Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Serotonin and Depression: Scrutiny of New Targets for Future Anti- Depressant Drug Development

Author(s): Arzoo Pannu and Ramesh K. Goyal*

Volume 24, Issue 10, 2023

Published on: 11 July, 2023

Page: [816 - 837] Pages: 22

DOI: 10.2174/1389450124666230425233727

Price: $65

Abstract

The “serotonin hypothesis of depression” is approximately fifty years old, and in spite of vast literature, the exact role of serotonin in depression pathophysiology is still unclear, as whether a lower serotonin level causes depression or depression causes a reduction in serotonin level has become a tough challenge for researchers to understand the actual involvement of serotonin in depression. Several pre-clinical and clinical studies have illustrated the multi-faceted signalling action of serotonin in depression and vouch for the significant or unavoidable role of serotonin in depression. In this review, the journey of the serotonin hypothesis of depression from the 1950s to the present time has been analysed to understand the serotonin hypothesis of depression and investigate the new molecular targets for the development of new future anti- depressants. The old and new theories of possible cellular mechanisms found to be involved in the pathophysiology of major depression or stress, such as polymorphism of serotonin transporters, enzyme modulating serotonergic activity, reduction in the level of serotonin and involvement of different sub-types of receptors, have been discussed in the respective review. Thus, in this review, the new signature targets to increase serotonin levels have been identified, which would help the researcher in the drug development of new faster-acting antidepressants.

Graphical Abstract

[1]
Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: A review. J Vet Pharmacol Ther 2008; 31(3): 187-99.
[http://dx.doi.org/10.1111/j.1365-2885.2008.00944.x] [PMID: 18471139]
[2]
Marcinkiewcz CA, Mazzone CM, D’Agostino G, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature 2016; 537(7618): 97-101.
[http://dx.doi.org/10.1038/nature19318] [PMID: 27556938]
[3]
Grzeskowiak LE, Leggett C, Costi L, Roberts CT, Amir LH. Impact of serotonin reuptake inhibitor use on breast milk supply in mothers of preterm infants: A retrospective cohort study. Br J Clin Pharmacol 2018; 84(6): 1373-9.
[http://dx.doi.org/10.1111/bcp.13575] [PMID: 29522259]
[4]
Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med 2009; 60(1): 355-66.
[http://dx.doi.org/10.1146/annurev.med.60.042307.110802] [PMID: 19630576]
[5]
Jenkins T, Nguyen J, Polglaze K, Bertrand P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 2016; 8(1): 56.
[http://dx.doi.org/10.3390/nu8010056] [PMID: 26805875]
[6]
Steger MF, Kashdan TB. Depression and everyday social activity, belonging, and well-being. J Couns Psychol 2009; 56(2): 289-300.
[http://dx.doi.org/10.1037/a0015416] [PMID: 20428460]
[7]
Cowen PJ, Browning M. What has serotonin to do with depression? World Psychiatry 2015; 14(2): 158-60.
[http://dx.doi.org/10.1002/wps.20229] [PMID: 26043325]
[8]
Underwood MD, Kassir SA, Bakalian MJ, et al. Serotonin receptors and suicide, major depression, alcohol use disorder and reported early life adversity. Transl Psychiatry 2018; 8(1): 279.
[http://dx.doi.org/10.1038/s41398-018-0309-1] [PMID: 30552318]
[9]
Saldanha D, Kumar N, Ryali VSSR, Srivastava K, Pawar AA. Serum Serotonin Abnormality in Depression. Med J Armed Forces India 2009; 65(2): 108-12.
[http://dx.doi.org/10.1016/S0377-1237(09)80120-2] [PMID: 27408213]
[10]
Nutt DJ. The neuropharmacology of serotonin and noradrenaline in depression. Int Clin Psychopharmacol 2002; 17 (Suppl. 1): S1-S12.
[http://dx.doi.org/10.1097/00004850-200206001-00002] [PMID: 12369606]
[11]
Young SN. How to increase serotonin in the human brain without drugs. J Psychiatry Neurosci 2007; 32(6): 394-9.
[PMID: 18043762]
[12]
Höglund E, Øverli Ø, Winberg S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Front Endocrinol (Lausanne) 2019; 10: 158.
