Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Sodium New Houttuyfonate Effectively Improves Phagocytosis and Inhibits the Excessive Release of Inflammatory Factors by Repressing TLR4/NF-Кb Pathway in Macrophages

Author(s): Xiaomei He, Mengxue Hu, Cheng Song, Mengru Ni, Longyun Liu, Cunwu Chen* and Daqiang Wu*

Volume 24, Issue 15, 2023

Published on: 03 May, 2023

Page: [1964 - 1971] Pages: 8

DOI: 10.2174/1389201024666230418163100

Price: $65

Abstract

Background: Sodium new houttuyfonate (SNH) is an adduct of houttuyfonate, which is the main component of the common Chinese medicinal plant Houttuynia cordata. SNH has been widely used in antibacterial and anti-inflammatory treatments in clinics. However, the exact antimicrobial mechanism of SNH is still unclear, despite its mild direct antimicrobial activity in vitro.

Objectives: The aim of this study is to investigate the effect and possible mechanism of SNH on macrophages against bacteria in vitro.

Methods: In this study, we assessed the antibacterial and anti-inflammatory effects of SNH on the RAW264.7 macrophage cell line against Pseudomonas aeruginosa, a major opportunistic pathogen.

Results: Firstly, we found that SNH showed minimal toxicity on RAW264.7 macrophages. Secondly, our results indicated that SNH effectively inhibited the inflammatory reaction of macrophages stimulated by P. aeruginosa. We also found that SNH improved the phagocytosis and killing effect of RAW264.7 macrophages against P. aeruginosa in vitro. Furthermore, our results revealed that SNH effectively inhibited the expression of the TLR4/NF-кB pathway in macrophage RAW264.7 co-incubated with P. aeruginosa in vitro.

Conclusion: Based on our findings, SNH can significantly improve the phagocytosis of macrophages and inhibit the excessive release of inflammatory factors by repressing the TLR4/NF-кB pathway.

Graphical Abstract

[1]
Boufridi, A.; Quinn, R.J. Harnessing the properties of natural products. Annu. Rev. Pharmacol. Toxicol., 2018, 58(1), 451-470.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-105029] [PMID: 28968192]
[2]
Grigalunas, M.; Burhop, A.; Christoforow, A.; Waldmann, H. Pseudo-natural products and natural product-inspired methods in chemical biology and drug discovery. Curr. Opin. Chem. Biol., 2020, 56, 111-118.
[http://dx.doi.org/10.1016/j.cbpa.2019.10.005] [PMID: 32362382]
[3]
Yuan, L.; Wu, J.; Aluko, R.E.; Ye, X. Kinetics of renin inhibition by sodium houttuyfonate analogs. Biosci. Biotechnol. Biochem., 2006, 70(9), 2275-2280.
[http://dx.doi.org/10.1271/bbb.60213] [PMID: 16960370]
[4]
Liu, X.; Zhong, L.; Xie, J.; Sui, Y.; Li, G.; Ma, Z.; Yang, L. Sodium houttuyfonate: A review of its antimicrobial, anti-inflammatory and cardiovascular protective effects. Eur. J. Pharmacol., 2021, 902, 174110.
[http://dx.doi.org/10.1016/j.ejphar.2021.174110] [PMID: 33901457]
[5]
Jiang, R.; Hu, C.; Li, Q.; Cheng, Z.; Gu, L.; Li, H.; Guo, Y.; Li, Q.; Lu, Y.; Li, K.; Chen, M.; Zhang, X. Sodium new houttuyfonate suppresses metastasis in NSCLC cells through the Linc00668/miR-147a/slug axis. J. Exp. Clin. Cancer Res., 2019, 38(1), 155.
[http://dx.doi.org/10.1186/s13046-019-1152-9] [PMID: 30971296]
[6]
Wu, Z.; Deng, X.; Hu, Q.; Xiao, X.; Jiang, J.; Ma, X.; Wu, M. Houttuynia cordata Thunb: An ethnopharmacological review. Front. Pharmacol., 2021, 12, 714694.
[http://dx.doi.org/10.3389/fphar.2021.714694] [PMID: 34539401]
[7]
Wang, T.; Huang, W.; Duan, Q.; Wang, J.; Cheng, H.; Shao, J.; Li, F.; Wu, D. Sodium houttuyfonate in vitro inhibits biofilm dispersion and expression of bdlA in Pseudomonas aeruginosa. Mol. Biol. Rep., 2019, 46(1), 471-477.
[http://dx.doi.org/10.1007/s11033-018-4497-9] [PMID: 30511304]
[8]
Xu, R.; Jiang, L.M.; He, J.M.; Liu, Y.L. The condensation mechanism of sodium new houttuyfonate and determination of the chemical structure of condensation products. Yao Xue Xue Bao, 2009, 44(6), 609-614.
[PMID: 19806891]
[9]
Yang, X.F.; Yao, H.; Zhai, J.B.; Li, H. Chemiluminescence determination of sodium new houttuyfonate in pharmaceutical preparations based on tween 80-rhodamine B system. J. Fluoresc., 2006, 17(1), 15-21.
[http://dx.doi.org/10.1007/s10895-006-0150-4] [PMID: 17160725]
[10]
Wu, J.; Wu, D.; Zhao, Y.; Si, Y.; Mei, L.; Shao, J.; Wang, T.; Yan, G.; Wang, C. Sodium new houttuyfonate inhibits Candida albicans bio-film formation by inhibiting the Ras1-cAMP-Efg1 pathway revealed by RNA-seq. Front. Microbiol., 2020, 11, 2075.
[http://dx.doi.org/10.3389/fmicb.2020.02075] [PMID: 32983053]
[11]
Zhao, Y.; Mei, L.; Si, Y.; Wu, J.; Shao, J.; Wang, T.; Yan, G.; Wang, C.; Wu, D. Sodium new houttuyfonate affects transcriptome and virulence factors of Pseudomonas aeruginosa controlled by quorum sensing. Front. Pharmacol., 2020, 11, 572375.
[http://dx.doi.org/10.3389/fphar.2020.572375] [PMID: 33123010]
[12]
Shui, Y.; Jiang, Q.; Lyu, X.; Wang, L.; lin, Y.; Ma, Q.; Gong, T.; Zeng, J.; Yang, R.; Li, Y. Inhibitory effects of sodium new houttuyfonate on growth and biofilm formation of Streptococcus mutans. Microb. Pathog., 2021, 157, 104957.
[http://dx.doi.org/10.1016/j.micpath.2021.104957] [PMID: 34022356]
[13]
Zhang, Q.; Liu, F.; Zeng, M.; Zhang, J.; Liu, Y.; Xin, C.; Mao, Y.; Song, Z. Antifungal activity of sodium new houttuyfonate against Aspergillus fumigatus in vitro and in vivo. Front. Microbiol., 2022, 13, 856272.
[http://dx.doi.org/10.3389/fmicb.2022.856272] [PMID: 35558127]
[14]
Shah, P.K. Inflammation, infection and atherosclerosis. Trends Cardiovasc. Med., 2019, 29(8), 468-472.
[http://dx.doi.org/10.1016/j.tcm.2019.01.004] [PMID: 30733074]
[15]
Medzhitov, R. The spectrum of inflammatory responses. Science, 2021, 374(6571), 1070-1075.
[http://dx.doi.org/10.1126/science.abi5200] [PMID: 34822279]
[16]
Zhou, H.; Xue, Y.; Dong, L.; Wang, C. Biomaterial-based physical regulation of macrophage behaviour. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(17), 3608-3621.
[http://dx.doi.org/10.1039/D1TB00107H] [PMID: 33908577]
[17]
Funes, S.C.; Rios, M.; Escobar-Vera, J.; Kalergis, A.M. Implications of macrophage polarization in autoimmunity. Immunology, 2018, 154(2), 186-195.
[http://dx.doi.org/10.1111/imm.12910] [PMID: 29455468]
[18]
Ross, E.A.; Devitt, A.; Johnson, J.R. Macrophages: The good, the bad, and the gluttony. Front. Immunol., 2021, 12, 708186.
[http://dx.doi.org/10.3389/fimmu.2021.708186] [PMID: 34456917]
[19]
Gaspar, M.C.; Couet, W.; Olivier, J.C.; Pais, A.A.C.C.; Sousa, J.J.S. Pseudomonas aeruginosa infection in cystic fibrosis lung disease and new perspectives of treatment: A review. Eur. J. Clin. Microbiol. Infect. Dis., 2013, 32(10), 1231-1252.
[http://dx.doi.org/10.1007/s10096-013-1876-y] [PMID: 23619573]
[20]
Zuercher, A.W.; Imboden, M.A.; Jampen, S.; Bosse, D.; Ulrich, M.; Chtioui, H.; Lauterburg, B.H.; Lang, A.B. Cellular immunity in healthy volunteers treated with an octavalent conjugate Pseudomonas aeruginosa vaccine. Clin. Exp. Immunol., 2005, 143(1), 132-138.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02964.x] [PMID: 16367944]
[21]
Allewelt, M.; Coleman, F.T.; Grout, M.; Priebe, G.P.; Pier, G.B. Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect. Immun., 2000, 68(7), 3998-4004.
[http://dx.doi.org/10.1128/IAI.68.7.3998-4004.2000] [PMID: 10858214]
[22]
Schoeniger, A.; Fuhrmann, H.; Schumann, J. LPS- or Pseudomonas aeruginosa -mediated activation of the macrophage TLR4 signaling cascade depends on membrane lipid composition. PeerJ, 2016, 4, e1663.
[http://dx.doi.org/10.7717/peerj.1663] [PMID: 26870615]
[23]
Raoust, E.; Balloy, V.; Garcia-Verdugo, I.; Touqui, L.; Ramphal, R.; Chignard, M. Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLR-dependent signaling in murine alveolar macrophages and airway epithelial cells. PLoS One, 2009, 4(10), e7259.
[http://dx.doi.org/10.1371/journal.pone.0007259] [PMID: 19806220]
[24]
Yang, Y.; Wang, Y.; Guo, L.; Gao, W.; Tang, T.L.; Yan, M. Interaction between macrophages and ferroptosis. Cell Death Dis., 2022, 13(4), 355.
[http://dx.doi.org/10.1038/s41419-022-04775-z] [PMID: 35429990]
[25]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[26]
Lawrence, T.; Bebien, M.; Liu, G.Y.; Nizet, V.; Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature, 2005, 434(7037), 1138-1143.
[http://dx.doi.org/10.1038/nature03491] [PMID: 15858576]
[27]
Nie, Y.; Wang, Z.; Chai, G.; Xiong, Y.; Li, B.; Zhang, H.; Xin, R.; Qian, X.; Tang, Z.; Wu, J.; Zhao, P. Dehydrocostus lactone suppresses lps-induced acute lung injury and macrophage activation through NF-κB signaling pathway mediated by p38 MAPK and Akt. Molecules, 2019, 24(8), 1510.
[http://dx.doi.org/10.3390/molecules24081510] [PMID: 30999647]
[28]
Zhuang, T.; Hu, M.; Wang, J.; Mei, L.; Zhu, X.; Zhang, H.; Jin, F.; Shao, J.; Wang, T.; Wang, C.; Niu, X.; Wu, D. Sodium houttuyfonate effectively treats acute pulmonary infection of Pseudomonas aeruginosa by affecting immunity and intestinal flora in mice. Front. Cell. Infect. Microbiol., 2022, 12, 1022511.
[http://dx.doi.org/10.3389/fcimb.2022.1022511] [PMID: 36530439]
[29]
Zhang, L; Lv, H; Li, Y; Dong, N; Bi, C; Shan, A Sodium houttuyfonate enhances the intestinal barrier and attenuates inflammation induced by Salmonella typhimurium through the NFκB pathway in mice. Int Immunopharmacol., 2020, 89(Pt A), 107058.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy