Abstract
Introduction: The importance of microRNAs (miRNAs) has been emphasized by an increasing number of studies, and it is well-known that miRNA dysregulation is associated with a variety of complex diseases. Revealing the associations between miRNAs and diseases are essential to disease prevention, diagnosis, and treatment.
Methods: However, traditional experimental methods in validating the roles of miRNAs in diseases could be very expensive, labor-intensive and time-consuming. Thus, there is a growing interest in predicting miRNA-disease associations by computational methods. Though many computational methods are in this category, their prediction accuracy needs further improvement for downstream experimental validation. In this study, we proposed a novel model to predict miRNA-disease associations by low-rank matrix completion (MDAlmc) integrating miRNA functional similarity, disease semantic similarity, and known miRNA-disease associations. In the 5-fold cross-validation, MDAlmc achieved an average AUROC of 0.8709 and AUPRC of 0.4172, better than those of previous models.
Results: Among the case studies of three important human diseases, the top 50 predicted miRNAs of 96% (breast tumors), 98% (lung tumors), and 90% (ovarian tumors) have been confirmed by previous literatures. And the unconfirmed miRNAs were also validated to be potential disease-associated miRNAs.
Conclusion: MDAlmc is a valuable computational resource for miRNA–disease association prediction.
Graphical Abstract
[http://dx.doi.org/10.1038/nrg2290] [PMID: 18197166]
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[http://dx.doi.org/10.1016/S0092-8674(03)00428-8] [PMID: 12809598]
[http://dx.doi.org/10.1016/j.omtn.2019.07.019] [PMID: 31479921]
[http://dx.doi.org/10.1073/pnas.0605298103] [PMID: 16885212]
[http://dx.doi.org/10.1038/ng1725] [PMID: 16380711]
[http://dx.doi.org/10.1126/science.1091903] [PMID: 14657504]
[http://dx.doi.org/10.4161/cc.6.17.4641] [PMID: 17786041]
[http://dx.doi.org/10.1093/cvr/cvn156] [PMID: 18550634]
[http://dx.doi.org/10.1016/j.ccr.2008.02.013] [PMID: 18328430]
[http://dx.doi.org/10.1016/j.molcel.2010.09.027] [PMID: 20965416]
[http://dx.doi.org/10.2174/1574893615999200715165335]
[http://dx.doi.org/10.1016/j.compbiomed.2021.104706] [PMID: 34371319]
[http://dx.doi.org/10.1093/bioinformatics/btx622] [PMID: 29028927]
[http://dx.doi.org/10.1016/j.eururo.2011.01.044] [PMID: 21296484]
[http://dx.doi.org/10.1016/j.compbiomed.2022.105516] [PMID: 35468406]
[http://dx.doi.org/10.1002/hep.27816] [PMID: 25820676]
[http://dx.doi.org/10.1155/2014/416323] [PMID: 24707485]
[http://dx.doi.org/10.1186/s12859-019-2640-9] [PMID: 30691413]
[http://dx.doi.org/10.1016/j.biocel.2009.12.014] [PMID: 20026422]
[http://dx.doi.org/10.2174/1574893611666160609081155]
[http://dx.doi.org/10.1093/bioinformatics/bty112] [PMID: 29490018]
[PMID: 26134276]
[http://dx.doi.org/10.1109/ACCESS.2020.2990533]
[http://dx.doi.org/10.1186/s12918-019-0696-9] [PMID: 30953512]
[http://dx.doi.org/10.3389/fgene.2019.01234] [PMID: 31921290]
[http://dx.doi.org/10.1093/nar/gkt1023] [PMID: 24194601]
[http://dx.doi.org/10.1186/1752-0509-4-S1-S2] [PMID: 20522252]
[http://dx.doi.org/10.1093/nar/gkn714] [PMID: 18927107]
[http://dx.doi.org/10.3390/cells8111405] [PMID: 31703479]
[http://dx.doi.org/10.1039/C6MB00049E] [PMID: 27153230]
[http://dx.doi.org/10.1109/ACCESS.2019.2958055]
[http://dx.doi.org/10.3389/fgene.2018.00411] [PMID: 30459803]
[http://dx.doi.org/10.1016/j.omtn.2018.10.005] [PMID: 30439645]
[http://dx.doi.org/10.1080/15476286.2019.1568820] [PMID: 30646823]
[http://dx.doi.org/10.1093/bioinformatics/btq241] [PMID: 20439255]
[http://dx.doi.org/10.1093/bib/bbv033] [PMID: 26059461]
[http://dx.doi.org/10.2174/1574893615999200711171530]
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107448] [PMID: 33579616]
[http://dx.doi.org/10.1155/2019/5145646] [PMID: 30800172]
[http://dx.doi.org/10.1109/ACCESS.2017.2754409]
[http://dx.doi.org/10.1371/journal.pone.0070204] [PMID: 23950912]
[http://dx.doi.org/10.1039/c2mb25180a] [PMID: 22875290]
[http://dx.doi.org/10.18632/oncotarget.11251] [PMID: 27533456]
[http://dx.doi.org/10.1016/j.ymeth.2017.05.016] [PMID: 28549952]
[PMID: 30583320]
[http://dx.doi.org/10.1093/bib/bbab581] [PMID: 35039838]
[http://dx.doi.org/10.1007/s11357-019-00106-x] [PMID: 31637571]
[http://dx.doi.org/10.3389/fcell.2021.619330] [PMID: 34012960]
[http://dx.doi.org/10.1093/bioinformatics/btaa109] [PMID: 32073612]
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0055] [PMID: 21768329]
[http://dx.doi.org/10.1038/srep05501] [PMID: 24975600]
[http://dx.doi.org/10.18632/oncotarget.15061] [PMID: 28177900]
[http://dx.doi.org/10.1039/C6MB00853D] [PMID: 28470244]
[http://dx.doi.org/10.1093/bioinformatics/bty503] [PMID: 29939227]
[http://dx.doi.org/10.1038/srep21106] [PMID: 26880032]
[http://dx.doi.org/10.1038/srep43792] [PMID: 28317855]
[http://dx.doi.org/10.1371/journal.pcbi.1005455] [PMID: 28339468]
[http://dx.doi.org/10.1093/bioinformatics/bty333] [PMID: 29701758]
[http://dx.doi.org/10.1038/srep13877] [PMID: 26347258]
[http://dx.doi.org/10.1186/1471-2164-13-S4-S2] [PMID: 22759650]
[http://dx.doi.org/10.1016/j.csbj.2021.12.028] [PMID: 35035786]
[http://dx.doi.org/10.1093/jnci/djx030] [PMID: 28376154]
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[http://dx.doi.org/10.7554/eLife.01977] [PMID: 25406066]
[http://dx.doi.org/10.1089/dna.2018.4282] [PMID: 30570350]
[http://dx.doi.org/10.1016/j.prp.2017.12.012] [PMID: 29653747]
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100103] [PMID: 18039118]
[http://dx.doi.org/10.1186/s12885-015-1458-8] [PMID: 26031775]
[http://dx.doi.org/10.3892/mmr.2019.10496] [PMID: 31322197]
[http://dx.doi.org/10.18632/oncotarget.3255] [PMID: 25840419]
[http://dx.doi.org/10.1056/NEJMra041842] [PMID: 15590954]
[http://dx.doi.org/10.1016/S0140-6736(09)61338-6] [PMID: 19793610]
[PMID: 27398154]
[http://dx.doi.org/10.3892/ol.2018.8743] [PMID: 29963173]