[http://dx.doi.org/10.3389/fendo.2019.00158] [PMID: 31024440]
[13]
Clark CT, Weissbach H, Udenfriend S. 5-Hydroxytryptophan decarboxylase: preparation and properties. J Biol Chem 1954; 210(1): 139-48.
[http://dx.doi.org/10.1016/S0021-9258(18)65440-7] [PMID: 13201577]
[14]
Noguchi T, Nishino M, Kido R. Tryptophan 5-hydroxylase in rat intestine. Biochem J 1973; 131(2): 375-80.
[http://dx.doi.org/10.1042/bj1310375] [PMID: 4541815]
[15]
Tyce GM. Origin and metabolism of serotonin. J Cardiovasc Pharmacol 1990; 16 (Suppl. 3): S1-7.
[http://dx.doi.org/10.1097/00005344-199000163-00002] [PMID: 1369709]
[16]
Dahlstrom A, Fuxe K. Evidence for the existence of monoamine- containing neurons in the central nervous system. Acta Physiol Scand 1964; 62: 1-55.
[17]
Best J, Nijhout HF, Reed M. Serotonin synthesis, release and reuptake in terminals: A mathematical model. Theor Biol Med Model 2010; 7(1): 34.
[http://dx.doi.org/10.1186/1742-4682-7-34] [PMID: 20723248]
[18]
Mondanelli G, Volpi C. Serotonin Pathway in Neuroimmune Network. London: Serotonin and the CNS - New Developments in Pharmacology and Therapeutics 2021.
[19]
Gibson EL. Tryptophan supplementation and serotonin function: Genetic variations in behavioural effects. Proc Nutr Soc 2018; 77(2): 174-88.
[http://dx.doi.org/10.1017/S0029665117004451] [PMID: 29368666]
[20]
Charnay Y, Léger L. Brain serotonergic circuitries. Dialogues Clin Neurosci 2010; 12(4): 471-87.
[http://dx.doi.org/10.31887/DCNS.2010.12.4/ycharnay] [PMID: 21319493]
[21]
Tipton KF. Enzymology of monoamine oxidase. Cell Biochem Funct 1986; 4(2): 79-87.
[http://dx.doi.org/10.1002/cbf.290040202] [PMID: 3518979]
[22]
Nagatsu T, Sawada M. Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: possible implications of glial cells. J Neural Transm Suppl 2006; 71(71): 53-65.
[http://dx.doi.org/10.1007/978-3-211-33328-0_7] [PMID: 17447416]
[23]
Gomes B, Naguwa G, Kloepfer HG, Yasunobu KT. Amine oxidase. Arch Biochem Biophys 1969; 132(1): 28-33.
[http://dx.doi.org/10.1016/0003-9861(69)90335-X] [PMID: 5792837]
[24]
Harada M, Nagatsu T. Identification of flavin in the purified beef brain mitochondrial monoamine oxidase. Experientia 1969; 25(6): 583-4.
[http://dx.doi.org/10.1007/BF01896523] [PMID: 5800105]
[25]
Walker WH, Kearney EB, Seng R, Singer TP. Sequence and structure of a cysteinyl flavin peptide from monoamine oxidase. Biochem Biophys Res Commun 1971; 44(2): 287-92.
[http://dx.doi.org/10.1016/0006-291X(71)90597-3] [PMID: 5159775]
[26]
Johnston JP. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 1968; 17(7): 1285-97.
[http://dx.doi.org/10.1016/0006-2952(68)90066-X] [PMID: 5659776]
[27]
Cesura AM, Gottowik J, Lang G, Malherbe P, Da Prada M. Structure-function relationships of mitochondrial monoamine oxidase A and B: Chimaeric enzymes and site-directed mutagenesis studies. J Neural Transm Suppl 1998; 52: 189-200.
[http://dx.doi.org/10.1007/978-3-7091-6499-0_18] [PMID: 9564619]
[28]
Rang HP, Dale MM, Ritter JM, Flower RJ. Pharmacology. London: Churchill Vingstone, Elsevier 2008.
[29]
Youdim MBH, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006; 7(4): 295-309.
[http://dx.doi.org/10.1038/nrn1883] [PMID: 16552415]
[30]
Yamada M, Yasuhara H. Clinical pharmacology of MAO inhibitors: Safety and future. Neurotoxicology 2004; 25(1-2): 215-21.
[http://dx.doi.org/10.1016/S0161-813X(03)00097-4] [PMID: 14697896]
[31]
Pålhagen S, Heinonen E, Hägglund J, Kaugesaar T, Mäki-Ikola O, Palm R. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology 2006; 66(8): 1200-6.
[http://dx.doi.org/10.1212/01.wnl.0000204007.46190.54] [PMID: 16540603]
[32]
Provost JC, Funck-Brentano C, Rovei V, D’Estanque J, Ego D, Jaillon P. Pharmacokinetic and pharmacodynamic interaction between toloxatone, a new reversible monoamine oxidase-A inhibitor, and oral tyramine in healthy subjects. Clin Pharmacol Ther 1992; 52(4): 384-93.
[http://dx.doi.org/10.1038/clpt.1992.159] [PMID: 1424410]
[33]
Youdim MBH, Finberg JPM, Tipton KF. Catecholamine II. Berlin: Springer 1988; pp. 127-99.
[34]
Liccione J, Azzaro A. Different roles for type A and type B monoamine oxidase in regulating synaptic dopamine at D-1 and D-2 receptors associated with adenosine-3?5?-cyclic monophosphate (cyclic AMP) formation. Naunyn Schmiedebergs Arch Pharmacol 1988; 337(2): 151-8.
[http://dx.doi.org/10.1007/BF00169242] [PMID: 2835690]
[35]
Yang L, Omori K, Suzukawa J, Inagaki C. Calcineurin-mediated BAD Ser155 dephosphorylation in ammonia-induced apoptosis of cultured rat hippocampal neurons. Neurosci Lett 2004; 357(1): 73-5.
[http://dx.doi.org/10.1016/j.neulet.2003.12.032] [PMID: 15036616]
[36]
Schildkraut JJ. The catecholamine hypothesis of affective disorders: A review of supporting evidence. 1965 [classical article]. J Neuropsychiatry Clin Neurosci 1995; 7(4): 524-33.
[http://dx.doi.org/10.1176/jnp.7.4.524] [PMID: 8555758]
[37]
Coppen A. The biochemistry of affective disorders. Br J Psychiatry 1967; 113(504): 1237-64.
[http://dx.doi.org/10.1192/bjp.113.504.1237] [PMID: 4169954]
[38]
Leo J, Lacasse JR. The Media and the Chemical Imbalance Theory of Depression. Society 2008; 45(1): 35-45.
[http://dx.doi.org/10.1007/s12115-007-9047-3]
[39]
Healy D. Let them eat Prozac. New York: New York University Press 2006.
[40]
Moncrieff J. The creation of the concept of an antidepressant: An historical analysis. Soc Sci Med 2008; 66(11): 2346-55.
[http://dx.doi.org/10.1016/j.socscimed.2008.01.047] [PMID: 18321627]
[41]
Lacasse JR, Leo J. Serotonin and depression: A disconnect between the advertisements and the scientific literature. PLoS Med 2005; 2(12): e392.
[http://dx.doi.org/10.1371/journal.pmed.0020392] [PMID: 16268734]
[42]
Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp Clin Psychopharmacol 2015; 23(1): 1-21.
[http://dx.doi.org/10.1037/a0038550] [PMID: 25643025]
[43]
Burroughs welcome to relaunch antidepressant Wellbutrin in mid-July after aborted launch in 1986; FDA-approved labeling includes data on seizure risk. Pink Sheet 1989.
[44]
US Food and Drug Administration. Silver Spring (MD): US Food and Drug Administration. 1989.
[45]
Wacker D, Wang S, McCorvy JD, et al. Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell 2017; 168(3): 377-389.e12.
[http://dx.doi.org/10.1016/j.cell.2016.12.033] [PMID: 28129538]
[46]
Cole C, Patterson RM, Craig JB, et al. A controlled study of efficacy of iproniazid in treatment of depression. Arch Gen Psychiatry 1959; 1(5): 513-8.
[http://dx.doi.org/10.1001/archpsyc.1959.03590050081010] [PMID: 13811107]
[47]
Kirsch I. Antidepressants and the Placebo Effect. Z Psychol 2014; 222(3): 128-34.
[http://dx.doi.org/10.1027/2151-2604/a000176] [PMID: 25279271]
[48]
Arroll B, Macgillivray S, Ogston S, et al. Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: A meta-analysis. Ann Fam Med 2005; 3(5): 449-56.
[http://dx.doi.org/10.1370/afm.349] [PMID: 16189062]
[49]
Patel K, Allen S, Haque MN, Angelescu I, Baumeister D, Tracy DK. Bupropion: A systematic review and meta-analysis of effectiveness as an antidepressant. Ther Adv Psychopharmacol 2016; 6(2): 99-144.
[http://dx.doi.org/10.1177/2045125316629071] [PMID: 27141292]
[50]
Penn E, Tracy DK. The drugs don’t work? antidepressants and the current and future pharmacological management of depression. Ther Adv Psychopharmacol 2012; 2(5): 179-88.
[http://dx.doi.org/10.1177/2045125312445469] [PMID: 23983973]
[51]
Murrough JW, Charney DS. Is there anything really novel on the antidepressant horizon? Curr Psychiatry Rep 2012; 14(6): 643-9.
[http://dx.doi.org/10.1007/s11920-012-0321-8] [PMID: 22996298]
[52]
Lapidus KAB, Levitch CF, Perez AM, et al. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry 2014; 76(12): 970-6.
[http://dx.doi.org/10.1016/j.biopsych.2014.03.026] [PMID: 24821196]
[53]
Kowalczyk M, Kowalczyk E, Kwiatkowski P, Łopusiewicz Ł, Sienkiewicz M, Talarowska M. Ketamine—New Possibilities in the Treatment of Depression: A Narrative Review. Life (Basel) 2021; 11(11): 1186.
[http://dx.doi.org/10.3390/life11111186] [PMID: 34833062]
[54]
Heitger A. Regulation of expression and function of IDO in human dendritic cells. Curr Med Chem 2011; 18(15): 2222-33.
[http://dx.doi.org/10.2174/092986711795656018] [PMID: 21517757]
[55]
Ball HJ, Sanchez-Perez A, Weiser S, et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 2007; 396(1): 203-13.
[http://dx.doi.org/10.1016/j.gene.2007.04.010] [PMID: 17499941]
[56]
Panozzo C, Nawara M, Suski C, et al. Aerobic and anaerobic NAD + metabolism in Saccharomyces cerevisiae. FEBS Lett 2002; 517(1-3): 97-102.
[http://dx.doi.org/10.1016/S0014-5793(02)02585-1] [PMID: 12062417]
[57]
Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 2000; 164(7): 3596-9.
[http://dx.doi.org/10.4049/jimmunol.164.7.3596] [PMID: 10725715]
[58]
Moon YW, Hajjar J, Hwu P, Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer 2015; 3(1): 51.
[http://dx.doi.org/10.1186/s40425-015-0094-9] [PMID: 26674411]
[59]
Routy JP, Routy B, Graziani GM, Mehraj V. The kynurenine pathway is a doubleedged sword in immune-privileged sites and in cancer: Implications for immunotherapy. Int J Tryptophan Res 2016; 9: IJTR.S38355.
[http://dx.doi.org/10.4137/IJTR.S38355] [PMID: 27773992]
[60]
Bilir C, Sarisozen C. Indoleamine 2,3-dioxygenase (IDO): Only an enzyme or a checkpoint controller? J Oncol Sci 2017; 3(2): 52-6.
[http://dx.doi.org/10.1016/j.jons.2017.04.001]
[61]
Merlo LMF, Pigott E, DuHadaway JB, et al. IDO2 is a critical mediator of autoantibody production and inflammatory pathogenesis in a mouse model of autoimmune arthritis. J Immunol 2014; 192(5): 2082-90.
[http://dx.doi.org/10.4049/jimmunol.1303012] [PMID: 24489090]
[62]
Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54(7): 597-606.
[http://dx.doi.org/10.1001/archpsyc.1997.01830190015002] [PMID: 9236543]
[63]
Kuhar MJ, Couceyro PR, Lambert PD. Catecholamines.Basic Neurochemistry. Philadelphia, Pa: Lippincott Williams & Wilkins 2001; pp. 243-62.
[64]
Bradley SL, Dodelzon K, Sandhu HK, Philibert RA. Relationship of serotonin transporter gene polymorphisms and haplotypes to mRNA transcription. Am J Med Genet B Neuropsychiatr Genet 2005; 136B(1): 58-61.
[http://dx.doi.org/10.1002/ajmg.b.30185] [PMID: 15858822]
[65]
Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274(5292): 1527-31.
[http://dx.doi.org/10.1126/science.274.5292.1527] [PMID: 8929413]
[66]
Hariri AR, Holmes A. Genetics of emotional regulation: The role of the serotonin transporter in neural function. Trends Cogn Sci 2006; 10(4): 182-91.
[http://dx.doi.org/10.1016/j.tics.2006.02.011] [PMID: 16530463]
[67]
Collier DA, Stöber G, Li T, et al. A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders. Mol Psychiatry 1996; 1(6): 453-60.
[PMID: 9154246]
[68]
Su S, Zhao J, Bremner JD, et al. Serotonin transporter gene, depressive symptoms, and interleukin-6. Circ Cardiovasc Genet 2009; 2(6): 614-20.
[http://dx.doi.org/10.1161/CIRCGENETICS.109.870386] [PMID: 20031642]
[69]
Lam D, Ancelin ML, Ritchie K, Freak-Poli R, Saffery R, Ryan J. Genotype-dependent associations between serotonin transporter gene (SLC6A4) DNA methylation and late-life depression. BMC Psychiatry 2018; 18(1): 282.
[http://dx.doi.org/10.1186/s12888-018-1850-4] [PMID: 30180828]
[70]
Pollock B, Ferrell RE, Mulsant BH, et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 2000; 23(5): 587-90.
[http://dx.doi.org/10.1016/S0893-133X(00)00132-9] [PMID: 11027924]
[71]
Davin A, Monti MC, Polito L, et al. Correction: Influence of Serotonin Transporter Gene Polymorphisms and Adverse Life Events on Depressive Symptoms in the Elderly: A Population-Based Study. PLoS One 2016; 11(3): e0152858.
[http://dx.doi.org/10.1371/journal.pone.0152858] [PMID: 27023869]
[72]
Risch N, Herrell R, Lehner T, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA 2009; 301(23): 2462-71.
[http://dx.doi.org/10.1001/jama.2009.878] [PMID: 19531786]
[73]
Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301(5631): 386-9.
[http://dx.doi.org/10.1126/science.1083968] [PMID: 12869766]
[74]
Border R, Johnson EC, Evans LM, et al. No Support for Historical Candidate Gene or Candidate Gene-by-Interaction Hypotheses for Major Depression Across Multiple Large Samples. Am J Psychiatry 2019; 176(5): 376-87.
[http://dx.doi.org/10.1176/appi.ajp.2018.18070881] [PMID: 30845820]
[75]
Sorenson AN, Sullivan EC, Mendoza SP, Capitanio JP, Higley JD. Serotonin transporter genotype modulates HPA axis output during stress: Effect of stress, dexamethasone test and ACTH challenge. Transl Dev Psychiatry 2013; 1(1): 21130.
[http://dx.doi.org/10.3402/tdp.v1i0.21130] [PMID: 25068032]
[76]
Jiang X, Wang J, Luo T, Li Q. Impaired hypothalamic-pituitary-adrenal axis and its feedback regulation in serotonin transporter knockout mice. Psychoneuroendocrinology 2009; 34(3): 317-31.
[http://dx.doi.org/10.1016/j.psyneuen.2008.09.011] [PMID: 18980809]
[77]
Meier SM, Deckert J. Genetics of Anxiety Disorders. Curr Psychiatry Rep 2019; 21(3): 16.
[http://dx.doi.org/10.1007/s11920-019-1002-7] [PMID: 30826936]
[78]
van der Doelen RHA, Deschamps W, D’Annibale C, et al. Early life adversity and serotonin transporter gene variation interact at the level of the adrenal gland to affect the adult hypothalamo-pituitary-adrenal axis. Transl Psychiatry 2014; 4(7): e409.
[http://dx.doi.org/10.1038/tp.2014.57] [PMID: 25004389]
[79]
Nautiyal KM, Hen R. Serotonin receptors in depression: From A to B. F1000 Res 2017; 6: 123.
[http://dx.doi.org/10.12688/f1000research.9736.1] [PMID: 28232871]
[80]
Lemonde S, Turecki G, Bakish D, et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 2003; 23(25): 8788-99.
[http://dx.doi.org/10.1523/JNEUROSCI.23-25-08788.2003] [PMID: 14507979]
[81]
Albert PR, Lemonde S. 5-HT1A receptors, gene repression, and depression: Guilt by association. Neuroscientist 2004; 10(6): 575-93.
[http://dx.doi.org/10.1177/1073858404267382] [PMID: 15534042]
[82]
Czesak M, Le François B, Millar AM, et al. Increased serotonin-1A (5-HT1A) autoreceptor expression and reduced raphe serotonin levels in deformed epidermal autoregulatory factor-1 (Deaf-1) gene knock-out mice. J Biol Chem 2012; 287(9): 6615-27.
[http://dx.doi.org/10.1074/jbc.M111.293027] [PMID: 22232550]
[83]
Parsey RV, Hastings RS, Oquendo MA, et al. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 2006; 163(1): 52-8.
[http://dx.doi.org/10.1176/appi.ajp.163.1.52] [PMID: 16390889]
[84]
Richardson-Jones JW, Craige CP, Guiard BP, et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010; 65(1): 40-52.
[http://dx.doi.org/10.1016/j.neuron.2009.12.003] [PMID: 20152112]
[85]
Hannon J, Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res 2008; 195(1): 198-213.
[http://dx.doi.org/10.1016/j.bbr.2008.03.020] [PMID: 18571247]
[86]
Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301(5634): 805-9.
[http://dx.doi.org/10.1126/science.1083328] [PMID: 12907793]
[87]
Blier P, Piñeyro G, El Mansari M, Bergeron R, Montigny C. Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci 1998; 861(1 ADVANCES IN S): 204-16.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb10192.x] [PMID: 9928258]
[88]
Garcia-Garcia AL, Newman-Tancredi A, Leonardo ED. P5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl) 2014; 231(4): 623-36.
[http://dx.doi.org/10.1007/s00213-013-3389-x] [PMID: 24337875]
[89]
Samuels BA, Hen R. Novelty-suppressed feeding in the mouse.Mood and anxiety related phenotypes in mice: characterization using behavioral tests, volume II Neuromethods. Totowa: Humana Press 2011.
[http://dx.doi.org/10.1007/978-1-61779-313-4_7]
[90]
Tanaka KF, Samuels BA, Hen R. Serotonin receptor expression along the dorsal–ventral axis of mouse hippocampus. Philos Trans R Soc Lond B Biol Sci 2012; 367(1601): 2395-401.
[http://dx.doi.org/10.1098/rstb.2012.0038] [PMID: 22826340]
[91]
Ślifirski G, Król M, Turło J. 5-HT Receptors and the Development of New Antidepressants. Int J Mol Sci 2021; 22(16): 9015.
[http://dx.doi.org/10.3390/ijms22169015] [PMID: 34445721]
[92]
Savitz J, Lucki I, Drevets WC. 5-HT1A receptor function in major depressive disorder. Prog Neurobiol 2009; 88(1): 17-31.
[http://dx.doi.org/10.1016/j.pneurobio.2009.01.009] [PMID: 19428959]
[93]
Tiger M, Varnäs K, Okubo Y, Lundberg J. The 5-HT1B receptor - a potential target for antidepressant treatment. Psychopharmacology (Berl) 2018; 235(5): 1317-34.
[http://dx.doi.org/10.1007/s00213-018-4872-1] [PMID: 29546551]
[94]
Ruf B, Bhagwagar Z. The 5-HT1B receptor: A novel target for the pathophysiology of depression. Curr Drug Targets 2009; 10(11): 1118-38.
[http://dx.doi.org/10.2174/138945009789735192] [PMID: 19702551]
[95]
Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 1999; 38(8): 1083-152.
[http://dx.doi.org/10.1016/S0028-3908(99)00010-6] [PMID: 10462127]
[96]
Leenders A, Sheng Z. Modulation of neurotransmitter release by the second messenger-activated protein kinases: Implications for presynaptic plasticity. Pharmacol Ther 2005; 105(1): 69-84.
[http://dx.doi.org/10.1016/j.pharmthera.2004.10.012] [PMID: 15626456]
[97]
Sari Y. Serotonin receptors: From protein to physiological function and behavior. Neurosci Biobehav Rev 2004; 28(6): 565-82.
[http://dx.doi.org/10.1016/j.neubiorev.2004.08.008] [PMID: 15527863]
[98]
Sari Y, Miquel MC, Brisorgueil MJ, et al. Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: Immunocytochemical, autoradiographic and lesion studies. Neuroscience 1999; 88(3): 899-915.
[http://dx.doi.org/10.1016/S0306-4522(98)00256-5] [PMID: 10363826]
[99]
Williams GV, Rao SG, Goldman-Rakic PS. The physiological role of 5-HT2A receptors in working memory. J Neurosci 2002; 22(7): 2843-54.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02843.2002] [PMID: 11923449]
[100]
Marek GJ, Carpenter LL, McDougle CJ, Price LH. Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders. Neuropsychopharmacology 2003; 28(2): 402-12.
[http://dx.doi.org/10.1038/sj.npp.1300057] [PMID: 12589395]
[101]
Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 2004; 29(4): 252-65.
[PMID: 15309042]
[102]
Guiard BP, Giovanni GD. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: The missing link? Front Pharmacol 2015; 6: 46.
[http://dx.doi.org/10.3389/fphar.2015.00046] [PMID: 25852551]
[103]
Martin P, Lemonnier F. The role of type 2 serotonin receptors, 5-HT2A and 5-HT2C, in depressive disorders: Effect of medifoxamine. Encephale 1994; 20(4): 427-35.
[PMID: 7988407]
[104]
Millan MJ. Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: Focus on novel therapeutic strategies. Therapie 2005; 60(5): 441-60.
[http://dx.doi.org/10.2515/therapie:2005065] [PMID: 16433010]
[105]
Martin CBP, Hamon M, Lanfumey L, Mongeau R. Controversies on the role of 5-HT2C receptors in the mechanisms of action of antidepressant drugs. Neurosci Biobehav Rev 2014; 42: 208-23.
[http://dx.doi.org/10.1016/j.neubiorev.2014.03.001] [PMID: 24631644]
[106]
Fletcher PJ, Rizos Z, Noble K, et al. Effects of the 5-HT2C receptor agonist Ro60-0175 and the 5-HT2A receptor antagonist M100907 on nicotine self-administration and reinstatement. Neuropharmacology 2012; 62(7): 2288-98.
[http://dx.doi.org/10.1016/j.neuropharm.2012.01.023] [PMID: 22342986]
[107]
Gomes F, Greidinger M, Salviano M, et al. Antidepressant- and anxiogenic-like effects of acute 5-HT2C receptor activation in rats exposed to the forced swim test and elevated plus maze. Psychol Neurosci 2010; 3(2): 245-9.
[http://dx.doi.org/10.3922/j.psns.2010.2.014]
[108]
Jenck F, Bös M, Wichmann J, Stadler H, Martin JR, Moreau JL. The role of 5ht2c receptors in affective disorders. Expert Opin Investig Drugs 1998; 7(10): 1587-99.
[http://dx.doi.org/10.1517/13543784.7.10.1587] [PMID: 15991903]
[109]
Marcinkiewcz CA, Dorrier CE, Lopez AJ, Kash TL. Ethanol induced adaptations in 5-HT2c receptor signaling in the bed nucleus of the stria terminalis: Implications for anxiety during ethanol withdrawal. Neuropharmacology 2015; 89: 157-67.
[http://dx.doi.org/10.1016/j.neuropharm.2014.09.003] [PMID: 25229718]
[110]
Thompson AJ, Lummis SCR. The 5-HT 3 receptor as a therapeutic target. Expert Opin Ther Targets 2007; 11(4): 527-40.
[http://dx.doi.org/10.1517/14728222.11.4.527] [PMID: 17373882]
[111]
Engel M, Smidt MP, Hooft JA. The serotonin 5-HT3 receptor: A novel neurodevelopmental target. Front Cell Neurosci 2013; 7: 76.
[http://dx.doi.org/10.3389/fncel.2013.00076] [PMID: 23761731]
[112]
Gupta D, Prabhakar V, Radhakrishnan M. 5HT3 receptors: Target for new antidepressant drugs. Neurosci Biobehav Rev 2016; 64: 311-25.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.001] [PMID: 26976353]
[113]
Bétry C, Etiévant A, Oosterhof C, Ebert B, Sanchez C, Haddjeri N. Role of 5- HT3 Receptors in the Antidepressant Response. Pharm 2011; 4(4): 603-29.
[114]
Gupta D, Radhakrishnan M, Kurhe Y, Thangaraj D, Prabhakar V, Kanade P. Antidepressant-like effects of a novel 5-HT3 receptor antagonist 6z in acute and chronic murine models of depression. Acta Pharmacol Sin 2014; 35(12): 1493-503.
[http://dx.doi.org/10.1038/aps.2014.89] [PMID: 25418380]
[115]
Fakhfouri G, Rahimian R, Dyhrfjeld-Johnsen J, Zirak MR, Beaulieu JM. 5-HT 3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface. Pharmacol Rev 2019; 71(3): 383-412.
[http://dx.doi.org/10.1124/pr.118.015487] [PMID: 31243157]
[116]
Vidal R, Castro E, Pilar-Cuéllar F, et al. Serotonin 5-HT4 receptors: A new strategy for developing fast acting antidepressants? Curr Pharm Des 2014; 20(23): 3751-62.
[http://dx.doi.org/10.2174/13816128113196660734] [PMID: 24180399]
[117]
Mendez-David I, David DJ, Darcet F, et al. Rapid anxiolytic effects of a 5-HT4 receptor agonist are mediated by a neurogenesis-independent mechanism. Neuropsychopharmacology 2014; 39(6): 1366-78.
[http://dx.doi.org/10.1038/npp.2013.332] [PMID: 24287720]
[118]
Murphy SE, de Cates AN, Gillespie AL, et al. Translating the promise of 5HT4 receptor agonists for the treatment of depression. Psychol Med 2021; 51(7): 1111-20.
[http://dx.doi.org/10.1017/S0033291720000604] [PMID: 32241310]
[119]
Lucas G, Rymar VV, Du J, et al. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007; 55(5): 712-25.
[http://dx.doi.org/10.1016/j.neuron.2007.07.041] [PMID: 17785179]
[120]
Samuels BA, Mendez-David I, Faye C, et al. Serotonin 1A and Serotonin 4 Receptors. Neuroscientist 2016; 22(1): 26-45.
[http://dx.doi.org/10.1177/1073858414561303] [PMID: 25488850]
[121]
Sanger GJ. Therapeutic Applications of 5-HT4 Receptor Agonists and Antagonists.5-HT4 Receptors in the Brain and Periphery Biotechnology Intelligence Unit. Berlin, Heidelberg: Springer 1998.
[122]
Yun HM, Rhim H. The serotonin-6 receptor as a novel therapeutic target. Exp Neurobiol 2011; 20(4): 159-68.
[http://dx.doi.org/10.5607/en.2011.20.4.159] [PMID: 22355260]
[123]
Schechter LE, Lin Q, Smith DL, et al. Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology 2008; 33(6): 1323-35.
[http://dx.doi.org/10.1038/sj.npp.1301503] [PMID: 17625499]
[124]
Wesołowska A. Potential role of the 5-HT6 receptor in depression and anxiety: An overview of preclinical data. Pharmacol Rep 2010; 62(4): 564-77.
[http://dx.doi.org/10.1016/S1734-1140(10)70315-7] [PMID: 20884998]
[125]
Hedlund PB. The 5-HT7 receptor and disorders of the nervous system: An overview. Psychopharmacology (Berl) 2009; 206(3): 345-54.
[http://dx.doi.org/10.1007/s00213-009-1626-0] [PMID: 19649616]
[126]
Pharmacological Blockade of 5-HT7 Receptors as a Putative Fast Acting Antidepressant Strategy. Neuropsychopharmacol 2009; 36: 1275-88.
[127]
Balcer OM, Seager MA, Gleason SD, et al. Evaluation of 5-HT7 receptor antagonism for the treatment of anxiety, depression, and schizophrenia through the use of receptor-deficient mice. Behav Brain Res 2019; 360: 270-8.
[http://dx.doi.org/10.1016/j.bbr.2018.12.019] [PMID: 30543903]
[128]
Naumenko VS, Popova NK, Lacivita E, Leopoldo M, Ponimaskin eg. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci Ther 2014; 20(7): 582-90.
[http://dx.doi.org/10.1111/cns.12247] [PMID: 24935787]
[129]
Abbas AI, Hedlund PB, Huang XP, Tran TB, Meltzer HY, Roth BL. Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology (Berl) 2009; 205(1): 119-28.
[http://dx.doi.org/10.1007/s00213-009-1521-8] [PMID: 19337725]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy