Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

UCA1 Inhibits NKG2D-mediated Cytotoxicity of NK Cells to Breast Cancer

Author(s): Jun-Yi Yin, Yao Zhou, Xiao-Ming Ding, Run-Ze Gong, Yan Zhou, Hai-Yan Hu, Yuan Liu, Xiao-Bin Lv* and Bing Zhang*

Volume 24, Issue 2, 2024

Published on: 14 November, 2023

Page: [204 - 219] Pages: 16

DOI: 10.2174/1568009623666230418134253

Price: $65

Abstract

Background: Natural killer cells play important roles in tumor immune surveillance, and cancer cells must resist this surveillance in order to progress and metastasise.

Introduction: The study aimed to explore the mechanism of how breast cancer cells become resistant to the cytotoxicity of NK cells.

Methods: We established NK-resistant breast cancer cells by exposing MDA-MB-231 cells and MCF-7 cells to NK92 cells. Profiles of lncRNA were compared between the NK-resistant and parental cell lines. Primary NK cells were isolated by MACS, and the NK attacking effect was tested by non-radioactive cytotoxicity. The change in lncRNAs was analyzed by Gene-chip. The interaction between lncRNA and miRNA was displayed by Luciferase assay. The regulation of the gene was verified by QRT-PCR and WB. The clinical indicators were detected by ISH, IH, and ELISA, respectively.

Results: UCA1 was found to be significantly up-regulated in both NK-resistant cell lines, and we confirmed such up-regulation on its own to be sufficient to render parental cell lines resistant to NK92 cells. We found that UCA1 up-regulated ULBP2 via the transcription factor CREB1, while it up-regulated ADAM17 by “sponging” the miR-26b-5p. ADAM17 facilitated the shedding of soluble ULBP2 from the surface of breast cancer cells, rendering them resistant to killing by NK cells. UCA1, ADAM17, and ULBP2 were found to be expressed at higher levels in bone metastases of breast cancer than in primary tumors.

Conclusion: Our data strongly suggest that UCA1 up-regulates ULBP2 expression and shedding, rendering breast cancer cells resistant to killing by NK cells.

Graphical Abstract

[1]
Cortez, V.S.; Ulland, T.K.; Cervantes-Barragan, L.; Bando, J.K.; Robinette, M.L.; Wang, Q.; White, A.J.; Gilfillan, S.; Cella, M.; Colonna, M. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat. Immunol., 2017, 18(9), 995-1003.
[http://dx.doi.org/10.1038/ni.3809] [PMID: 28759002]
[2]
Lanuza, P.M.; Vigueras, A.; Olivan, S.; Prats, A.C.; Costas, S.; Llamazares, G.; Sanchez-Martinez, D.; Ayuso, J.M.; Fernandez, L.; Ochoa, I.; Pardo, J. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression. OncoImmunology, 2018, 7(4), e1395123.
[http://dx.doi.org/10.1080/2162402X.2017.1395123] [PMID: 29632716]
[3]
Stankovic, B.; Bjørhovde, H.A.K.; Skarshaug, R.; Aamodt, H.; Frafjord, A.; Müller, E.; Hammarström, C.; Beraki, K.; Bækkevold, E.S.; Woldbæk, P.R.; Helland, Å.; Brustugun, O.T.; Øynebråten, I.; Corthay, A. Immune cell composition in human non-small cell lung cancer. Front. Immunol., 2019, 9, 3101.
[http://dx.doi.org/10.3389/fimmu.2018.03101] [PMID: 30774636]
[4]
Sivori, S.; Della Chiesa, M.; Carlomagno, S.; Quatrini, L.; Munari, E.; Vacca, P.; Tumino, N.; Mariotti, F.R.; Mingari, M.C.; Pende, D.; Moretta, L. Inhibitory receptors and checkpoints in human nk cells, implications for the immunotherapy of cancer. Front. Immunol., 2020, 11, 2156.
[http://dx.doi.org/10.3389/fimmu.2020.02156] [PMID: 33013909]
[5]
Boeck, C. L.; Amberger, D. C.; Doraneh-Gard, F.; Sutanto, W.; Guenther, T.; Schmohl, J.; Schuster, F.; Salih, H.; Babor, F.; Borkhardt, A.; Schmetzer, H. Significance of frequencies, compositions, and/or antileukemic activity of (DC-stimulated) invariant NKT, NK and CIK cells on the outcome of patients with AML, ALL and CLL. J Immunother, 2017, 40(6), 224-248.
[http://dx.doi.org/10.1097/CJI.0000000000000171] [PMID: 28557814]
[6]
Duan, S.; Guo, W.; Xu, Z.; He, Y.; Liang, C.; Mo, Y.; Wang, Y.; Xiong, F.; Guo, C.; Li, Y.; Li, X.; Li, G.; Zeng, Z.; Xiong, W.; Wang, F. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol. Cancer, 2019, 18(1), 29.
[http://dx.doi.org/10.1186/s12943-019-0956-8] [PMID: 30813924]
[7]
Zuo, J.; Willcox, C.R.; Mohammed, F.; Davey, M.; Hunter, S.; Khan, K.; Antoun, A.; Katakia, P.; Croudace, J.; Inman, C.; Parry, H.; Briggs, D.; Malladi, R.; Willcox, B.E.; Moss, P. A disease-linked ULBP6 polymorphism inhibits NKG2D-mediated target cell killing by enhancing the stability of NKG2D ligand binding. Sci. Signal., 2017, 10(481), eaai8904.
[http://dx.doi.org/10.1126/scisignal.aai8904] [PMID: 28559451]
[8]
Zöller, T.; Wittenbrink, M.; Hoffmeister, M.; Steinle, A. Cutting an NKG2D ligand short: Cellular processing of the peculiar human NKG2D Ligand ULBP4. Front. Immunol., 2018, 9, 620.
[http://dx.doi.org/10.3389/fimmu.2018.00620] [PMID: 29651291]
[9]
Hosomi, S.; Grootjans, J.; Huang, Y.H.; Kaser, A.; Blumberg, R.S. New insights into the regulation of natural-killer group 2 member d (nkg2d) and nkg2d-ligands: Endoplasmic reticulum stress and CEA-related cell adhesion molecule 1. Front. Immunol., 2018, 9, 1324.
[http://dx.doi.org/10.3389/fimmu.2018.01324] [PMID: 29973929]
[10]
Esendagli, G.; Bruderek, K.; Goldmann, T.; Busche, A.; Branscheid, D.; Vollmer, E.; Brandau, S. Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer. Lung Cancer, 2008, 59(1), 32-40.
[http://dx.doi.org/10.1016/j.lungcan.2007.07.022] [PMID: 17825949]
[11]
Iorgulescu, J.B.; Braun, D.; Oliveira, G.; Keskin, D.B.; Wu, C.J. Acquired mechanisms of immune escape in cancer following immunotherapy. Genome Med., 2018, 10(1), 87.
[http://dx.doi.org/10.1186/s13073-018-0598-2] [PMID: 30466478]
[12]
Tang, S.; Ning, Q.; Yang, L.; Mo, Z.; Tang, S. Mechanisms of immune escape in the cancer immune cycle. Int. Immunopharmacol., 2020, 86, 106700.
[http://dx.doi.org/10.1016/j.intimp.2020.106700] [PMID: 32590316]
[13]
Baragaño Raneros, A.; Suarez Álvarez, B.; López Larrea, C. Secretory pathways generating immunosuppressive NKG2D ligands: New targets for therapeutic intervention. OncoImmunology, 2014, 3(4), e28497.
[http://dx.doi.org/10.4161/onci.28497] [PMID: 25050215]
[14]
Lazarova, M.; Steinle, A. The NKG2D axis: An emerging target in cancer immunotherapy. Expert Opin. Ther. Targets, 2019, 23(4), 281-294.
[http://dx.doi.org/10.1080/14728222.2019.1580693] [PMID: 30732494]
[15]
Schmiedel, D.; Mandelboim, O. NKG2D ligands–critical targets for cancer immune escape and therapy. Front. Immunol., 2018, 9, 2040.
[http://dx.doi.org/10.3389/fimmu.2018.02040] [PMID: 30254634]
[16]
Basher, F.; Dhar, P.; Wang, X.; Wainwright, D.A.; Zhang, B.; Sosman, J.; Ji, Z.; Wu, J.D. Antibody targeting tumor-derived soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival and function and enhances melanoma response to PDL1 blockade therapy. J. Hematol. Oncol., 2020, 13(1), 74.
[http://dx.doi.org/10.1186/s13045-020-00896-0] [PMID: 32517713]
[17]
Liu, L.; Wang, Q.; Qiu, Z.; Kang, Y.; Liu, J.; Ning, S.; Yin, Y.; Pang, D.; Xu, S. Noncoding RNAs: The shot callers in tumor immune escape. Signal Transduct. Target. Ther., 2020, 5(1), 102.
[http://dx.doi.org/10.1038/s41392-020-0194-y] [PMID: 32561709]
[18]
Hu, X.; Sood, A.K.; Dang, C.V.; Zhang, L. The role of long noncoding RNAs in cancer: The dark matter matters. Curr. Opin. Genet. Dev., 2018, 48, 8-15.
[http://dx.doi.org/10.1016/j.gde.2017.10.004] [PMID: 29054012]
[19]
Kaneko, K.; Ito, Y.; Ono, Y.; Tainaka, T.; Tsuchiya, H.; Shimoyama, Y.; Ando, H. Gene expression profiling reveals upregulated UCA1 and BMF in gallbladder epithelia of children with pancreaticobiliary maljunction. J. Pediatr. Gastroenterol. Nutr., 2011, 52(6), 744-750.
[http://dx.doi.org/10.1097/MPG.0b013e318214bd30] [PMID: 21593646]
[20]
Wang, Z.; He, C.; Hu, L.; Shi, H.; Li, J.; Gu, Q.; Su, L.; Liu, B.; Li, C.; Zhu, Z. Long noncoding RNA UCA1 promotes tumour metastasis by inducing GRK2 degradation in gastric cancer. Cancer Lett., 2017, 408, 10-21.
[http://dx.doi.org/10.1016/j.canlet.2017.08.013] [PMID: 28843497]
[21]
Jahangiri, B.; Khalaj-kondori, M.; Asadollahi, E.; Sadeghizadeh, M. Cancer-associated fibroblasts enhance cell proliferation and metastasis of colorectal cancer SW480 cells by provoking long noncoding RNA UCA1. J. Cell Commun. Signal., 2019, 13(1), 53-64.
[http://dx.doi.org/10.1007/s12079-018-0471-5] [PMID: 29948578]
[22]
Qian, Y.; Liu, D.; Cao, S.; Tao, Y.; Wei, D.; Li, W.; Li, G.; Pan, X.; Lei, D. Upregulation of the long noncoding RNA UCA1 affects the proliferation, invasion, and survival of hypopharyngeal carcinoma. Mol. Cancer, 2017, 16(1), 68.
[http://dx.doi.org/10.1186/s12943-017-0635-6] [PMID: 28327194]
[23]
Pan, J.; Li, X.; Wu, W.; Xue, M.; Hou, H.; Zhai, W.; Chen, W. Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells. Cancer Lett., 2016, 382(1), 64-76.
[http://dx.doi.org/10.1016/j.canlet.2016.08.015] [PMID: 27591936]
[24]
Wang, C.J.; Zhu, C.C.; Xu, J.; Wang, M.; Zhao, W.Y.; Liu, Q.; Zhao, G.; Zhang, Z.Z. The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Mol. Cancer, 2019, 18(1), 115.
[http://dx.doi.org/10.1186/s12943-019-1032-0] [PMID: 31272462]
[25]
Li, Z.; Yu, D.; Li, H.; Lv, Y.; Li, S. Long non coding RNA UCA1 confers tamoxifen resistance in breast cancer endocrinotherapy through regulation of the EZH2/p21 axis and the PI3K/AKT signaling pathway. Int. J. Oncol., 2019, 54(3), 1033-1042.
[http://dx.doi.org/10.3892/ijo.2019.4679] [PMID: 30628639]
[26]
Campos-Parra, A.; López-Urrutia, E.; Orozco, M.L.; López-Camarillo, C.; Meza-Menchaca, T.; Figueroa, G.G.; Bustamante, M.L.; Pérez-Plasencia, C. Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. Int. J. Mol. Sci., 2018, 19(9), 2711.
[http://dx.doi.org/10.3390/ijms19092711] [PMID: 30208633]
[27]
Scharfenberg, F.; Helbig, A.; Sammel, M.; Benzel, J.; Schlomann, U.; Peters, F.; Wichert, R.; Bettendorff, M.; Schmidt-Arras, D.; Rose-John, S.; Moali, C.; Lichtenthaler, S.F.; Pietrzik, C.U.; Bartsch, J.W.; Tholey, A.; Becker-Pauly, C. Degradome of soluble ADAM10 and ADAM17 metalloproteases. Cell. Mol. Life Sci., 2020, 77(2), 331-350.
[http://dx.doi.org/10.1007/s00018-019-03184-4] [PMID: 31209506]
[28]
Chitadze, G.; Lettau, M.; Bhat, J.; Wesch, D.; Steinle, A.; Fürst, D.; Mytilineos, J.; Kalthoff, H.; Janssen, O.; Oberg, H.H.; Kabelitz, D. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: Heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int. J. Cancer, 2013, 133(7), 1557-1566.
[http://dx.doi.org/10.1002/ijc.28174] [PMID: 23526433]
[29]
Wolpert, F.; Tritschler, I.; Steinle, A.; Weller, M.; Eisele, G. A disintegrin and metalloproteinases 10 and 17 modulate the immunogenicity of glioblastoma-initiating cells. Neuro-oncol., 2014, 16(3), 382-391.
[http://dx.doi.org/10.1093/neuonc/not232] [PMID: 24327582]
[30]
Min, D.; Lv, X.; Wang, X.; Zhang, B.; Meng, W.; Yu, F.; Hu, H. Downregulation of miR-302c and miR-520c by 1,25(OH)2D3 treatment enhances the susceptibility of tumour cells to natural killer cell-mediated cytotoxicity. Br. J. Cancer, 2013, 109(3), 723-730.
[http://dx.doi.org/10.1038/bjc.2013.337] [PMID: 23820258]
[31]
Hagberg, N.; Berggren, O.; Leonard, D.; Weber, G.; Bryceson, Y.T.; Alm, G. V.; Eloranta, M. L.; Rönnblom, L. IFN-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes is promoted by NK cells via MIP-1β and LFA-1. J. Immun., 2011, 186(9), 5085-5094.
[http://dx.doi.org/10.4049/jimmunol.1003349] [PMID: 21430220]
[32]
He, Z.; Ruan, X.; Liu, X.; Zheng, J.; Liu, Y.; Liu, L.; Ma, J.; Shao, L.; Wang, D.; Shen, S.; Yang, C.; Xue, Y. FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in Glioma. J Exp Clin Cancer Res., 2019, 38(1), 65.
[http://dx.doi.org/10.1186/s13046-019-1065-7] [PMID: 30736838]
[33]
Su, C.; Cheng, X.; Li, Y.; Han, Y.; Song, X.; Yu, D.; Cao, X.; Liu, Z. MiR-21 improves invasion and migration of drug-resistant lung adenocarcinoma cancer cell and transformation of EMT through targeting HBP1. Cancer Med., 2018, 7(6), 2485-2503.
[http://dx.doi.org/10.1002/cam4.1294] [PMID: 29663730]
[34]
Liu, H.; Hu, G.; Wang, Z.; Liu, Q.; Zhang, J.; Chen, Y.; Huang, Y.; Xue, W.; Xu, Y.; Zhai, W. circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis. Theranostics, 2020, 10(23), 10791-10807.
[http://dx.doi.org/10.7150/thno.47239] [PMID: 32929380]
[35]
Weil, S.; Memmer, S.; Lechner, A.; Huppert, V.; Giannattasio, A.; Becker, T.; Müller-Runte, A.; Lampe, K.; Beutner, D.; Quaas, A.; Schubert, R.; Herrmann, E.; Steinle, A.; Koehl, U.; Walter, L.; von Bergwelt-Baildon, M.S.; Koch, J. Natural killer group 2D ligand depletion reconstitutes natural killer cell immunosurveillance of head and neck squamous cell carcinoma. Front. Immunol., 2017, 8, 387.
[http://dx.doi.org/10.3389/fimmu.2017.00387] [PMID: 28443091]
[36]
Zeng, H.; Hou, Y.; Zhou, X.; Lang, L.; Luo, H.; Sun, Y.; Wan, X.; Yuan, T.; Wang, R.; Liu, Y.; Tang, R.; Cheng, S.; Xu, M.; Liu, M. Cancer-associated fibroblasts facilitate premetastatic niche formation through lncRNA SNHG5-mediated angiogenesis and vascular permeability in breast cancer. Theranostics, 2022, 12(17), 7351-7370.
[http://dx.doi.org/10.7150/thno.74753] [PMID: 36438499]
[37]
Chen, C.; Li, Z.; Yang, Y.; Xiang, T.; Song, W.; Liu, S. Microarray expression profiling of dysregulated long non-coding RNAs in triple-negative breast cancer. Cancer Biol. Ther., 2015, 16(6), 856-865.
[http://dx.doi.org/10.1080/15384047.2015.1040957] [PMID: 25996380]
[38]
Hirata, S.; Murata, T.; Suzuki, D.; Nakamura, S.; Jono-Ohnishi, R.; Hirose, H.; Sawaguchi, A.; Nishimura, S.; Sugimoto, N.; Eto, K. Selective inhibition of ADAM17 efficiently mediates glycoprotein ibα retention during ex vivo generation of human induced pluripotent stem cell-derived platelets. Stem Cells Transl. Med., 2017, 6(3), 720-730.
[http://dx.doi.org/10.5966/sctm.2016-0104] [PMID: 28297575]
[39]
Zhou, Y.; Zhao, R.; Tseng, K.F.; Li, K.; Lu, Z.; Liu, Y.; Han, K.; Gan, Z.; Lin, S.; Hu, H.; Min, D. Sirolimus induces apoptosis and reverses multidrug resistance in human osteosarcoma cells in vitro via increasing microRNA-34b expression. Acta Pharmacol. Sin., 2016, 37(4), 519-529.
[http://dx.doi.org/10.1038/aps.2015.153] [PMID: 26924291]
[40]
Vyas, M.; Reinartz, S.; Hoffmann, N.; Reiners, K.S.; Lieber, S.; Jansen, J.M.; Wagner, U.; Müller, R.; von Strandmann, E.P. Soluble NKG2D ligands in the ovarian cancer microenvironment are associated with an adverse clinical outcome and decreased memory effector T cells independent of NKG2D downregulation. OncoImmunology, 2017, 6(9), e1339854.
[http://dx.doi.org/10.1080/2162402X.2017.1339854] [PMID: 28932639]
[41]
Zhou, Y.; Wang, X.; Zhang, J.; He, A.; Wang, Y.L.; Han, K.; Su, Y.; Yin, J.; Lv, X.; Hu, H. Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184. Oncotarget, 2017, 8(11), 18260-18270.
[http://dx.doi.org/10.18632/oncotarget.15353] [PMID: 28209917]
[42]
Giuliani, E.; Vassena, L.; Desimio, M. G.; Buonomini, A. R.; Malagnino, V.; Andreoni, M.; Doria, M. Expression and function of NKG2D is impaired in CD8+ T cells of chronically HIV-1-infected patients without ART. J Acquir Immune Defic Syndr, 2015, 70(4), 347-356.
[http://dx.doi.org/10.1097/QAI.0000000000000792] [PMID: 26509932]
[43]
Wang, J.; Ye, C.; Liu, J.; Hu, Y. UCA1 confers paclitaxel resistance to ovarian cancer through miR-129/ABCB1 axis. Biochem. Biophys. Res. Commun., 2018, 501(4), 1034-1040.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.104] [PMID: 29777711]
[44]
Dong, Z.; Gao, M.; Li, C.; Xu, M.; Liu, S. LncRNA UCA1 antagonizes arsenic‐induced cell cycle arrest through destabilizing EZH2 and facilitating NFATc2 expression. Adv. Sci., 2020, 7(11), 1903630.
[http://dx.doi.org/10.1002/advs.201903630] [PMID: 32537408]
[45]
Liu, J.; Li, Y.; Tong, J.; Gao, J.; Guo, Q.; Zhang, L.; Wang, B.; Zhao, H.; Wang, H.; Jiang, E.; Kurita, R.; Nakamura, Y.; Tanabe, O.; Engel, J.D.; Bresnick, E.H.; Zhou, J.; Shi, L. Long non-coding RNA-dependent mechanism to regulate heme biosynthesis and erythrocyte development. Nat. Commun., 2018, 9(1), 4386.
[http://dx.doi.org/10.1038/s41467-018-06883-x] [PMID: 30349036]
[46]
Snyder, K.M.; Hullsiek, R.; Mishra, H.K.; Mendez, D.C.; Li, Y.; Rogich, A.; Kaufman, D.S.; Wu, J.; Walcheck, B. Expression of a recombinant high affinity igg fc receptor by engineered nk cells as a docking platform for therapeutic mabs to target cancer cells. Front. Immunol., 2018, 9, 2873.
[http://dx.doi.org/10.3389/fimmu.2018.02873] [PMID: 30574146]
[47]
Ochayon, D.E.; Ali, A.; Alarcon, P.C.; Krishnamurthy, D.; Kottyan, L.C.; Borchers, M.T.; Waggoner, S.N. IL-33 promotes type 1 cytokine expression via p38 MAPK in human NK cells. J. Leukoc. Biol., 2020, 107(4), 663-671.
[http://dx.doi.org/10.1002/JLB.3A0120-379RR] [PMID: 32017227]
[48]
Mishra, H.K.; Pore, N.; Michelotti, E.F.; Walcheck, B. Anti-ADAM17 monoclonal antibody MEDI3622 increases IFNγ production by human NK cells in the presence of antibody-bound tumor cells. Cancer Immunol. Immunother., 2018, 67(9), 1407-1416.
[http://dx.doi.org/10.1007/s00262-018-2193-1] [PMID: 29978334]
[49]
Maurer, S.; Kropp, K.N.; Klein, G.; Steinle, A.; Haen, S.P.; Walz, J.S.; Hinterleitner, C.; Märklin, M.; Kopp, H.G.; Salih, H.R. Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. OncoImmunology, 2018, 7(2), e1364827.
[http://dx.doi.org/10.1080/2162402X.2017.1364827] [PMID: 29308299]
[50]
Ren, J.; Nie, Y.; Lv, M.; Shen, S.; Tang, R.; Xu, Y.; Hou, Y.; Zhao, S.; Wang, T. Estrogen upregulates MICA/B expression in human non-small cell lung cancer through the regulation of ADAM17. Cell. Mol. Immunol., 2015, 12(6), 768-776.
[http://dx.doi.org/10.1038/cmi.2014.101] [PMID: 25363527]
[51]
Zhang, Z.; Zhang, H.; Li, D.; Zhou, X.; Wang, J.; Zhang, Q. LncRNA ST7-AS1 is a potential novel biomarker and correlated with immune infiltrates for breast cancer. Front. Mol. Biosci., 2021, 8, 604261.
[http://dx.doi.org/10.3389/fmolb.2021.604261] [PMID: 33912584]
[52]
Sas-Chen, A.; Aure, M.R.; Leibovich, L.; Carvalho, S.; Enuka, Y.; Körner, C.; Polycarpou-Schwarz, M.; Lavi, S.; Nevo, N.; Kuznetsov, Y.; Yuan, J.; Azuaje, F.; Ulitsky, I.; Diederichs, S.; Wiemann, S.; Yakhini, Z.; Kristensen, V.N.; Børresen-Dale, A.L.; Yarden, Y.; Sauer, T.; Geisler, J.; Hofvind, S.; Bathen, T.F.; Borgen, E.; Engebråten, O.; Fodstad, Ø.; Garred, Ø.; Geitvik, G.A.; Kåresen, R.; Naume, B.; Mælandsmo, G.M.; Russnes, H.G.; Schlichting, E.; Sørlie, T.; Lingjærde, O.C.; Sahlberg, K.K.; Skjerven, H.K.; Fritzman, B. LIMT is a novel metastasis inhibiting lnc RNA suppressed by EGF and downregulated in aggressive breast cancer. EMBO Mol. Med., 2016, 8(9), 1052-1064.
[http://dx.doi.org/10.15252/emmm.201606198] [PMID: 27485121]
[53]
Lee, Y.S.; Zhang, T.; Saxena, V.; Li, L.; Piao, W.; Bromberg, J.S.; Scalea, J.R. Myeloid-derived suppressor cells expand after transplantation and their augmentation increases graft survival. Am. J. Transplant., 2020, 20(9), 2343-2355.
[http://dx.doi.org/10.1111/ajt.15879] [PMID: 32282980]
[54]
Schlecker, E.; Fiegler, N.; Arnold, A.; Altevogt, P.; Rose-John, S.; Moldenhauer, G.; Sucker, A.; Paschen, A.; von Strandmann, E.P.; Textor, S.; Cerwenka, A. Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res., 2014, 74(13), 3429-3440.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3017] [PMID: 24780758]
[55]
Waldhauer, I.; Goehlsdorf, D.; Gieseke, F.; Weinschenk, T.; Wittenbrink, M.; Ludwig, A.; Stevanovic, S.; Rammensee, H.G.; Steinle, A. Tumor-associated MICA is shed by ADAM proteases. Cancer Res., 2008, 68(15), 6368-6376.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6768] [PMID: 18676862]
[56]
Folgueras, A.R.; Pendás, A.M.; Sánchez, L.M.; López-Otín, C. Matrix metalloproteinases in cancer: From new functions to improved inhibition strategies. Int. J. Dev. Biol., 2004, 48(5-6), 411-424.
[http://dx.doi.org/10.1387/ijdb.041811af] [PMID: 15349816]
[57]
Lu, S.; Zhang, J.; Liu, D.; Li, G.; Staveley-O’Carroll, K.F.; Li, Z.; Wu, J.D. Nonblocking monoclonal antibody targeting soluble MIC revamps endogenous innate and adaptive antitumor responses and eliminates primary and metastatic tumors. Clin. Cancer Res., 2015, 21(21), 4819-4830.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0845] [PMID: 26106076]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy