Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Traditional Chinese Medicine Targeting Sarcoma Virus Oncogene-related Diseases

Author(s): Yiying Wang, Xiaoyu Wang*, Kexin Su and Yifu Yang

Volume 23, Issue 10, 2023

Published on: 19 May, 2023

Page: [751 - 763] Pages: 13

DOI: 10.2174/1568009623666230426093244

Price: $65

Abstract

The sarcoma virus oncogene (Src) tyrosine kinase, a nonreceptor protein-tyrosine kinase, plays a crucial role in cell survival, migration, differentiation and proliferation. The study of Src has developed considerably since it was first discovered as a proto-oncogene. Src has also been associated with inflammation and bone-related diseases. Src inhibitors (bosutinib, ponatinib, dasatinib, and vandetanib) have been put into clinical use. However, their side effects and cardiovascular toxicity may be a concern. There is an urgent need to explore new Src inhibitors. Traditional Chinese medicine (TCM), which has a vast history, can provide a broad resource base. Many natural compounds and TCM extracts have the potential for anti-Src treatment. This article describes the natural compounds and extracts from TCM.

Next »
Graphical Abstract

[1]
Martin, G.S. The hunting of the Src. Nat. Rev. Mol. Cell Biol., 2001, 2(6), 467-475.
[http://dx.doi.org/10.1038/35073094] [PMID: 11389470]
[2]
Engen, J.R.; Wales, T.E.; Hochrein, J.M.; Meyn, M.A., III; Banu Ozkan, S.; Bahar, I.; Smithgall, T.E. Structure and dynamic regulation of Src-family kinases. Cell. Mol. Life Sci., 2008, 65(19), 3058-3073.
[http://dx.doi.org/10.1007/s00018-008-8122-2] [PMID: 18563293]
[3]
Boggon, T.J.; Eck, M.J. Structure and regulation of Src family kinases. Oncogene, 2004, 23(48), 7918-7927.
[http://dx.doi.org/10.1038/sj.onc.1208081] [PMID: 15489910]
[4]
Yeatman, T.J. A renaissance for SRC. Nat. Rev. Cancer, 2004, 4(6), 470-480.
[http://dx.doi.org/10.1038/nrc1366] [PMID: 15170449]
[5]
Roskoski, R. Jr Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol. Res., 2015, 94, 9-25.
[http://dx.doi.org/10.1016/j.phrs.2015.01.003] [PMID: 25662515]
[6]
Spassov, D.S.; Ruiz-Saenz, A.; Piple, A.; Moasser, M.M. A dimerization function in the intrinsically disordered N-terminal region of Src. Cell Rep., 2018, 25(2), 449-463.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.09.035] [PMID: 30304684]
[7]
Arbesú, M.; Maffei, M.; Cordeiro, T.N.; Teixeira, J.M.C.; Pérez, Y.; Bernadó, P.; Roche, S.; Pons, M. The unique domain forms a fuzzy intramolecular complex in Src family kinases. Structure, 2017, 25(4), 630-640.e4.
[http://dx.doi.org/10.1016/j.str.2017.02.011] [PMID: 28319009]
[8]
Jalal, D.I.; Kone, B.C. Src activation of NF-kappaB augments IL-1beta-induced nitric oxide production in mesangial cells. J. Am. Soc. Nephrol., 2006, 17(1), 99-106.
[http://dx.doi.org/10.1681/ASN.2005070693] [PMID: 16338964]
[9]
Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[10]
Ishizawar, R.; Parsons, S.J. c-Src and cooperating partners in human cancer. Cancer Cell, 2004, 6(3), 209-214.
[http://dx.doi.org/10.1016/j.ccr.2004.09.001] [PMID: 15380511]
[11]
Mitra, S.K.; Schlaepfer, D.D. Integrin-regulated FAK–Src signaling in normal and cancer cells. Curr. Opin. Cell Biol., 2006, 18(5), 516-523.
[http://dx.doi.org/10.1016/j.ceb.2006.08.011] [PMID: 16919435]
[12]
Guarino, M. Src signaling in cancer invasion. J. Cell. Physiol., 2010, 223(1), 14-26.
[PMID: 20049846]
[13]
Summy, J.M.; Gallick, G.E. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev., 2003, 22(4), 337-358.
[http://dx.doi.org/10.1023/A:1023772912750] [PMID: 12884910]
[14]
Kim, L.C.; Song, L.; Haura, E.B. Src kinases as therapeutic targets for cancer. Nat. Rev. Clin. Oncol., 2009, 6(10), 587-595.
[http://dx.doi.org/10.1038/nrclinonc.2009.129] [PMID: 19787002]
[15]
Chen, J.; Elfiky, A.; Han, M.; Chen, C.; Saif, M.W. The role of Src in colon cancer and its therapeutic implications. Clin. Colorectal Cancer, 2014, 13(1), 5-13.
[http://dx.doi.org/10.1016/j.clcc.2013.10.003] [PMID: 24361441]
[16]
Xiao, T.; Li, W.; Wang, X.; Xu, H.; Yang, J.; Wu, Q.; Huang, Y.; Geradts, J.; Jiang, P.; Fei, T.; Chi, D.; Zang, C.; Liao, Q.; Rennhack, J.; Andrechek, E.; Li, N.; Detre, S.; Dowsett, M.; Jeselsohn, R.M.; Liu, X.S.; Brown, M. Estrogen-regulated feedback loop limits the efficacy of estrogen receptor–targeted breast cancer therapy. Proc. Natl. Acad. Sci., 2018, 115(31), 7869-7878.
[http://dx.doi.org/10.1073/pnas.1722617115] [PMID: 29987050]
[17]
Hua, T.N.M.; Kim, M.K.; Vo, V.T.A.; Choi, J.W.; Choi, J.H.; Kim, H.W.; Cha, S.K.; Park, K.S.; Jeong, Y. Inhibition of oncogenic Src induces FABP4-mediated lipolysis via PPARγ activation exerting cancer growth suppression. EBioMedicine, 2019, 41, 134-145.
[http://dx.doi.org/10.1016/j.ebiom.2019.02.015] [PMID: 30755372]
[18]
Song, L.; Liu, Z.; Hu, H.H.; Yang, Y.; Li, T.Y.; Lin, Z.Z.; Ye, J.; Chen, J.; Huang, X.; Liu, D.T.; Zhou, J.; Shi, Y.; Zhao, H.; Xie, C.; Chen, L.; Song, E.; Lin, S.Y.; Lin, S.C. Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy. Nat. Commun., 2020, 11(1), 5842.
