97, 141-149.
[http://dx.doi.org/10.1016/j.fct.2016.09.005] [PMID: 27597133]
[31]
Casalegno, M.; Sello, G. Carcinogenicity prediction of noncongeneric chemicals by augmented top priority fragment classification. Comput. Biol. Chem., 2016, 61, 145-154.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.01.011] [PMID: 26878128]
[32]
Bull, R.J. Use of toxicological and chemical models to prioritize DBP research; American Water Works Association, 2006.
[33]
Diana, M.; Felipe-Sotelo, M.; Bond, T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: A review. Water Res., 2019, 162, 492-504.
[http://dx.doi.org/10.1016/j.watres.2019.07.014] [PMID: 31302365]
[34]
Cortesio, C.L.; Chan, K.T.; Perrin, B.J.; Burton, N.O.; Zhang, S.; Zhang, Z.Y.; Huttenlocher, A. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol., 2008, 180(5), 957-971.
[http://dx.doi.org/10.1083/jcb.200708048] [PMID: 18332219]
[35]
Balzer, E.M.; Whipple, R.A.; Thompson, K.; Boggs, A.E.; Slovic, J.; Cho, E.H.; Matrone, M.A.; Yoneda, T.; Mueller, S.C.; Martin, S.S. c-Src differentially regulates the functions of microtentacles and invadopodia. Oncogene, 2010, 29(48), 6402-6408.
[http://dx.doi.org/10.1038/onc.2010.360] [PMID: 20956943]
[36]
Zhang, S. Effects of significance of calcium-activated neutral protease inhibitor on biological behavior and expression of Src gene in hepatocellular carcinoma cells; Contemporary Medicine, 2020.
[37]
Biscardi, J.S.; Ishizawar, R.C.; Silva, C.M.; Parsons, S.J. Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res., 2000, 2(3), 203-210.
[http://dx.doi.org/10.1186/bcr55] [PMID: 11250711]
[38]
Irby, R.B.; Yeatman, T.J. Role of Src expression and activation in human cancer. Oncogene, 2000, 19(49), 5636-5642.
[http://dx.doi.org/10.1038/sj.onc.1203912] [PMID: 11114744]
[39]
Yang, M.; Huang, C-Z. Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J. Gastroenterol., 2015, 21(41), 11673-11679.
[http://dx.doi.org/10.3748/wjg.v21.i41.11673] [PMID: 26556994]
[40]
Graziosi, L.; Mencarelli, A.; Santorelli, C.; Renga, B.; Cipriani, S.; Cavazzoni, E.; Palladino, G.; Laufer, S.; Burnet, M.; Donini, A.; Fiorucci, S. Mechanistic role of p38 MAPK in gastric cancer dissemination in a rodent model peritoneal metastasis. Eur. J. Pharmacol., 2012, 674(2-3), 143-152.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.015] [PMID: 22119383]
[41]
Gupta, J.; del Barco Barrantes, I.; Igea, A.; Sakellariou, S.; Pateras, I.S.; Gorgoulis, V.G.; Nebreda, A.R. Dual function of p38α MAPK in colon cancer: Suppression of colitis-associated tumor initiation but requirement for cancer cell survival. Cancer Cell, 2014, 25(4), 484-500.
[http://dx.doi.org/10.1016/j.ccr.2014.02.019] [PMID: 24684847]
[42]
Wagner, E.F.; Nebreda, Á.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer, 2009, 9(8), 537-549.
[http://dx.doi.org/10.1038/nrc2694] [PMID: 19629069]
[43]
Sakurai, T.; He, G.; Matsuzawa, A.; Yu, G.Y.; Maeda, S.; Hardiman, G.; Karin, M. Hepatocyte necrosis induced by oxidative stress and IL-1 α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell, 2008, 14(2), 156-165.
[http://dx.doi.org/10.1016/j.ccr.2008.06.016] [PMID: 18691550]
[44]
Sato, A.; Okada, M.; Shibuya, K.; Watanabe, E.; Seino, S.; Narita, Y.; Shibui, S.; Kayama, T.; Kitanaka, C. Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells. Stem Cell Res., 2014, 12(1), 119-131.
[http://dx.doi.org/10.1016/j.scr.2013.09.012] [PMID: 24185179]
[45]
Gil-Araujo, B.; Toledo Lobo, M.V.; Gutiérrez-Salmerón, M.; Gutiérrez-Pitalúa, J.; Ropero, S.; Angulo, J.C.; Chiloeches, A.; Lasa, M. Dual specificity phosphatase 1 expression inversely correlates with NF-κB activity and expression in prostate cancer and promotes apoptosis through a p38 MAPK dependent mechanism. Mol. Oncol., 2014, 8(1), 27-38.
[http://dx.doi.org/10.1016/j.molonc.2013.08.012] [PMID: 24080497]
[46]
Mesquita, F.P.; Moreira-Nunes, C.A.; da Silva, E.L.; Lima, L.B.; Daniel, J.P.; Zuerker, W.J.; Brayner, M.; de Moraes, M.E.A.; Montenegro, R.C. MAPK14 (p38α) inhibition effects against metastatic gastric cancer cells: A potential biomarker and pharmacological target. Toxicol. In Vitro, 2020, 66, 104839.
[http://dx.doi.org/10.1016/j.tiv.2020.104839] [PMID: 32243890]
[47]
Narayanan, S. Multifunctional roles of thrombin. Ann. Clin. Lab. Sci., 1999, 29(4), 275-280.
[PMID: 10528826]
[48]
Szaba, F.M.; Smiley, S.T. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood, 2002, 99(3), 1053-1059.
[http://dx.doi.org/10.1182/blood.V99.3.1053] [PMID: 11807012]
[49]
Strukova, S.M. Thrombin as a regulator of inflammation and reparative processes in tissues. Biochemistry (Mosc.), 2001, 66(1), 8-18.
[http://dx.doi.org/10.1023/A:1002869310180] [PMID: 11240387]
[50]
Demirci, F.Y.K.; Dressen, A.S.; Kammerer, C.M.; Barmada, M.M.; Kao, A.H.; Ramsey-Goldman, R.; Manzi, S.; Kamboh, M.I. Functional polymorphisms of the coagulation factor II gene (F2) and susceptibility to systemic lupus erythematosus. J. Rheumatol., 2011, 38(4), 652-657.
[http://dx.doi.org/10.3899/jrheum.100728] [PMID: 21239755]
[51]
Rungroj, N. Association between human prothrombin variant (T165M) and kidney stone disease. PLoS One, 2012, 7(9), e45533.
[52]
Wiener, J.R.; Kerns, B.J.M.; Harvey, E.L.; Conaway, M.R. lglehart, J.D.; Berchuck, A.; Bast, R.C., Jr Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. J. Natl. Cancer Inst., 1994, 86(5), 372-378.
[http://dx.doi.org/10.1093/jnci/86.5.372] [PMID: 7905928]
[53]
Wiener, J.R.; Hurteau, J.A.; Kerns, B.J.M.; Whitaker, R.S.; Conaway, M.R.; Berchuck, A.; Bast, R.C., Jr Overexpression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. Am. J. Obstet. Gynecol., 1994, 170(4), 1177-1183.
[http://dx.doi.org/10.1016/S0002-9378(94)70118-0] [PMID: 8166206]
[54]
Huang, Q.; Han, L.; Liu, Y.; Wang, C.; Duan, D.; Lu, N.; Wang, K.; Zhang, L.; Gu, K.; Duan, S.; Mai, Y. Elevation of PTPN1 promoter methylation is a significant risk factor of type 2 diabetes in the Chinese population. Exp. Ther. Med., 2017, 14(4), 2976-2982.
[http://dx.doi.org/10.3892/etm.2017.4924] [PMID: 29042909]
[55]
Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.C.; Ramachandran, C.; Gresser, M.J.; Tremblay, M.L.; Kennedy, B.P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283(5407), 1544-1548.
[http://dx.doi.org/10.1126/science.283.5407.1544] [PMID: 10066179]
[56]
Chernoff, J. Protein tyrosine phosphatases as negative regulators of mitogenic signaling. J. Cell. Physiol., 1999, 180(2), 173-181.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199908)180:2<173:AID-JCP5>3.0.CO;2-Y] [PMID: 10395287]
[57]
Liu, H.; Wu, Y.; Zhu, S.; Liang, W.; Wang, Z.; Wang, Y.; Lv, T.; Yao, Y.; Yuan, D.; Song, Y. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett., 2015, 359(2), 218-225.
[http://dx.doi.org/10.1016/j.canlet.2015.01.020] [PMID: 25617799]
[58]
Zhu, S.; Bjorge, J.D.; Fujita, D.J. PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res., 2007, 67(21), 10129-10137.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4338] [PMID: 17974954]
[59]
Arias-Romero, L.E.; Saha, S.; Villamar-Cruz, O.; Yip, S.C.; Ethier, S.P.; Zhang, Z.Y.; Chernoff, J. Activation of Src by protein tyrosine phosphatase 1B Is required for ErbB2 transformation of human breast epithelial cells. Cancer Res., 2009, 69(11), 4582-4588.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4001] [PMID: 19435911]
[60]
Huang, S.; Liu, L.; Xiang, Y.; Wang, F.; Yu, L.; Zhou, F.; Cui, S.; Tian, F.; Fan, Z.; Geng, C.; Cao, X.; Yang, Z.; Wang, X.; Liang, H.; Wang, S.; Jiang, H.; Duan, X.; Wang, H.; Li, G.; Wang, Q.; Zhang, J.; Jin, F.; Tang, J.; Li, L.; Zhu, S.; Zuo, W.; Ye, C.; Zhou, W.; Yin, G.; Ma, Z.; Yu, Z. Association of PTPN1 polymorphisms with breast cancer risk: A case‐control study in Chinese females. J. Cell. Biochem., 2019, 120(7), 12039-12050.
[http://dx.doi.org/10.1002/jcb.28490] [PMID: 30805963]
[61]
Hou, T.Y.; Zhou, Y.; Zhu, L.S.; Wang, X.; Pang, P.; Wang, D.Q.; Liuyang, Z.Y.; Man, H.; Lu, Y.; Zhu, L.Q.; Liu, D. Correcting abnormalities in miR‐124/PTPN1 signaling rescues tau pathology in Alzheimer’s disease. J. Neurochem., 2020, 154(4), 441-457.
[http://dx.doi.org/10.1111/jnc.14961] [PMID: 31951013]
[62]
Hida, T.; Shikata, K.; Tokuhara, N.; Ishibashi, A.; Nagai, M.; Yamauchi, T.; Kobayashi, S. Immunosuppressive effect of ER-38925, a retinoic acid receptor subtype α-selective agonist, in mouse models of human graft-vs-host disease. Drug Discov. Ther., 2008, 2(1), 35-44.
[PMID: 22504453]
[63]
Zhu, L.; Santos, N.C.; Kim, K.H. Disulfide isomerase glucose-regulated protein 58 is required for the nuclear localization and degradation of retinoic acid receptor α. Reproduction, 2010, 139(4), 717-731.
[http://dx.doi.org/10.1530/REP-09-0527] [PMID: 20130111]
[64]
Hoshikawa, Y.; Kanki, K.; Ashla, A.A.; Arakaki, Y.; Azumi, J.; Yasui, T.; Tezuka, Y.; Matsumi, Y.; Tsuchiya, H.; Kurimasa, A.; Hisatome, I.; Hirano, T.; Fujimoto, J.; Kagechika, H.; Shomori, K.; Ito, H.; Shiota, G. c-Jun N-terminal kinase activation by oxidative stress suppresses retinoid signaling through proteasomal degradation of retinoic acid receptor α protein in hepatic cells. Cancer Sci., 2011, 102(5), 934-941.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01889.x] [PMID: 21272161]
[65]
Ross-Innes, C.S.; Stark, R.; Holmes, K.A.; Schmidt, D.; Spyrou, C.; Russell, R.; Massie, C.E.; Vowler, S.L.; Eldridge, M.; Carroll, J.S. Cooperative interaction between retinoic acid receptor-α and estrogen receptor in breast cancer. Genes Dev., 2010, 24(2), 171-182.
[http://dx.doi.org/10.1101/gad.552910] [PMID: 20080953]
[66]
Yubing, D. Study On The Role Of Retinoid Receptors And Long Noncoding RNA In Male Infertility; QingDao university, 2019.
[67]
Giehl, K. Oncogenic Ras in tumour progression and metastasis. Biol. Chem., 2005, 386(3), 193-205.
[http://dx.doi.org/10.1515/BC.2005.025]
[68]
Sugita, S.; Enokida, H.; Yoshino, H.; Miyamoto, K.; Yonemori, M.; Sakaguchi, T.; Osako, Y.; Nakagawa, M. HRAS as a potential therapeutic target of salirasib RAS inhibitor in bladder cancer. Int. J. Oncol., 2018, 53(2), 725-736.
[http://dx.doi.org/10.3892/ijo.2018.4435] [PMID: 29901113]
[69]
Zhan, Y. Xiaorui, Yu Role and mechanism of HRAS gene expression in the autophagy and apoptosis of cervical cancer cells. J. QingDao Univ., 2021, 57(02), 240-245.
[70]
Yu-peng, G.H-L.J-G. Relationship between HRAS T81C polymorphism and papillary thyroid cancer. J. Environ. Health, 2014, 31(6), 522-524.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy