Abstract
Regular blood cholesterol control is an integral part of healthcare for detecting cardiovascular issues immediately. Existing procedures are mostly intrusive and necessitate the collection of blood samples. Furthermore, because of the danger of infection, bruising, and/or haematoma, this measurement method may not be appropriate for continuous or regular examinations. As a result, an alternate option is required, which is known as the noninvasive (NI) approach that does not necessitate the collection of blood samples. Because NI approaches give painless and precise answers, they can be used in place of intrusive procedures. This review article includes a comprehensive investigation on NI methodologies and various NI approaches for detecting cholesterol in the bloodstream. It is important to note that medical system possibilities are changing due to the algorithms for NI techniques, which ultimately project the need for patient monitoring via the internet of medical things (IoMT) and artificial intelligence (AI).
Graphical Abstract
[http://dx.doi.org/10.1088/1742-6596/450/1/012057]
[http://dx.doi.org/10.4236/ojab.2017.41001]
[http://dx.doi.org/10.1016/j.snb.2014.10.041]
[http://dx.doi.org/10.1021/nl504217p] [PMID: 25569673]
[http://dx.doi.org/10.1016/j.redox.2017.02.025] [PMID: 28319895]
[http://dx.doi.org/10.1016/j.cca.2015.04.036]
[http://dx.doi.org/10.2/JQUERY.MIN.JS]
[http://dx.doi.org/10.1007/s11745-006-5010-0] [PMID: 16981439]
[http://dx.doi.org/10.1016/j.foodcont.2016.10.008]
[http://dx.doi.org/10.1016/j.bios.2018.08.046] [PMID: 30195087]
[http://dx.doi.org/10.1039/C9CC01534E] [PMID: 30968895]
[http://dx.doi.org/10.1016/j.bios.2015.06.043] [PMID: 26143460]
[http://dx.doi.org/10.1016/j.optmat.2022.112375]
[http://dx.doi.org/10.1021/acs.analchem.6b04635] [PMID: 28192948]
[http://dx.doi.org/10.1016/j.bios.2019.05.014] [PMID: 31085403]
[http://dx.doi.org/10.1039/C8AN00158H] [PMID: 29594306]
[http://dx.doi.org/10.1002/anie.201812449] [PMID: 30707484]
[http://dx.doi.org/10.1021/acsomega.9b00874] [PMID: 31460022]
[http://dx.doi.org/10.1021/acs.analchem.5b02452] [PMID: 26379119]
[http://dx.doi.org/10.1016/j.microc.2020.105830]
[http://dx.doi.org/10.1016/j.memsci.2022.121007]
[http://dx.doi.org/10.1186/s12916-017-0852-2] [PMID: 28427464]
[http://dx.doi.org/10.1093/clinchem/46.11.1762] [PMID: 11067811]
[http://dx.doi.org/10.1167/iovs.12-10516] [PMID: 22918629]
[http://dx.doi.org/10.1021/jf0735432] [PMID: 18419125]
[http://dx.doi.org/10.1016/j.aca.2012.02.015] [PMID: 22483213]
[http://dx.doi.org/10.1016/j.aca.2009.06.060] [PMID: 19850173]
[http://dx.doi.org/10.1093/clinchem/20.4.470] [PMID: 4818200]
[http://dx.doi.org/10.1051/matecconf/202033106005]
[http://dx.doi.org/10.1007/s11883-001-0079-7]
[http://dx.doi.org/10.1186/s12938-021-00889-1] [PMID: 34074299]
[http://dx.doi.org/10.1186/s12944-021-01571-0] [PMID: 34657601]
[http://dx.doi.org/10.3788/CJL202148.0307002]
[http://dx.doi.org/10.3390/bios9010027] [PMID: 30769890]
[http://dx.doi.org/10.4103/0973-029X.131881] [PMID: 24959029]
[http://dx.doi.org/10.1016/0003-9969(95)00077-1] [PMID: 8833598]
[http://dx.doi.org/10.1177/00220345970760100401] [PMID: 9326895]
[http://dx.doi.org/10.1039/C9AN01679A] [PMID: 31820750]
[http://dx.doi.org/10.1016/j.snb.2005.10.025]
[http://dx.doi.org/10.1016/j.snb.2016.04.019]
[http://dx.doi.org/10.1016/j.snb.2015.02.045]
[http://dx.doi.org/10.1016/j.bios.2010.11.046] [PMID: 21177093]
[http://dx.doi.org/10.1016/j.snb.2018.05.080]
[http://dx.doi.org/10.1016/0956-5663(95)96856-T] [PMID: 7755964]
[http://dx.doi.org/10.1002/adhm.201600494] [PMID: 27385673]
[http://dx.doi.org/10.1016/S0022-2275(20)37301-6] [PMID: 8906596]
[http://dx.doi.org/10.1007/BF00203778]
[http://dx.doi.org/10.1038/eye.2010.7]
[http://dx.doi.org/10.1021/la060515p] [PMID: 16922549]
[http://dx.doi.org/10.1167/iovs.12-10662] [PMID: 23341008]
[http://dx.doi.org/10.1016/S0014-4835(03)00005-8] [PMID: 12634106]
[http://dx.doi.org/10.1167/iovs.13-12786] [PMID: 24255037]
[http://dx.doi.org/10.1007/978-1-4684-5643-1_13] [PMID: 2782136]
[http://dx.doi.org/10.1088/1742-6596/459/1/012030]
[http://dx.doi.org/10.1016/S0021-9150(99)00203-8] [PMID: 10559519]
[http://dx.doi.org/10.1504/IJMEI.2012.048384]
[http://dx.doi.org/10.1109/ICIME.2009.61]
[http://dx.doi.org/10.24251/HICSS.2018.407]
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.013] [PMID: 31022391]
[http://dx.doi.org/10.1145/319382.319388]
[http://dx.doi.org/10.1038/s41563-019-0345-0]
[http://dx.doi.org/10.1016/j.chest.2018.04.037] [PMID: 29752973]
[http://dx.doi.org/10.2200/S00324ED1V01Y201102AIM010]
[http://dx.doi.org/10.4236/jis.2016.73009]
b) Zhang P, Wang R, Xiu N. Multinomial logistic regression classifier via lq, 0-proximal Newton algorithm. Neurocomputing 2012; 468: 148-64.
[http://dx.doi.org/10.1007/978-1-4419-1742-3]
[http://dx.doi.org/10.1038/s43588-022-00264-7]
[http://dx.doi.org/10.1056/NEJMp1702071] [PMID: 28657867]
[http://dx.doi.org/10.3389/fpubh.2019.00400] [PMID: 31993412]
[http://dx.doi.org/10.1016/j.cca.2021.02.020] [PMID: 33667481]
[http://dx.doi.org/10.1186/s12911-019-0918-5] [PMID: 31694707]
[http://dx.doi.org/10.1093/labmed/lmab065] [PMID: 34635916]
[http://dx.doi.org/10.1001/jama.2019.0286] [PMID: 30735228]
[http://dx.doi.org/10.1016/j.cca.2018.11.022] [PMID: 30448282]
[http://dx.doi.org/10.1371/journal.pone.0239934] [PMID: 32997716]
[http://dx.doi.org/10.1109/JBHI.2014.2350014] [PMID: 25148675]
[http://dx.doi.org/10.1007/BF00994018]
[http://dx.doi.org/10.1007/978-1-4302-5990-9]
[http://dx.doi.org/10.1007/S13205-018]
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15885] [PMID: 32909848]