[http://dx.doi.org/10.1038/s41467-020-19694-w] [PMID: 33203880]
[19]
Zhang, J.; Wang, S.; Jiang, B.; Huang, L.; Ji, Z.; Li, X.; Zhou, H.; Han, A.; Chen, A.; Wu, Y.; Ma, H.; Zhao, W.; Zhao, Q.; Xie, C.; Sun, X.; Zhou, Y.; Huang, H.; Suleman, M.; Lin, F.; Zhou, L.; Tian, F.; Jin, M.; Cai, Y.; Zhang, N.; Li, Q. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nat. Commun., 2017, 8(1), 13732.
[http://dx.doi.org/10.1038/ncomms13732] [PMID: 28054552]
[20]
Katsumoto, T.R.; Kudo, M.; Chen, C.; Sundaram, A.; Callahan, E.C.; Zhu, J.W.; Lin, J.; Rosen, C.E.; Manz, B.N.; Lee, J.W.; Matthay, M.A.; Huang, X.; Sheppard, D.; Weiss, A. The phosphatase CD148 promotes airway hyperresponsiveness through SRC family kinases. J. Clin. Invest., 2013, 123(5), 2037-2048.
[http://dx.doi.org/10.1172/JCI66397] [PMID: 23543053]
[21]
Hardyman, M.A.; Wilkinson, E.; Martin, E.; Jayasekera, N.P.; Blume, C.; Swindle, E.J.; Gozzard, N.; Holgate, S.T.; Howarth, P.H.; Davies, D.E.; Collins, J.E. TNF-α–mediated bronchial barrier disruption and regulation by src-family kinase activation. J. Allergy Clin. Immunol., 2013, 132(3), 665-675.e8.
[http://dx.doi.org/10.1016/j.jaci.2013.03.005] [PMID: 23632299]
[22]
El-Hashim, A.Z.; Khajah, M.A.; Babyson, R.S.; Renno, W.M.; Ezeamuzie, C.I.; Benter, I.F.; Akhtar, S. Ang-(1-7)/MAS1 receptor axis inhibits allergic airway inflammation via blockade of Src-mediated EGFR transactivation in a murine model of asthma. PLoS One, 2019, 14(11), e0224163.
[http://dx.doi.org/10.1371/journal.pone.0224163] [PMID: 31675376]
[23]
Fiorotto, R.; Amenduni, M.; Mariotti, V.; Fabris, L.; Spirli, C.; Strazzabosco, M. Src kinase inhibition reduces inflammatory and cytoskeletal changes in ΔF508 human cholangiocytes and improves cystic fibrosis transmembrane conductance regulator correctors efficacy. Hepatology, 2018, 67(3), 972-988.
[http://dx.doi.org/10.1002/hep.29400] [PMID: 28836688]
[24]
Taniguchi, K.; Wu, L.W.; Grivennikov, S.I.; de Jong, P.R.; Lian, I.; Yu, F.X.; Wang, K.; Ho, S.B.; Boland, B.S.; Chang, J.T.; Sandborn, W.J.; Hardiman, G.; Raz, E.; Maehara, Y.; Yoshimura, A.; Zucman-Rossi, J.; Guan, K.L.; Karin, M. A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature, 2015, 519(7541), 57-62.
[http://dx.doi.org/10.1038/nature14228] [PMID: 25731159]
[25]
Toumpanakis, D.; Vassilakopoulou, V.; Sigala, I.; Zacharatos, P.; Vraila, I.; Karavana, V.; Theocharis, S.; Vassilakopoulos, T. The role of Src & ERK1/2 kinases in inspiratory resistive breathing induced acute lung injury and inflammation. Respir. Res., 2017, 18(1), 209.
[http://dx.doi.org/10.1186/s12931-017-0694-7] [PMID: 29237457]
[26]
Yang, C.M.; Lee, I.T.; Lin, C.C.; Wang, C.H.; Cherng, W.J.; Hsiao, L.D. c-Src-dependent MAPKs/AP-1 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Biochem. Pharmacol., 2013, 85(8), 1115-1123.
[http://dx.doi.org/10.1016/j.bcp.2013.01.013] [PMID: 23353699]
[27]
Veerasubramanian, P.K.; Shao, H.; Meli, V.S.; Phan, T.A.Q.; Luu, T.U.; Liu, W.F.; Downing, T.L.A. Src-H3 acetylation signaling axis integrates macrophage mechanosensation with inflammatory response. Biomaterials, 2021, 279, 121236.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121236] [PMID: 34753038]
[28]
Zhu, J.; Luo, L.; Tian, L.; Yin, S.; Ma, X.; Cheng, S.; Tang, W.; Yu, J.; Ma, W.; Zhou, X.; Fan, X.; Yang, X.; Yan, J.; Xu, X.; Lv, C.; Liang, H. Aryl hydrocarbon receptor promotes IL-10 expression in inflammatory macrophages through Src-STAT3 signaling pathway. Front. Immunol., 2018, 9, 2033.
[http://dx.doi.org/10.3389/fimmu.2018.02033] [PMID: 30283437]
[29]
Liu, X.J.; Gingrich, J.R.; Vargas-Caballero, M.; Dong, Y.N.; Sengar, A.; Beggs, S.; Wang, S.H.; Ding, H.K.; Frankland, P.W.; Salter, M.W. Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat. Med., 2008, 14(12), 1325-1332.
[http://dx.doi.org/10.1038/nm.1883] [PMID: 19011637]
[30]
Dai, W.L.; Bao, Y.N.; Fan, J.F.; Ma, B.; Li, S.S.; Zhao, W.L.; Yu, B.Y.; Liu, J.H. Blockade of spinal dopamine D1/D2 receptor suppresses activation of NMDA receptor through Gαq and Src kinase to attenuate chronic bone cancer pain. J. Adv. Res., 2021, 28, 139-148.
[http://dx.doi.org/10.1016/j.jare.2020.08.005] [PMID: 33364051]
[31]
De Felice, M.; Lambert, D.; Holen, I.; Escott, K.J.; Andrew, D. Effects of Src-kinase inhibition in cancer-induced bone pain. Mol. Pain, 2016, 12.
[http://dx.doi.org/10.1177/1744806916643725] [PMID: 27094550]
[32]
Colvin, L.A.; Bull, F.; Hales, T.G. Perioperative opioid analgesia—when is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet, 2019, 393(10180), 1558-1568.
[http://dx.doi.org/10.1016/S0140-6736(19)30430-1] [PMID: 30983591]
[33]
Teitelbaum, S.L.; Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet., 2003, 4(8), 638-649.
[http://dx.doi.org/10.1038/nrg1122] [PMID: 12897775]
[34]
Peruzzi, B.; Cappariello, A.; Del Fattore, A.; Rucci, N.; De Benedetti, F.; Teti, A. c-Src and IL-6 inhibit osteoblast differentiation and integrate IGFBP5 signalling. Nat. Commun., 2012, 3(1), 630.
[http://dx.doi.org/10.1038/ncomms1651] [PMID: 22252554]
[35]
Matsubara, T.; Yasuda, K.; Mizuta, K.; Kawaue, H.; Kokabu, S. Tyrosine kinase Src Is a regulatory factor of bone homeostasis. Int. J. Mol. Sci., 2022, 23(10), 5508.
[http://dx.doi.org/10.3390/ijms23105508] [PMID: 35628319]
[36]
Wu, X.; Yang, L.; Zheng, Z.; Li, Z.; Shi, J.; Li, Y.; Han, S.; Gao, J.; Tang, C.; Su, L.; Hu, D. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int. J. Mol. Med., 2016, 37(3), 639-648.
[http://dx.doi.org/10.3892/ijmm.2016.2472] [PMID: 26821191]
[37]
Annunziata, C.M.; Walker, A.J.; Minasian, L.; Yu, M.; Kotz, H.; Wood, B.J.; Calvo, K.; Choyke, P.; Kimm, D.; Steinberg, S.M.; Kohn, E.C. Vandetanib, designed to inhibit VEGFR2 and EGFR signaling, had no clinical activity as monotherapy for recurrent ovarian cancer and no detectable modulation of VEGFR2. Clin. Cancer Res., 2010, 16(2), 664-672.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2308] [PMID: 20068097]
[38]
Arbour, K.C.; Manchado, E.; Bott, M.J.; Ahn, L.; Tobi, Y.; Ni, A.A.; Yu, H.A.; Shannon, A.; Ladanyi, M.; Perron, V.; Ginsberg, M.S.; Johnson, A.; Holodny, A.; Kris, M.G.; Rudin, C.M.; Lito, P.; Rosen, N.; Lowe, S.; Riely, G.J. Phase 1 clinical trial of trametinib and ponatinib in patients with NSCLC harboring mutations. JTO Clinical and Research Reports, 2022, 3(1), 100256.
[http://dx.doi.org/10.1016/j.jtocrr.2021.100256] [PMID: 34984405]
[39]
George, S.; von Mehren, M.; Fletcher, J.A.; Sun, J.; Zhang, S.; Pritchard, J.R.; Hodgson, J.G.; Kerstein, D.; Rivera, V.M.; Haluska, F.G.; Heinrich, M.C. Phase II study of ponatinib in advanced gastrointestinal stromal tumors: Efficacy, safety, and impact of liquid biopsy and other biomarkers. Clin. Cancer Res., 2022, 28(7), 1268-1276.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2037] [PMID: 35091442]
[40]
Gubens, M.A.; Burns, M.; Perkins, S.M.; Pedro-Salcedo, M.S.; Althouse, S.K.; Loehrer, P.J.; Wakelee, H.A. A phase II study of saracatinib (AZD0530), a Src inhibitor, administered orally daily to patients with advanced thymic malignancies. Lung Cancer, 2015, 89(1), 57-60.
[http://dx.doi.org/10.1016/j.lungcan.2015.04.008] [PMID: 26009269]
[41]
Guo, M.; Duan, Y.; Dai, S.; Li, J.; Chen, X.; Qu, L.; Chen, Z.; Wei, H.; Jiang, L.; Chen, Y. Structural study of ponatinib in inhibiting SRC kinase. Biochem. Biophys. Res. Commun., 2022, 598, 15-19.
[http://dx.doi.org/10.1016/j.bbrc.2022.02.001] [PMID: 35151199]
[42]
Halmos, B.; Jia, Y.; Bokar, J.A.; Fu, P.; Adelstein, D.J.; Juergens, R.; Rodal, M.B.; Dowlati, A. A phase I study of the combination of oxaliplatin/docetaxel and vandetanib for the treatment of advanced gastroesophageal cancer. Invest. New Drugs, 2013, 31(5), 1244-1250.
[http://dx.doi.org/10.1007/s10637-013-9945-8] [PMID: 23553066]
[43]
Hannon, R.A.; Clack, G.; Rimmer, M.; Swaisland, A.; Lockton, J.A.; Finkelman, R.D.; Eastell, R. Effects of the Src kinase inhibitor saracatinib (AZD0530) on bone turnover in healthy men: A randomized, double-blind, placebo-controlled, multiple-ascending-dose phase I trial. J. Bone Miner. Res., 2010, 25(3), 463-471.
[http://dx.doi.org/10.1359/jbmr.090830] [PMID: 19775203]
[44]
Jones, R.; Crabb, S.; Chester, J.; Elliott, T.; Huddart, R.; Birtle, A.; Evans, L.; Lester, J.; Jagdev, S.; Casbard, A.; Huang, C.; Madden, T.A.; Griffiths, G. A randomised Phase II trial of carboplatin and gemcitabine ± vandetanib in first‐line treatment of patients with advanced urothelial cell cancer not suitable to receive cisplatin. BJU Int., 2020, 126(2), 292-299.
[http://dx.doi.org/10.1111/bju.15096] [PMID: 32336008]
[45]
Lee, E.Q.; Muzikansky, A.; Duda, D.G.; Gaffey, S.; Dietrich, J.; Nayak, L.; Chukwueke, U.N.; Beroukhim, R.; Doherty, L.; Laub, C.K.; LaFrankie, D.; Fontana, B.; Stefanik, J.; Ruland, S.; Caruso, V.; Bruno, J.; Ligon, K.; Reardon, D.A.; Wen, P.Y. Phase II trial of ponatinib in patients with bevacizumab‐refractory glioblastoma. Cancer Med., 2019, 8(13), 5988-5994.
[http://dx.doi.org/10.1002/cam4.2505] [PMID: 31444999]
[46]
Massarelli, E.; Onn, A.; Marom, E.M.; Alden, C.M.; Liu, D.D.; Tran, H.T.; Mino, B.; Wistuba, I.I.; Faiz, S.A.; Bashoura, L.; Eapen, G.A.; Morice, R.C.; Jack Lee, J.; Hong, W.K.; Herbst, R.S.; Jimenez, C.A. Vandetanib and indwelling pleural catheter for non-small-cell lung cancer with recurrent malignant pleural effusion. Clin. Lung Cancer, 2014, 15(5), 379-386.
[http://dx.doi.org/10.1016/j.cllc.2014.04.002] [PMID: 24913066]
[47]
McNeish, I.A.; Ledermann, J.A.; Webber, L.; James, L.; Kaye, S.B.; Hall, M.; Hall, G.; Clamp, A.; Earl, H.; Banerjee, S.; Kristeleit, R.; Raja, F.; Feeney, A.; Lawrence, C.; Dawson-Athey, L.; Persic, M.; Khan, I. A randomised, placebo-controlled trial of weekly paclitaxel and saracatinib (AZD0530) in platinum-resistant ovarian, fallopian tube or primary peritoneal cancer. Ann. Oncol., 2014, 25(10), 1988-1995.
[http://dx.doi.org/10.1093/annonc/mdu363] [PMID: 25070546]
[48]
Molina, J.R.; Foster, N.R.; Reungwetwattana, T.; Nelson, G.D.; Grainger, A.V.; Steen, P.D.; Stella, P.J.; Marks, R.; Wright, J.; Adjei, A.A. A phase II trial of the Src-kinase inhibitor saracatinib after four cycles of chemotherapy for patients with extensive stage small cell lung cancer: NCCTG trial N-0621. Lung Cancer, 2014, 85(2), 245-250.
[http://dx.doi.org/10.1016/j.lungcan.2014.03.004] [PMID: 24957683]
[49]
Posadas, E.M.; Ahmed, R.S.; Karrison, T.; Szmulewitz, R.Z.; O’Donnell, P.H.; Wade, J.L., III; Shen, J.; Gururajan, M.; Sievert, M.; Stadler, W.M. Saracatinib as a metastasis inhibitor in metastatic castration-resistant prostate cancer: A university of chicago phase 2 consortium and DOD/PCF prostate cancer clinical trials consortium study. Prostate, 2016, 76(3), 286-293.
[http://dx.doi.org/10.1002/pros.23119] [PMID: 26493492]
[50]
Schenone, S.; Brullo, C.; Musumeci, F.; Botta, M. Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin. Investig. Drugs, 2010, 19(8), 931-945.
[http://dx.doi.org/10.1517/13543784.2010.499898] [PMID: 20557276]
[51]
Sim, M.W.; Cohen, M.S. The discovery and development of vandetanib for the treatment of thyroid cancer. Expert Opin. Drug Discov., 2014, 9(1), 105-114.
[http://dx.doi.org/10.1517/17460441.2014.866942] [PMID: 24299515]
[52]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol. Res., 2022, 175, 106037.
[http://dx.doi.org/10.1016/j.phrs.2021.106037] [PMID: 34921994]
[53]
National Library of Medicine. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bosutinib. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547951/ (Updated Sep 30, 2017).
[54]
National Library of Medicine. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Ponatinib. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548131/ (Updated May 10, 2020).
[55]
National Library of Medicine. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Dasatinib. Availablefrom: https://www.ncbi.nlm.nih.gov/books/NBK548780/ (Updated Dec 5, 2017).
[56]
National Library of Medicine. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Vandetanib. Availablefrom: https://www.ncbi.nlm.nih.gov/books/NBK548169/ (Updated Jun 28, 2018).
[57]
Singh, A.P.; Umbarkar, P.; Tousif, S.; Lal, H. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. Int. J. Cardiol., 2020, 316, 214-221.
[http://dx.doi.org/10.1016/j.ijcard.2020.05.077] [PMID: 32470534]
[58]
Zeng, P.; Schmaier, A. Ponatinib and other CML tyrosine kinase inhibitors in thrombosis. Int. J. Mol. Sci., 2020, 21(18), 6556.
[http://dx.doi.org/10.3390/ijms21186556] [PMID: 32911643]
[59]
Baselga, J.; Cervantes, A.; Martinelli, E.; Chirivella, I.; Hoekman, K.; Hurwitz, H.I.; Jodrell, D.I.; Hamberg, P.; Casado, E.; Elvin, P.; Swaisland, A.; Iacona, R.; Tabernero, J. Phase I safety, pharmacokinetics, and inhibition of SRC activity study of saracatinib in patients with solid tumors. Clin. Cancer Res., 2010, 16(19), 4876-4883.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0748] [PMID: 20805299]
[60]
Kaye, S.; Aamdal, S.; Jones, R.; Freyer, G.; Pujade-Lauraine, E.; de Vries, E.G.E.; Barriuso, J.; Sandhu, S.; Tan, D.S-W.; Hartog, V.; Kuenen, B.; Ruijter, R.; Kristensen, G.B.; Nyakas, M.; Barrett, S.; Burke, W.; Pietersma, D.; Stuart, M.; Emeribe, U.; Boven, E. Phase I study of saracatinib (AZD0530) in combination with paclitaxel and/or carboplatin in patients with solid tumours. Br. J. Cancer, 2012, 106(11), 1728-1734.
[http://dx.doi.org/10.1038/bjc.2012.158] [PMID: 22531637]
[61]
Liao, X.; Song, G.; Xu, Z.; Bu, Y.; Chang, F.; Jia, F.; Xiao, X.; Ren, X.; Zhang, M.; Jia, Q. Oxaliplatin resistance is enhanced by saracatinib via upregulation Wnt-ABCG1 signaling in hepatocellular carcinoma. BMC Cancer, 2020, 20(1), 31.
[http://dx.doi.org/10.1186/s12885-019-6480-9] [PMID: 31931755]
[62]
Fu, Y.; Yang, G.; Xue, P.; Guo, L.; Yin, Y.; Ye, Z.; Peng, S.; Qin, Y.; Duan, Q.; Zhu, F. Dasatinib reduces 5-Fu-triggered apoptosis in colon carcinoma by directly modulating Src-dependent caspase-9 phosphorylation. Cell Death Discov., 2018, 4(1), 61.
[http://dx.doi.org/10.1038/s41420-018-0062-5] [PMID: 29844931]
[63]
Qi, F.; Zhao, L.; Zhou, A.; Zhang, B.; Li, A.; Wang, Z.; Han, J. The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Biosci. Trends, 2015, 9(1), 16-34.
[http://dx.doi.org/10.5582/bst.2015.01019] [PMID: 25787906]
[64]
Parekh, H.S.; Liu, G.; Wei, M.Q. A new dawn for the use of traditional Chinese medicine in cancer therapy. Mol. Cancer, 2009, 8(1), 21.
[http://dx.doi.org/10.1186/1476-4598-8-21] [PMID: 19298677]
[65]
Tsao, A.S.; Liu, S.; Lee, J.J.; Alden, C.M.; Blumenschein, G.R., Jr; Herbst, R.; Davis, S.E.; Kim, E.; Lippman, S.; Heymach, J.; Tran, H.; Tang, X.; Wistuba, I.; Hong, W.K. Clinical and biomarker outcomes of the phase II vandetanib study from the BATTLE trial. J. Thorac. Oncol., 2013, 8(5), 658-661.
[http://dx.doi.org/10.1097/JTO.0b013e31828d08ae] [PMID: 23584298]
[66]
Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci., 2015, 36(7), 422-439.
[http://dx.doi.org/10.1016/j.tips.2015.04.005] [PMID: 25975227]
[67]
Li, Y.S.; Qin, X.J.; Dai, W. Fisetin suppresses malignant proliferation in human oral squamous cell carcinoma through inhibition of Met/Src signaling pathways. Am. J. Transl. Res., 2017, 9(12), 5678-5683.
[PMID: 29312520]
[68]
Li, M.; Yue, G.G.L.; Tsui, S.K.W.; Fung, K.P.; Lau, C.B.S. Turmeric extract, with absorbable curcumin, has potent anti-metastatic effect in vitro and in vivo. Phytomedicine, 2018, 46, 131-141.
[http://dx.doi.org/10.1016/j.phymed.2018.03.065] [PMID: 30097113]
[69]
Leu, T.H.; Su, S.L.; Chuang, Y.C.; Maa, M.C. Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity. Biochem. Pharmacol., 2003, 66(12), 2323-2331.
[http://dx.doi.org/10.1016/j.bcp.2003.08.017] [PMID: 14637190]
[70]
Saini, S.; Arora, S.; Majid, S.; Shahryari, V.; Chen, Y.; Deng, G.; Yamamura, S.; Ueno, K.; Dahiya, R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev. Res., 2011, 4(10), 1698-1709.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0267] [PMID: 21836020]
[71]
Ono, M.; Higuchi, T.; Takeshima, M.; Chen, C.; Nakano, S. Differential anti-tumor activities of curcumin against Ras- and Src-activated human adenocarcinoma cells. Biochem. Biophys. Res. Commun., 2013, 436(2), 186-191.
[http://dx.doi.org/10.1016/j.bbrc.2013.05.071] [PMID: 23726918]
[72]
Nautiyal, J.; Banerjee, S.; Kanwar, S.S.; Yu, Y.; Patel, B.B.; Sarkar, F.H.; Majumdar, A.P.N. Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int. J. Cancer, 2011, 128(4), 951-961.
[http://dx.doi.org/10.1002/ijc.25410] [PMID: 20473900]
[73]
Shakibaei, M.; Mobasheri, A.; Lueders, C.; Busch, F.; Shayan, P.; Goel, A. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PLoS One, 2013, 8(2), e57218.
[http://dx.doi.org/10.1371/journal.pone.0057218] [PMID: 23451189]
[74]
Jiang, M.; Huang, O.; Zhang, X.; Xie, Z.; Shen, A.; Liu, H.; Geng, M.; Shen, K. Curcumin induces cell death and restores tamoxifen sensitivity in the antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. Molecules, 2013, 18(1), 701-720.
[http://dx.doi.org/10.3390/molecules18010701] [PMID: 23299550]
[75]
Thakur, R.; Trivedi, R.; Rastogi, N.; Singh, M.; Mishra, D.P. Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Sci. Rep., 2015, 5(1), 10194.
[http://dx.doi.org/10.1038/srep10194] [PMID: 25973915]
[76]
Wang, J.; Iannarelli, R.; Pucciarelli, S.; Laudadio, E.; Galeazzi, R.; Giangrossi, M.; Falconi, M.; Cui, L.; Navia, A.M.; Buccioni, M.; Marucci, G.; Tomassoni, D.; Serini, L.; Sut, S.; Maggi, F.; Dall’Acqua, S.; Marchini, C.; Amici, A. Acetylshikonin isolated from Lithospermum erythrorhizon roots inhibits dihydrofolate reductase and hampers autochthonous mammary carcinogenesis in Δ16HER2 transgenic mice. Pharmacol. Res., 2020, 161, 105123.
[http://dx.doi.org/10.1016/j.phrs.2020.105123] [PMID: 32822867]
[77]
Kim, C.; Lee, S.G.; Yang, W.M.; Arfuso, F.; Um, J.Y.; Kumar, A.P.; Bian, J.; Sethi, G.; Ahn, K.S. Formononetin-induced oxidative stress abrogates the activation of STAT3/5 signaling axis and suppresses the tumor growth in multiple myeloma preclinical model. Cancer Lett., 2018, 431, 123-141.
[http://dx.doi.org/10.1016/j.canlet.2018.05.038] [PMID: 29857127]
[78]
Chen, C.; Shenoy, A.K.; Padia, R.; Fang, D.; Jing, Q.; Yang, P.; Su, S.B.; Huang, S. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2′ 4′-. Tetrahydroxychalcone. J. Exp. Clin. Cancer Res., 2018, 37(1), 243.
[http://dx.doi.org/10.1186/s13046-018-0902-4] [PMID: 30285892]
[79]
Hsu, Y.L.; Wu, L.Y.; Hou, M.F.; Tsai, E.M.; Lee, J.N.; Liang, H.L.; Jong, Y.J.; Hung, C.H.; Kuo, P.L. Glabridin, an isoflavan from licorice root, inhibits migration, invasion and angiogenesis of MDA-MB-231 human breast adenocarcinoma cells by inhibiting focal adhesion kinase/Rho signaling pathway. Mol. Nutr. Food Res., 2011, 55(2), 318-327.
[http://dx.doi.org/10.1002/mnfr.201000148] [PMID: 20626003]
[80]
Tsai, Y.M.; Yang, C.J.; Hsu, Y.L.; Wu, L.Y.; Tsai, Y.C.; Hung, J.Y.; Lien, C.T.; Huang, M.S.; Kuo, P.L. Glabridin inhibits migration, invasion, and angiogenesis of human non-small cell lung cancer A549 cells by inhibiting the FAK/rho signaling pathway. Integr. Cancer Ther., 2011, 10(4), 341-349.
[http://dx.doi.org/10.1177/1534735410384860] [PMID: 21059620]
[81]
Guan, Y.Y.; Liu, H.J.; Luan, X.; Xu, J.R.; Lu, Q.; Liu, Y.R.; Gao, Y.G.; Zhao, M.; Chen, H.Z.; Fang, C.; Raddeanin, A. Raddeanin A, a triterpenoid saponin isolated from Anemone raddeana, suppresses the angiogenesis and growth of human colorectal tumor by inhibiting VEGFR2 signaling. Phytomedicine, 2015, 22(1), 103-110.
[http://dx.doi.org/10.1016/j.phymed.2014.11.008] [PMID: 25636878]
[82]
Han, J.; Jeong, H.J.; Lee, H.N.; Kwon, Y.J.; Shin, H.M.; Choi, Y.; Lee, S.; Oh, S.T.; Kim, D.; Jeon, S. Erythro-austrobailignan-6 down-regulates HER2/EGFR/integrinβ3 expression via p38 activation in breast cancer. Phytomedicine, 2017, 24, 24-30.
[http://dx.doi.org/10.1016/j.phymed.2016.11.009] [PMID: 28160858]
[83]
Park, E.J.; Min, H.Y.; Chung, H.J.; Hong, J.Y.; Kang, Y.J.; Hung, T.M.; Youn, U.J.; Kim, Y.S.; Bae, K.; Kang, S.S.; Lee, S.K. Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Lett., 2009, 277(2), 133-140.
[http://dx.doi.org/10.1016/j.canlet.2008.11.029] [PMID: 19135778]
[84]
Chen, Y.; Song, H.; Zhou, Z.; Ma, J.; Luo, Z.; Zhou, Y.; Wang, J.; Liu, S.; Han, X. Osthole inhibits the migration and invasion of highly metastatic breast cancer cells by suppressing ITGα3/ITGβ5 signaling. Acta Pharmacol. Sin., 2022, 43(6), 1544-1555.
[http://dx.doi.org/10.1038/s41401-021-00757-7] [PMID: 34426644]
[85]
Zhu, X.; Wang, K.; Chen, Y. Ophiopogonin D suppresses TGF-β1-mediated metastatic behavior of MDA-MB-231 breast carcinoma cells via regulating ITGB1/FAK/Src/AKT/β-catenin/MMP-9 signaling axis. Toxicol. In Vitro, 2020, 69, 104973.
[http://dx.doi.org/10.1016/j.tiv.2020.104973] [PMID: 32818624]
[86]
Wang, H.C.; Chang, F.R.; Huang, T.J.; Kuo, C.Y.; Tsai, Y.C.; Wu, C.C. (-)-Liriopein B suppresses breast cancer progression via inhibition of multiple kinases. Chem. Res. Toxicol., 2015, 28(5), 897-906.
[http://dx.doi.org/10.1021/tx500518j] [PMID: 25856345]
[87]
Tedasen, A. Dokduang, S.; Sukpondma, Y.; Lailerd, N.; Madla, S.; Sriwiriyajan, S.; Rattanaburee, T.; Tipmanee, V.; Graidist, P. (−)-Kusunokinin inhibits breast cancer in N-nitrosomethylurea-induced mammary tumor rats. Eur. J. Pharmacol., 2020, 882, 173311.
[http://dx.doi.org/10.1016/j.ejphar.2020.173311] [PMID: 32619673]
[88]
Li, Y.; Xi, Z.; Chen, X.; Cai, S.; Liang, C.; Wang, Z.; Li, Y.; Tan, H.; Lao, Y.; Xu, H. Natural compound Oblongifolin C confers gemcitabine resistance in pancreatic cancer by downregulating Src/MAPK/ERK pathways. Cell Death Dis., 2018, 9(5), 538.
[http://dx.doi.org/10.1038/s41419-018-0574-1] [PMID: 29749405]
[89]
Shih, W.L.; Yu, F.L.; Chang, C.D.; Liao, M.H.; Wu, H.Y.; Lin, P.Y. Suppression of AMF / PGI ‐mediated tumorigenic activities by ursolic acid in cultured hepatoma cells and in a mouse model. Mol. Carcinog., 2013, 52(10), 800-812.
[http://dx.doi.org/10.1002/mc.21919] [PMID: 22549898]
[90]
Lee, K.M.; Lee, K.W.; Byun, S.; Jung, S.K.; Seo, S.K.; Heo, Y.S.; Bode, A.M.; Lee, H.J.; Dong, Z. 5-deoxykaempferol plays a potential therapeutic role by targeting multiple signaling pathways in skin cancer. Cancer Prev. Res., 2010, 3(4), 454-465.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0137] [PMID: 20233901]
[91]
Vispé, S.; DeVries, L.; Créancier, L.; Besse, J.; Bréand, S.; Hobson, D.J.; Svejstrup, J.Q.; Annereau, J.P.; Cussac, D.; Dumontet, C.; Guilbaud, N.; Barret, J.M.; Bailly, C. Triptolide is an inhibitor of RNA polymerase I and II–dependent transcription leading predominantly to down-regulation of short-lived mRNA. Mol. Cancer Ther., 2009, 8(10), 2780-2790.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0549] [PMID: 19808979]
[92]
Nam, S.; Buettner, R.; Turkson, J.; Kim, D.; Cheng, J.Q.; Muehlbeyer, S.; Hippe, F.; Vatter, S.; Merz, K.H.; Eisenbrand, G.; Jove, R. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc. Natl. Acad. Sci., 2005, 102(17), 5998-6003.
[http://dx.doi.org/10.1073/pnas.0409467102] [PMID: 15837920]
[93]
Nam, S.; Scuto, A.; Yang, F.; Chen, W.; Park, S.; Yoo, H.S.; Konig, H.; Bhatia, R.; Cheng, X.; Merz, K.H.; Eisenbrand, G.; Jove, R. Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Mol. Oncol., 2012, 6(3), 276-283.
[http://dx.doi.org/10.1016/j.molonc.2012.02.002] [PMID: 22387217]
[94]
Nam, S.; Wen, W.; Schroeder, A.; Herrmann, A.; Yu, H.; Cheng, X.; Merz, K.H.; Eisenbrand, G.; Li, H.; Yuan, Y.C.; Jove, R. Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutively-activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells. Mol. Oncol., 2013, 7(3), 369-378.
[http://dx.doi.org/10.1016/j.molonc.2012.10.013] [PMID: 23206899]
[95]
Lan, Y.L.; Zou, Y.J.; Lou, J.C.; Xing, J.S.; Wang, X.; Zou, S.; Ma, B.B.; Ding, Y.; Zhang, B. The sodium pump α1 subunit regulates bufalin sensitivity of human glioblastoma cells through the p53 signaling pathway. Cell Biol. Toxicol., 2019, 35(6), 521-539.
[http://dx.doi.org/10.1007/s10565-019-09462-y] [PMID: 30739221]
[96]
Shehzad, A.; Wahid, F.; Lee, Y.S. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm., 2010, 343(9), 489-499.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[97]
Vadhan-Raj, S.; Weber, D.M.; Wang, M.; Giralt, S.A.; Thomas, S.K.; Alexanian, R.; Zhou, X.; Patel, P.; Bueso-Ramos, C.E.; Newman, R.A.; Aggarwal, B.B. Curcumin downregulates NF-kB and related genes in patients with multiple myeloma: Results of a phase I/II study. Blood, 2007, 110(11), 1177.
[http://dx.doi.org/10.1182/blood.V110.11.1177.1177]
[98]
Bishayee, A.; Karaboga, A.A.K. Uzunhisarcıklı E.; Yerer, M.B. The golden spice curcumin in cancer: A perspective on finalized clinical trials during the last 10 years. J. Cancer Res. Ther., 2022, 18(1), 19-26.
[http://dx.doi.org/10.4103/jcrt.JCRT_1017_20] [PMID: 35381757]
[99]
Farsad-Naeimi, A.; Alizadeh, M.; Esfahani, A.; Darvish Aminabad, E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct., 2018, 9(4), 2025-2031.
[http://dx.doi.org/10.1039/C7FO01898C] [PMID: 29541713]
[100]
Wang, X.H.; Zhou, S.Y.; Qian, Z.Z.; Zhang, H.L.; Qiu, L.H.; Song, Z.; Zhao, J.; Wang, P.; Hao, X.S.; Wang, H.Q. Evaluation of toxicity and single-dose pharmacokinetics of intravenous ursolic acid liposomes in healthy adult volunteers and patients with advanced solid tumors. Expert Opin. Drug Metab. Toxicol., 2013, 9(2), 117-125.
[http://dx.doi.org/10.1517/17425255.2013.738667] [PMID: 23134084]
[101]
Zhu, Z.; Qian, Z.; Yan, Z.; Zhao, C.; Wang, H.; Ying, G. A phase I pharmacokinetic study of ursolic acid nanoliposomes in healthy volunteers and patients with advanced solid tumors. Int. J. Nanomedicine, 2013, 8, 129-136.
[PMID: 23319864]
[102]
Qian, Z.; Wang, X.; Song, Z.; Zhang, H.; Zhou, S.; Zhao, J.; Wang, H. A phase I trial to evaluate the multiple-dose safety and antitumor activity of ursolic acid liposomes in subjects with advanced solid tumors. BioMed Res. Int., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/809714] [PMID: 25866811]
[103]
Wang, L.; Cao, D.; Wu, H.; Jia, H.; Yang, C.; Zhang, L. Fisetin prolongs therapy window of brain ischemic stroke using tissue plasminogen activator: A double-blind randomized placebo-controlled clinical trial. Clin. Appl. Thromb. Hemost., 2019, 25, 1076029619871359.
[http://dx.doi.org/10.1177/1076029619871359] [PMID: 31434498]
[104]
Yadav, S.; Sharma, A.; Nayik, G.A.; Cooper, R.; Bhardwaj, G.; Sohal, H.S.; Mutreja, V.; Kaur, R.; Areche, F.O.; AlOudat, M.; Shaikh, A.M.; Kovács, B.; Mohamed, A.A.E. Review of shikonin and derivatives: Isolation, chemistry, biosynthesis, pharmacology and toxicology. Front. Pharmacol., 2022, 13, 905755.
[http://dx.doi.org/10.3389/fphar.2022.905755] [PMID: 35847041]
[105]
Li, M.; Wang, X.J.; Zhao, Q.; Wang, J.X.; Xing, H.Y.; Zhang, Y.Z.; Zhang, X.X.; Zhi, Y.Y.; Li, H.; Ma, J. Bufalin-induced cardiotoxicity: New findings into mechanisms. Chin. J. Nat. Med., 2020, 18(7), 550-560.
[http://dx.doi.org/10.1016/S1875-5364(20)30065-0] [PMID: 32616195]
[106]
Yu, J.S.; Kim, J.H.; Lee, S.; Jung, K.; Kim, K.H.; Cho, J.Y. Src/Syk-targeted anti-inflammatory actions of triterpenoidal saponins from Gac (Momordica cochinchinensis) Seeds. Am. J. Chin. Med., 2017, 45(3), 459-473.
[http://dx.doi.org/10.1142/S0192415X17500288] [PMID: 28367713]
[107]
Kim, J.H.; Kim, M.Y.; Kim, J.H.; Cho, J.Y. Fisetin suppresses macrophage-mediated inflammatory responses by blockade of Src and Syk. Biomol. Ther., 2015, 23(5), 414-420.
[http://dx.doi.org/10.4062/biomolther.2015.036] [PMID: 26336580]
[108]
Ren, Q.; Guo, F.; Tao, S.; Huang, R.; Ma, L.; Fu, P. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed. Pharmacother., 2020, 122, 109772.
[http://dx.doi.org/10.1016/j.biopha.2019.109772] [PMID: 31918290]
[109]
Xu, P.; Huang, M.W.; Xiao, C.X.; Long, F.; Wang, Y.; Liu, S.Y.; Jia, W.W.; Wu, W.J.; Yang, D.; Hu, J.F.; Liu, X.H.; Zhu, Y.Z. Matairesinol suppresses neuroinflammation and migration associated with Src and ERK1/2-NF-κB pathway in activating BV2 microglia. Neurochem. Res., 2017, 42(10), 2850-2860.
[http://dx.doi.org/10.1007/s11064-017-2301-1] [PMID: 28512713]
[110]
Lee, Y.G.; Lee, W.M.; Kim, J.Y.; Lee, J.Y.; Lee, I-K.; Yun, B-S.; Rhee, M.H.; Cho, J.Y. Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells. Br. J. Pharmacol., 2008, 154(4), 852-863.
[http://dx.doi.org/10.1038/bjp.2008.136] [PMID: 18454171]
[111]
Pan, L.L.; Zhang, Q.Y.; Luo, X.L.; Xiong, J.; Xu, P.; Liu, S.Y.; Hu, J.F.; Liu, X.H. (7R,8S)-9-Acetyl-dehydrodiconiferyl alcohol inhibits inflammation and migration in lipopolysaccharide-stimulated macrophages. Phytomedicine, 2016, 23(5), 541-549.
[http://dx.doi.org/10.1016/j.phymed.2016.02.018] [PMID: 27064013]
[112]
Yao, X.; Li, G.; Lü, C.; Xu, H.; Yin, Z. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity. Int. Immunopharmacol., 2012, 14(2), 138-144.
[http://dx.doi.org/10.1016/j.intimp.2012.06.017] [PMID: 22770942]
[113]
Kim, Y.H.; Kim, J.L.; Lee, E.J.; Park, S.H.; Han, S.Y.; Kang, S.A.; Kang, Y.H. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages. J. Nutr. Biochem., 2014, 25(3), 295-303.
[http://dx.doi.org/10.1016/j.jnutbio.2013.11.003] [PMID: 24524902]
[114]
Chen, H.; Fang, C.; Zhi, X.; Song, S.; Gu, Y.; Chen, X.; Cui, J.; Hu, Y.; Weng, W.; Zhou, Q.; Wang, Y.; Wang, Y.; Jiang, H.; Li, X.; Cao, L.; Chen, X.; Su, J. Neobavaisoflavone inhibits osteoclastogenesis through blocking RANKL signalling‐mediated TRAF6 and c‐Src recruitment and NF‐κB, MAPK and Akt pathways. J. Cell. Mol. Med., 2020, 24(16), 9067-9084.
[http://dx.doi.org/10.1111/jcmm.15543] [PMID: 32604472]
[115]
Kim, M.H.; Ryu, S.Y.; Choi, J.S.; Min, Y.K.; Kim, S.H. Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts. J. Cell. Physiol., 2009, 221(3), 618-628.
[http://dx.doi.org/10.1002/jcp.21892] [PMID: 19653230]
[116]
Tran, P.T.; Dat, N.T.; Dang, N.H.; Van Cuong, P.; Lee, S.; Hwangbo, C.; Van Minh, C.; Lee, J.H. Ganomycin I from Ganoderma lucidum attenuates RANKL-mediated osteoclastogenesis by inhibiting MAPKs and NFATc1. Phytomedicine, 2019, 55, 1-8.
[http://dx.doi.org/10.1016/j.phymed.2018.10.029] [PMID: 30668419]
[117]
Yeon, J.T.; Kim, K.J.; Choi, S.W.; Moon, S.H.; Park, Y.S.; Ryu, B.J.; Oh, J.; Kim, M.S.; Erkhembaatar, M.; Son, Y.J.; Kim, S.H. Anti-osteoclastogenic activity of praeruptorin A via inhibition of p38/Akt-c-Fos-NFATc1 signaling and PLCγ-independent Ca2+ oscillation. PLoS One, 2014, 9(2), e88974.
[http://dx.doi.org/10.1371/journal.pone.0088974] [PMID: 24586466]
[118]
Zeng, X.; He, L.; Wang, S.; Wang, K.; Zhang, Y.; Tao, L.; Li, X.; Liu, S. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol. Sin., 2016, 37(2), 255-263.
[http://dx.doi.org/10.1038/aps.2015.85] [PMID: 26592521]
[119]
Min, T.R.; Park, H.J.; Park, M.N.; Kim, B.; Park, S.H. The root bark of morus alba L. suppressed the migration of human non-small-cell lung cancer cells through inhibition of epithelial(-)mesenchymal transition mediated by STAT3 and Src. Int. J. Mol. Sci., 2019, 20(9), 2244.
[http://dx.doi.org/10.3390/ijms20092244] [PMID: 31067694]
[120]
Park, H.J.; Chi, G.Y.; Choi, Y.H.; Park, S.H. The root bark of Morus Alba L. regulates tumor‐associated macrophages by blocking recruitment and M2 polarization of macrophages. Phytother. Res., 2020, 34(12), 3333-3344.
[http://dx.doi.org/10.1002/ptr.6783] [PMID: 32677743]
[121]
Sigstedt, S.; Hooten, C.; Callewaert, M.; Jenkins, A.; Romero, A.; Pullin, M.; Kornienko, A.; Lowrey, T.; Slambrouck, S.; Steelant, W. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int. J. Oncol., 2008, 32(5), 1085-1090.
[http://dx.doi.org/10.3892/ijo.32.5.1085] [PMID: 18425335]
[122]
Wu, G.S.; Song, Y.L.; Yin, Z.Q.; Guo, J.J.; Wang, S.P.; Zhao, W.W.; Chen, X.P.; Zhang, Q.W.; Lu, J.J.; Wang, Y.T. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway. PLoS One, 2013, 8(10), e76620.
[http://dx.doi.org/10.1371/journal.pone.0076620] [PMID: 24204647]
[123]
Su, T.; Bai, J.X.; Chen, Y.J.; Wang, X.N.; Fu, X.Q.; Li, T.; Guo, H.; Zhu, P.L.; Wang, Y.; Yu, Z.L. An ethanolic extract of ampelopsis radix exerts anti-colorectal cancer effects and potently inhibits STAT3 signaling in vitro. Front. Pharmacol., 2017, 8, 227.
[http://dx.doi.org/10.3389/fphar.2017.00227] [PMID: 28503147]
[124]
Hossen, M.J.; Baek, K.S.; Kim, E.; Yang, W.S.; Jeong, D.; Kim, J.H.; Kweon, D.H.; Yoon, D.H.; Kim, T.W.; Kim, J.H.; Cho, J.Y. In vivo and in vitro anti-inflammatory activities of Persicaria chinensis methanolic extract targeting Src/Syk/NF-κB. J. Ethnopharmacol., 2015, 159, 9-16.
[http://dx.doi.org/10.1016/j.jep.2014.10.064] [PMID: 25446596]
[125]
Lee, J.O.; Yang, W.S.; Park, J.G.; Jeong, D.; Kim, H.G.; Yoon, K.D.; Aravinthan, A.; Kim, J.H.; Kim, E.; Cho, J.Y. Src and Syk contribute to the anti-inflammatory activities of Achyranthes aspera ethanolic extract. J. Ethnopharmacol., 2017, 206, 1-7.
[http://dx.doi.org/10.1016/j.jep.2017.05.013] [PMID: 28502904]
[126]
Li, J.K.; Chou, J.Y.; Yin, C.L.; Fu, X.Q.; Wu, Y.; Chen, Y.J.; Bai, J.X.; Wu, J.Y.; Liang, C.; Yu, Z.L. A two-herb formula inhibits STAT3 signaling and exerts anti-melanoma effects in cell and animal models. J. Ethnopharmacol., 2021, 268, 113671.
[http://dx.doi.org/10.1016/j.jep.2020.113671] [PMID: 33307054]
[127]
Cheng, C.; Shou, Q.; Lang, J.; Jin, L.; Liu, X.; Tang, D.; Yang, Z.; Fu, H. Gehua Jiecheng Decoction inhibits diethylnitrosamine-induced hepatocellular carcinoma in mice by improving tumor immunosuppression microenvironment. Front. Pharmacol., 2020, 11, 809.
[http://dx.doi.org/10.3389/fphar.2020.00809] [PMID: 32547401]
[128]
Tou, W.I.; Chen, C.Y.C. In silico investigation of potential SRC kinase ligands from traditional Chinese medicine. PLoS One, 2012, 7(3), e33728.
[http://dx.doi.org/10.1371/journal.pone.0033728] [PMID: 22470466]
[129]
Maher, H.M.; Alzoman, N.Z.; Shehata, S.M.; Abanmy, N.O. Validated UPLC-MS/MS method for the quantification of dasatinib in plasma: Application to pharmacokinetic interaction studies with nutraceuticals in Wistar rats. PLoS One, 2018, 13(6), e0199208.
[http://dx.doi.org/10.1371/journal.pone.0199208] [PMID: 29902246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy