Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Progress on Synthesis of Functionalized 1,5-Disubstituted Triazoles

Author(s): Manoj K. Jaiswal, Abhishek Gupta, Faisal J. Ansari, Vinay K. Pandey and Vinod K. Tiwari*

Volume 21, Issue 4, 2024

Published on: 23 June, 2023

Page: [513 - 558] Pages: 46

DOI: 10.2174/1570179420666230418123350

Price: $65

Abstract

Immediately after the invention of ‘Click Chemistry’ in 2002, the regioselective 1,2,3- triazole scaffolds resulted from respective organic azides and terminal alkynes under Cu(I) catalysis have been well recognized as the functional heterocyclic core at the centre of modern organic chemistry, medicinal chemistry, and material sciences. This CuAAC reaction has several notable features including excellent regioselectivity, high-to-excellent yields, easy to execute, short reaction time, modular in nature, mild condition, readily available starting materials, etc. Moreover, the resulting regioselective triazoles can serve as amide bond isosteres, a privileged functional group in drug discovery and development. More than hundreds of reviews had been devoted to the ‘Click Chemistry’ in special reference to 1,4-disubstituted triazoles, while only little efforts were made for an opposite regioisomer i.e., 1,5-disubstituted triazole. Herein, we have presented various classical approaches for an expeditious synthesis of a wide range of biologically relevant 1,5- disubstituted 1,2,3-triazole analogues. The syntheses of such a class of diversly functionalized triazoles have emerged as a crucial investigation in the domain of chemistry and biology. This tutorial review covers the literature assessment on the development of various synthetic protocols for the functionalized 1,5-disubstituted triazoles reported during the last 12 years.

Erratum In:
Recent Progress on Synthesis of Functionalized 1,5-Disubstituted Triazoles

Graphical Abstract

[1]
Sharma, A.; Agrahari, A.K.; Rajkhowa, S.; Tiwari, V.K. Emerging impact of triazoles as anti-tubercular agent. Eur. J. Med. Chem., 2022, 238, 114454.
[http://dx.doi.org/10.1016/j.ejmech.2022.114454] [PMID: 35597009]
[2]
Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1,2,3-triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions. Eur. J. Org. Chem., 2014, 2014(16), 3289-3306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[3]
Lau, Y.H.; Rutledge, P.J.; Watkinson, M.; Todd, M.H. Chemical sensors that incorporate click-derived triazoles. Chem. Soc. Rev., 2011, 40(5), 2848-2866.
[http://dx.doi.org/10.1039/c0cs00143k] [PMID: 21380414]
[4]
Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[5]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: diverse chemical functionality with a handful of good reactions. Angew. Chem. Int. Ed., 2001, 113, 2056-2075.
[http://dx.doi.org/10.1002/1521-3757(20010601)113:11<2056:AID-ANGE2056>3.0.CO;2-W]
[6]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[7]
Agrahari, A.K.; Bose, P.; Jaiswal, M.K.; Rajkhowa, S.; Singh, A.S.; Hotha, S.; Mishra, N.; Tiwari, V.K. Cu(I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev., 2021, 121(13), 7638-7956.
[http://dx.doi.org/10.1021/acs.chemrev.0c00920] [PMID: 34165284]
[8]
Tiwari, V.K. Development of diverse range of biologically relevant carbohydrate-containing molecules: Twenty years of our journey. Chem. Rec., 2021, 21(11), 3029-3048.
[http://dx.doi.org/10.1002/tcr.202100058] [PMID: 34047444]
[9]
Kushwaha, D.; Dwivedi, P.; Kuanar, S.K.; Tiwari, V.K. Click reaction in carbohydrate chemistry: Recent developments and future perspective. Curr. Org. Synth., 2013, 10, 90-135.
[http://dx.doi.org/10.2174/1570179411310010005]
[10]
Mishra, A.; Agrahari, A.K.; Tiwari, V.K. Application of CuAAC in carbohydrates. In: Click Chemistry volume, Science of Synthesis; , 2021; pp. 135-179.
[11]
Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
[12]
Ramachary, D.B.; Shashank, A.B. Organocatalytic triazole formation, followed by oxidative aromatization: Regioselective metal-free synthesis of benzotriazoles. Chemistry, 2013, 19(39), 13175-13181.
[http://dx.doi.org/10.1002/chem.201301412] [PMID: 24038664]
[13]
Zhang, J.; Jin, G.; Xiao, S.; Wu, J.; Cao, S. Novel synthesis of 1,4,5-trisubstituted 1,2,3-triazoles via a one-pot three-component reaction of boronic acids, azide, and active methylene ketones. Tetrahedron, 2013, 69(10), 2352-2356.
[http://dx.doi.org/10.1016/j.tet.2012.12.086]
[14]
(a) Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. A metal-free multicomponent cascade reaction for the regiospecific synthesis of 1,5-disubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed., 2013, 52(50), 13265-13268.
[http://dx.doi.org/10.1002/anie.201307499] [PMID: 24227395];
(b) Cui, X.; Chen, Y.; Wang, W.; Zeng, T.; Li, Y.; Wang, X. Chemoselective synthesis of β-enaminones from ynones and aminoalkyl-, phenol- and thioanilines under metal-free conditions. Chem. Pap., 2021, 75(7), 3625-3634.
[http://dx.doi.org/10.1007/s11696-021-01599-7]
[15]
Kamalraj, V.R.; Senthil, S.; Kannan, P. One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers. J. Mol. Struct., 2008, 892(1-3), 210-215.
[http://dx.doi.org/10.1016/j.molstruc.2008.05.028]
[16]
González-Calderón, D.; Fuentes-Benítes, A.; Díaz-Torres, E.; González-González, C.A.; González-Romero, C. Azide-enolate 1,3-dipolar cycloaddition as an efficient approach for the synthesis of 1,5-disubstituted 1,2,3-triazoles from alkyl/aryl azides and β-ketophosphonates. Eur. J. Org. Chem., 2016, 2016(4), 668-672.
[http://dx.doi.org/10.1002/ejoc.201501465]
[17]
Ahsanullah; Schmieder, P.; Kühne, R.; Rademann, J. Metal-free, regioselective triazole ligations that deliver locked cis peptide mimetics. Angew. Chem. Int. Ed., 2009, 48(27), 5042-5045.
[http://dx.doi.org/10.1002/anie.200806390]
[18]
(a) Mishra, N.; Singh, S.K.; Singh, A.S.; Agrahari, A.K.; Tiwari, V.K. Glycosyl triazole ligand for temperature-dependent competitive reactions of Cu-Catalyzed Sonogashira coupling and Glaser coupling. J. Org. Chem., 2021, 86(24), 17884-17895.
[http://dx.doi.org/10.1021/acs.joc.1c02194] [PMID: 34875833];
(b) Singh, S.K.; Kumar, S.; Yadav, M.S.; Tiwari, V.K. Pyridyl glycosyl triazole/CuI-mediated domino/tandem synthesis of quinazolinones. J. Org. Chem., 2022, 87(22), 15389-15402.
[http://dx.doi.org/10.1021/acs.joc.2c01951] [PMID: 36305798]
[19]
Singh, M.; Singh, A.S.; Mishra, N.; Agrahari, A.K.; Tiwari, V.K. Benzotriazole as an efficient ligand in Cu-catalyzed glaser reaction. ACS Omega, 2019, 4(1), 2418-2424.
[http://dx.doi.org/10.1021/acsomega.8b03410] [PMID: 31459480]
[20]
Mishra, N.; Singh, A.S.; Agrahari, A.K.; Singh, S.K.; Singh, M.; Tiwari, V.K. Synthesis of Benz-Fused Azoles via C-Heteroatom Coupling Reactions Catalyzed by Cu(I) in the Presence of Glycosyltriazole Ligands. ACS Comb. Sci., 2019, 21(5), 389-399.
[http://dx.doi.org/10.1021/acscombsci.9b00004] [PMID: 30943366]
[21]
Liu, D.; Gao, W.; Dai, Q.; Zhang, X. Triazole-based monophosphines for Suzuki-Miyaura coupling and amination reactions of aryl chlorides. Org. Lett., 2005, 7(22), 4907-4910.
[http://dx.doi.org/10.1021/ol051844w] [PMID: 16235919]
[22]
Li, Z.; Wei, Q.; Song, L.; Han, W.; Wu, X.; Zhao, Y.; Xia, F.; Liu, S. Highly regioselective radical transformation of N -sulfonyl-1,2,3-triazoles in air. Org. Lett., 2019, 21(16), 6413-6417.
[http://dx.doi.org/10.1021/acs.orglett.9b02269] [PMID: 31365268]
[23]
Shiri, P.; Amani, A.M.; Mayer-Gall, T. A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Beilstein J. Org. Chem., 2021, 17, 1600-1628.
[http://dx.doi.org/10.3762/bjoc.17.114] [PMID: 34354770]
[24]
Neto, J.S.S.; Zeni, G. A decade of advances in the reaction of nitrogen sources and alkynes for the synthesis of triazoles. Coord. Chem. Rev., 2020, 409, 213217.
[http://dx.doi.org/10.1016/j.ccr.2020.213217]
[25]
Koguchi, S.; Izawa, K. Ionic liquid-phase synthesis of 1,5-disubstituted 1,2,3-triazoles. ACS Comb. Sci., 2014, 16(8), 381-385.
[http://dx.doi.org/10.1021/co500065e] [PMID: 25036551]
[26]
Hong, L.; Lin, W.; Zhang, F.; Liu, R.; Zhou, X. Ln[N(SiMe3)2]3-catalyzed cycloaddition of terminal alkynes to azides leading to 1,5-disubstituted 1,2,3-triazoles: new mechanistic features. Chem. Commun. (Camb.), 2013, 49(49), 5589-5591.
[http://dx.doi.org/10.1039/c3cc42534g] [PMID: 23676902]
[27]
Wang, D.; Salmon, L.; Ruiz, J.; Astruc, D. A recyclable ruthenium(ii) complex supported on magnetic nanoparticles: A regioselective catalyst for alkyne–azide cycloaddition. Chem. Commun. (Camb.), 2013, 49(62), 6956-6958.
[http://dx.doi.org/10.1039/c3cc43048k] [PMID: 23807317]
[28]
Coats, S.J.; Link, J.S.; Gauthier, D.; Hlasta, D.J. Trimethylsilyl-directed 1,3-dipolar cycloaddition reactions in the solid-phase synthesis of 1,2,3-triazoles. Org. Lett., 2005, 7(8), 1469-1472.
[http://dx.doi.org/10.1021/ol047637y] [PMID: 15816729]
[29]
De Nino, A.; Maiuolo, L.; Costanzo, P.; Algieri, V.; Jiritano, A.; Olivito, F.; Tallarida, M.A. Recent progress in catalytic synthesis of 1,2,3-triazoles. Catalysts, 2021, 11(9), 1120.
[http://dx.doi.org/10.3390/catal11091120]
[30]
Johansson, J.R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: Scope, mechanism, and applications. Chem. Rev., 2016, 116(23), 14726-14768.
[http://dx.doi.org/10.1021/acs.chemrev.6b00466] [PMID: 27960271]
[31]
Shashank, A.B.; Karthik, S.; Madhavachary, R.; Ramachary, D.B. An enolate-mediated organocatalytic azide-ketone [3+2]-cycloaddition reaction: regioselective high-yielding synthesis of fully decorated 1,2,3-triazoles. Chemistry, 2014, 20(51), 16877-16881.
[http://dx.doi.org/10.1002/chem.201405501] [PMID: 25367870]
[32]
Krasiński, A.; Fokin, V.V.; Sharpless, K.B. Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. Org. Lett., 2004, 6(8), 1237-1240.
[http://dx.doi.org/10.1021/ol0499203] [PMID: 15070306]
[33]
Creary, X.; Anderson, A.; Brophy, C.; Crowell, F.; Funk, Z. Method for assigning structure of 1,2,3-triazoles. J. Org. Chem., 2012, 77(19), 8756-8761.
[http://dx.doi.org/10.1021/jo301265t] [PMID: 22894557]
[34]
Holzer, W. On the application of NOE difference spectroscopy for spectral and structural assignments with substituted 1,2,3-triazoles. Tetrahedron, 1991, 47(47), 9783-9792.
[http://dx.doi.org/10.1016/S0040-4020(01)80718-3]
[35]
Rasmussen, L.K.; Boren, B.C.; Fokin, V.V. Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. Org. Lett., 2007, 9(26), 5337-5339.
[http://dx.doi.org/10.1021/ol701912s] [PMID: 18052070]
[36]
Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: Scope and mechanism. J. Am. Chem. Soc., 2008, 130(28), 8923-8930.
[http://dx.doi.org/10.1021/ja0749993] [PMID: 18570425]
[37]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[38]
Kappe, C.O.; Van der Eycken, E. Click chemistry under non-classical reaction conditions. Chem. Soc. Rev., 2010, 39(4), 1280-1290.
[http://dx.doi.org/10.1039/B901973C] [PMID: 20309486]
[39]
Barge, A.; Tagliapietra, S.; Binello, A.; Cravotto, G. Click chemistry under microwave or ultrasound irradiation. Curr. Org. Chem., 2011, 15(2), 189-203.
[http://dx.doi.org/10.2174/138527211793979826]
[40]
Johansson, J.R.; Lincoln, P.; Nordén, B.; Kann, N. Sequential one-pot ruthenium-catalyzed azide-alkyne cycloaddition from primary alkyl halides and sodium azide. J. Org. Chem., 2011, 76(7), 2355-2359.
[http://dx.doi.org/10.1021/jo200134a] [PMID: 21388208]
[41]
Harmsen, R.A.G.; Sydnes, L.K.; Tornroos, K.W.; Haug, B.E. Synthesis of trans-4-Triazolyl-Substituted 3-Hydroxypiperidines. Synthesis, 2011, 749-754.
[42]
Yap, A.H. Weinreb, S.M. β-Tosylethylazide: a useful synthon for preparation of N-protected 1,2,3-triazoles via click chemistry. Tetrahedron Lett., 2006, 47(18), 3035-3038.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.020]
[43]
Zhang, C.T.; Zhang, X.; Qing, F.L. Ruthenium-catalyzed 1,3-dipolar cycloaddition of trifluoromethylated propargylic alcohols with azides. Tetrahedron Lett., 2008, 49(24), 3927-3930.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.065]
[44]
Trabocchi, A.; Guarna, A. Peptidomimetics in Organic and Medicinal Chemistry: The Art of Transforming Peptides in Drugs; John Wiley & Sons, Ltd, 2014.
[http://dx.doi.org/10.1002/9781118683033]
[45]
Scott, D.E.; Bayly, A.R.; Abell, C.; Skidmore, J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov., 2016, 15(8), 533-550.
[http://dx.doi.org/10.1038/nrd.2016.29] [PMID: 27050677]
[46]
Pokorski, J.K.; Miller Jenkins, L.M.; Feng, H.; Durell, S.R.; Bai, Y.; Appella, D.H. Introduction of a triazole amino acid into a peptoid oligomer induces turn formation in aqueous solution. Org. Lett., 2007, 9(12), 2381-2383.
[http://dx.doi.org/10.1021/ol070817y] [PMID: 17506576]
[47]
Johansson, J.R. Hermansson, E.; Nordén, B.; Kann, N.; Beke-Somfai, T. δ-Peptides from RuAAC-Derived 1,5-Disubstituted Triazole Units. Eur. J. Org. Chem., 2014, 2014(13), 2703-2713.
[http://dx.doi.org/10.1002/ejoc.201400018]
[48]
Tam, A.; Arnold, U.; Soellner, M.B.; Raines, R.T. Protein prosthesis: 1,5-disubstituted[1,2,3]triazoles as cis-peptide bond surrogates. J. Am. Chem. Soc., 2007, 129(42), 12670-12671.
[http://dx.doi.org/10.1021/ja075865s] [PMID: 17914828]
[49]
Tietze, D.; Tischler, M.; Voigt, S.; Imhof, D.; Ohlenschläger, O.; Görlach, M.; Buntkowsky, G. Development of a functional cis-prolyl bond biomimetic and mechanistic implications for nickel superoxide dismutase. Chemistry, 2010, 16(25), 7572-7578.
[http://dx.doi.org/10.1002/chem.200903306] [PMID: 20461826]
[50]
Ferrini, S.; Chandanshive, J.Z.; Lena, S.; Comes Franchini, M.; Giannini, G.; Tafi, A.; Taddei, M. Ruthenium-catalyzed synthesis of 5-amino-1,2,3-triazole-4-carboxylates for triazole-based scaffolds: beyond the dimroth rearrangement. J. Org. Chem., 2015, 80(5), 2562-2572.
[http://dx.doi.org/10.1021/jo502577e] [PMID: 25654488]
[51]
Tischler, M.; Nasu, D.; Empting, M.; Schmelz, S.; Heinz, D.W.; Rottmann, P.; Kolmar, H.; Buntkowsky, G.; Tietze, D.; Avrutina, O. Braces for the peptide backbone: insights into structure-activity relationships of protease inhibitor mimics with locked amide conformations. Angew. Chem. Int. Ed., 2012, 51(15), 3708-3712.
[http://dx.doi.org/10.1002/anie.201108983] [PMID: 22374650]
[52]
Lau, Y.H.; de Andrade, P.; Wu, Y.; Spring, D.R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev., 2015, 44(1), 91-102.
[http://dx.doi.org/10.1039/C4CS00246F] [PMID: 25199043]
[53]
Kee, J.M.; Villani, B.; Carpenter, L.R.; Muir, T.W. Development of stable phosphohistidine analogues. J. Am. Chem. Soc., 2010, 132(41), 14327-14329.
[http://dx.doi.org/10.1021/ja104393t] [PMID: 20879710]
[54]
Buysse, K.; Farard, J.; Nikolaou, A.; Vanderheyden, P.; Vauquelin, G.; Sejer Pedersen, D.; Tourwé, D.; Ballet, S. Amino triazolo diazepines (Ata) as constrained histidine mimics. Org. Lett., 2011, 13(24), 6468-6471.
[http://dx.doi.org/10.1021/ol202767k] [PMID: 22087642]
[55]
Wales, S.M.; Hammer, K.A.; King, A.M.; Tague, A.J.; Lyras, D.; Riley, T.V.; Keller, P.A.; Pyne, S.G. Binaphthyl-1,2,3-triazole peptidomimetics with activity against Clostridium difficile and other pathogenic bacteria. Org. Biomol. Chem., 2015, 13(20), 5743-5756.
[http://dx.doi.org/10.1039/C5OB00576K] [PMID: 25901416]
[56]
Gopalakrishnan, R.; Frolov, A.I.; Knerr, L.; Drury, W.J., III; Valeur, E. Therapeutic potential of foldamers: from chemical biology tools to drug candidates? J. Med. Chem., 2016, 59(21), 9599-9621.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00376] [PMID: 27362955]
[57]
Horne, W.S.; Gellman, S.H. Foldamers with heterogeneous backbones. Acc. Chem. Res., 2008, 41(10), 1399-1408.
[http://dx.doi.org/10.1021/ar800009n] [PMID: 18590282]
[58]
Said Stålsmeden, A.; Paterson, A.J.; Szigyártó, I.C.; Thunberg, L.; Johansson, J.R.; Beke-Somfai, T.; Kann, N. Chiral 1,5-disubstituted 1,2,3-triazoles – versatile tools for foldamers and peptidomimetic applications. Org. Biomol. Chem., 2020, 18(10), 1957-1967.
[http://dx.doi.org/10.1039/D0OB00168F] [PMID: 32101244]
[59]
Kann, N.; Johansson, J.R.; Beke-Somfai, T. Conformational properties of 1,4- and 1,5-substituted 1,2,3-triazole amino acids – building units for peptidic foldamers. Org. Biomol. Chem., 2015, 13(9), 2776-2785.
[http://dx.doi.org/10.1039/C4OB02359E] [PMID: 25605623]
[60]
Ke, Z.; Chow, H.F.; Chan, M.C.; Liu, Z.; Sze, K.H. Head-to-tail dimerization and organogelating properties of click peptidomimetics. Org. Lett., 2012, 14(1), 394-397.
[http://dx.doi.org/10.1021/ol2031685] [PMID: 22188338]
[61]
The Royal Society of Chemistry: Cambridge, U. K. , 2015.
[62]
Mallinson, J.; Collins, I. Macrocycles in new drug discovery. Future Med. Chem., 2012, 4(11), 1409-1438.
[http://dx.doi.org/10.4155/fmc.12.93] [PMID: 22857532]
[63]
White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem., 2011, 3(7), 509-524.
[http://dx.doi.org/10.1038/nchem.1062] [PMID: 21697871]
[64]
Horne, W.S.; Olsen, C.A.; Beierle, J.M.; Montero, A.; Ghadiri, M.R. Probing the bioactive conformation of an archetypal natural product HDAC inhibitor with conformationally homogeneous triazole-modified cyclic tetrapeptides. Angew. Chem. Int. Ed., 2009, 48(26), 4718-4724.
[http://dx.doi.org/10.1002/anie.200805900] [PMID: 19267380]
[65]
Kelly, A.R.; Wei, J.; Kesavan, S.; Marié, J.C.; Windmon, N.; Young, D.W.; Marcaurelle, L.A. Accessing skeletal diversity using catalyst control: formation of n and n + 1 macrocyclic triazole rings. Org. Lett., 2009, 11(11), 2257-2260.
[http://dx.doi.org/10.1021/ol900562u] [PMID: 19473044]
[66]
Nielsen, T.E.; Schreiber, S.L. Towards the optimal screening collection: a synthesis strategy. Angew. Chem. Int. Ed., 2008, 47(1), 48-56.
[http://dx.doi.org/10.1002/anie.200703073] [PMID: 18080276]
[67]
Marcaurelle, L.A.; Comer, E.; Dandapani, S.; Duvall, J.R.; Gerard, B.; Kesavan, S.; Lee, M.D., IV; Liu, H.; Lowe, J.T.; Marie, J.C.; Mulrooney, C.A.; Pandya, B.A.; Rowley, A.; Ryba, T.D.; Suh, B.C.; Wei, J.; Young, D.W.; Akella, L.B.; Ross, N.T.; Zhang, Y.L.; Fass, D.M.; Reis, S.A.; Zhao, W.N.; Haggarty, S.J.; Palmer, M.; Foley, M.A. An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors. J. Am. Chem. Soc., 2010, 132(47), 16962-16976.
[http://dx.doi.org/10.1021/ja105119r] [PMID: 21067169]
[68]
Zhang, J.; Kemmink, J.; Rijkers, D.T.S.; Liskamp, R.M.J. Cu(I)- and Ru(II)-mediated “click” cyclization of tripeptides toward vancomycin-inspired mimics. Org. Lett., 2011, 13(13), 3438-3441.
[http://dx.doi.org/10.1021/ol201184b] [PMID: 21615166]
[69]
Zhang, J.; Kemmink, J.; Rijkers, D.T.S.; Liskamp, R.M.J. Synthesis of 1,5-triazole bridged vancomycin CDE-ring bicyclic mimics using RuAAC macrocyclization. Chem. Commun. (Camb.), 2013, 49(40), 4498-4500.
[http://dx.doi.org/10.1039/c3cc40628h] [PMID: 23571454]
[70]
Isidro-Llobet, A.; Murillo, T.; Bello, P.; Cilibrizzi, A.; Hodgkinson, J.T.; Galloway, W.R.J.D.; Bender, A.; Welch, M.; Spring, D.R. Diversity-oriented synthesis of macrocyclic peptidomimetics. Proc. Natl. Acad. Sci. USA, 2011, 108(17), 6793-6798.
[http://dx.doi.org/10.1073/pnas.1015267108] [PMID: 21383137]
[71]
Krause, M.R.; Goddard, R.; Kubik, S. Anion-binding properties of a cyclic pseudohexapeptide containing 1,5-disubstituted 1,2,3-triazole subunits. J. Org. Chem., 2011, 76(17), 7084-7095.
[http://dx.doi.org/10.1021/jo201024r] [PMID: 21744791]
[72]
Krause, M.R.; Goddard, R.; Kubik, S. Formation of a cyclic tetrapeptide mimic by thermal azide–alkyne 1,3-dipolar cycloaddition. Chem. Commun. (Camb.), 2010, 46(29), 5307-5309.
[http://dx.doi.org/10.1039/c0cc01154a] [PMID: 20544087]
[73]
Fang, F.; Vogel, M.; Hines, J.V.; Bergmeier, S.C. Fused ring aziridines as a facile entry into triazole fused tricyclic and bicyclic heterocycles. Org. Biomol. Chem., 2012, 10(15), 3080-3091.
[http://dx.doi.org/10.1039/c2ob07042a] [PMID: 22402729]
[74]
Feld, J.J.; Hoofnagle, J.H. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature, 2005, 436(7053), 967-972.
[http://dx.doi.org/10.1038/nature04082] [PMID: 16107837]
[75]
Pradere, U.; Roy, V.; McBrayer, T.R.; Schinazi, R.F.; Agrofoglio, L.A. Preparation of ribavirin analogues by copper- and ruthenium-catalyzed azide-alkyne 1,3-dipolar cycloaddition. Tetrahedron, 2008, 64(38), 9044-9051.
[http://dx.doi.org/10.1016/j.tet.2008.07.007] [PMID: 34321698]
[76]
Montagu, A.; Roy, V.; Balzarini, J.; Snoeck, R.; Andrei, G.; Agrofoglio, L.A. Synthesis of new C5-(1-substituted-1,2,3-triazol-4 or 5-yl)-2′-deoxyuridines and their antiviral evaluation. Eur. J. Med. Chem., 2011, 46(2), 778-786.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.017] [PMID: 21232828]
[77]
Hornum, M.; Djukina, A.; Sassnau, A.K.; Nielsen, P. Synthesis of new C-5-triazolyl-functionalized thymidine analogs and their ability to engage in aromatic stacking in DNA: DNA and DNA: RNA duplexes. Org. Biomol. Chem., 2016, 14(19), 4436-4447.
[http://dx.doi.org/10.1039/C6OB00609D] [PMID: 27089052]
[78]
Oppilliart, S.; Mousseau, G.; Zhang, L.; Jia, G.; Thuéry, P.; Rousseau, B.; Cintrat, J.C. 1-Protected 5-amido 1,2,3-triazoles via ruthenium-catalyzed [3+2] cycloaddition of azides and ynamides. Tetrahedron, 2007, 63(34), 8094-8098.
[http://dx.doi.org/10.1016/j.tet.2007.06.008]
[79]
Chemama, M.; Fonvielle, M.; Arthur, M.; Valéry, J.M.; Etheve-Quelquejeu, M. Synthesis of stable aminoacyl-tRNA analogues containing triazole as a bioisoster of esters. Chemistry, 2009, 15(8), 1929-1938.
[http://dx.doi.org/10.1002/chem.200801563] [PMID: 19035586]
[80]
Sirivolu, V.R.; Vernekar, S.K.V.; Ilina, T.; Myshakina, N.S.; Parniak, M.A.; Wang, Z. Clicking 3′-azidothymidine into novel potent inhibitors of human immunodeficiency virus. J. Med. Chem., 2013, 56(21), 8765-8780.
[http://dx.doi.org/10.1021/jm401232v] [PMID: 24102161]
[81]
Vernekar, S.K.V.; Qiu, L.; Zacharias, J.; Geraghty, R.J.; Wang, Z. Synthesis and antiviral evaluation of 4′-(1,2,3-triazol-1-yl)thymidines. MedChemComm, 2014, 5(5), 603-608.
[http://dx.doi.org/10.1039/C4MD00039K]
[82]
Vernekar, S.K.V.; Qiu, L.; Zhang, J.; Kankanala, J.; Li, H.; Geraghty, R.J.; Wang, Z. 5′-Silylated 3′-1,2,3-triazolyl Thymidine Analogues as Inhibitors of West Nile Virus and Dengue Virus. J. Med. Chem., 2015, 58(9), 4016-4028.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00327] [PMID: 25909386]
[83]
Crich, D.; Yang, F. Phenylthiomethyl glycosides: convenient synthons for the formation of azidomethyl and glycosylmethyl glycosides and their derivatives. Angew. Chem. Int. Ed., 2009, 48(47), 8896-8899.
[http://dx.doi.org/10.1002/anie.200904168] [PMID: 19856360]
[84]
Wiebe, C.; Schlemmer, C.; Weck, S.; Opatz, T. Sweet (hetero)aromatics: glycosylated templates for the construction of saccharide mimetics. Chem. Commun. (Camb.), 2011, 47(32), 9212-9214.
[http://dx.doi.org/10.1039/c1cc13078a] [PMID: 21743917]
[85]
Cagnoni, A.J.; Varela, O.; Uhrig, M.L.; Kovensky, J. Efficient Synthesis of Thiolactoside Glycoclusters by Ruthenium-Catalyzed Cycloaddition Reaction of Disubstituted Alkynes on Carbohydrate Scaffolds. Eur. J. Org. Chem., 2013, 2013(5), 972-983.
[http://dx.doi.org/10.1002/ejoc.201201412]
[86]
Salmon, A.J.; Williams, M.L.; Maresca, A.; Supuran, C.T.; Poulsen, S.A. Synthesis of glycoconjugate carbonic anhydrase inhibitors by ruthenium-catalysed azide-alkyne 1,3-dipolar cycloaddition. Bioorg. Med. Chem. Lett., 2011, 21(20), 6058-6061.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.066] [PMID: 21903393]
[87]
Jervis, P.J.; Graham, L.M.; Foster, E.L.; Cox, L.R.; Porcelli, S.A.; Besra, G.S. New CD1d agonists: Synthesis and biological activity of 6″-triazole-substituted α-galactosyl ceramides. Bioorg. Med. Chem. Lett., 2012, 22(13), 4348-4352.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.009] [PMID: 22652050]
[88]
Sharma, S.; Saquib, M.; Verma, S.; Mishra, N.N.; Shukla, P.K.; Srivastava, R.; Prabhakar, Y.S.; Shaw, A.K. Synthesis of 2,3,6-trideoxy sugar triazole hybrids as potential new broad spectrum antimicrobial agents. Eur. J. Med. Chem., 2014, 83, 474-489.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.048] [PMID: 24992075]
[89]
Kocsis, L.; Szabó, I. Bősze, S.; Jernei, T.; Hudecz, F.; Csámpai, A. Synthesis, structure and in vitro cytostatic activity of ferrocene—Cinchona hybrids. Bioorg. Med. Chem. Lett., 2016, 26(3), 946-949.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.059] [PMID: 26739780]
[90]
MacMillan, D.W.C. The advent and development of organocatalysis. Nature, 2008, 455(7211), 304-308.
[http://dx.doi.org/10.1038/nature07367] [PMID: 18800128]
[91]
Saraiva, M.T.; Costa, G.P.; Seus, N.; Schumacher, R.F.; Perin, G.; Paixão, M.W.; Luque, R.; Alves, D. Room-Temperature Organocatalytic Cycloaddition of Azides with β-Keto Sulfones: Toward Sulfonyl-1,2,3-triazoles. Org. Lett., 2015, 17(24), 6206-6209.
[http://dx.doi.org/10.1021/acs.orglett.5b03196] [PMID: 26632867]
[92]
Pokhodylo, N.; Matiychuk, V.; Obushak, M. (Arylsulfonyl)acetones and -acetonitriles: New activated methylenic building blocks for synthesis of 1,2,3-triazoles. Synthesis, 2009, 2009(14), 2321-2323.
[http://dx.doi.org/10.1055/s-0029-1216850]
[93]
Stazi, F.; Cancogni, D.; Turco, L.; Westerduin, P.; Bacchi, S. Highly efficient and safe procedure for the synthesis of aryl 1,2,3-triazoles from aromatic amine in a continuous flow reactor. Tetrahedron Lett., 2010, 51(41), 5385-5387.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.149]
[94]
Jin, G.; Zhang, J.; Fu, D.; Wu, J.; Cao, S. One-Pot, Three-Component Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles Starting from Primary Alcohols. Eur. J. Org. Chem., 2012, 2012(28), 5446-5449.
[http://dx.doi.org/10.1002/ejoc.201200830]
[95]
Rozin, Y.A.; Leban, J.; Dehaen, W.; Nenajdenko, V.G.; Muzalevskiy, V.M.; Eltsov, O.S.; Bakulev, V.A. Regioselective synthesis of 5-trifluoromethyl-1,2,3-triazoles via CF3-directed cyclization of 1-trifluoromethyl-1,3-dicarbonyl compounds with azides. Tetrahedron, 2012, 68(2), 614-618.
[http://dx.doi.org/10.1016/j.tet.2011.10.110]
[96]
Ahmadi, F.; Tisseh, Z.N.; Dabiri, M.; Bazgir, A. Efficient TMG catalyzed synthesis of 1,2,3-triazoles. C. R. Chim., 2013, 16(12), 1086-1090.
[http://dx.doi.org/10.1016/j.crci.2013.05.006]
[97]
Ramachary, D.B.; Shashank, A.B.; Karthik, S. An organocatalytic azide-aldehyde [3+2] cycloaddition: high-yielding regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed., 2014, 53(39), 10420-10424.
[http://dx.doi.org/10.1002/anie.201406721] [PMID: 25079606]
[98]
Ramachary, D.B.; Reddy, G.S.; Peraka, S.; Gujral, J. organocatalytic vinyl azide-carbonyl [3+2] cycloaddition: high-yielding synthesis of fully decorated n -vinyl-1,2,3-triazoles. ChemCatChem, 2017, 9(2), 263-267.
[http://dx.doi.org/10.1002/cctc.201601317]
[99]
Krishna, P.M.; Ramachary, D.B.; Peesapati, S. Azide–acetonitrile “click” reaction triggered by Cs 2 CO 3: the atom-economic, high-yielding synthesis of 5-amino-1,2,3-triazoles. RSC Advances, 2015, 5(76), 62062-62066.
[http://dx.doi.org/10.1039/C5RA12308A]
[100]
Danence, L.J.T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Organocatalytic enamide-azide cycloaddition reactions: regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles. Chemistry, 2011, 17(13), 3584-3587.
[http://dx.doi.org/10.1002/chem.201002775] [PMID: 21341323]
[101]
Belkheira, M.; El Abed, D.; Pons, J.M.; Bressy, C. Organocatalytic synthesis of 1,2,3-triazoles from unactivated ketones and arylazides. Chemistry, 2011, 17(46), 12917-12921.
[http://dx.doi.org/10.1002/chem.201102046] [PMID: 21984230]
[102]
Wang, L.; Peng, S.; Danence, L.J.T.; Gao, Y.; Wang, J. Amine-catalyzed [3+2] Huisgen cycloaddition strategy for the efficient assembly of highly substituted 1,2,3-triazoles. Chemistry, 2012, 18(19), 6088-6093.
[http://dx.doi.org/10.1002/chem.201103393] [PMID: 22461307]
[103]
Seus, N.; Gonçalves, L.C.; Deobald, A.M.; Savegnago, L.; Alves, D.; Paixão, M.W. Synthesis of arylselanyl-1H-1,2,3-triazole-4-carboxylates by organocatalytic cycloaddition of azidophenyl arylselenides with β-keto-esters. Tetrahedron, 2012, 68(51), 10456-10463.
[http://dx.doi.org/10.1016/j.tet.2012.10.007]
[104]
Seus, N.; Goldani, B.; Lenardão, E.J.; Savegnago, L.; Paixão, M.W.; Alves, D. Organocatalytic Synthesis of (Arylselanyl)phenyl-1 H -1,2,3-triazole-4-carboxamides by Cycloaddition between Azidophenyl Arylselenides and β-Oxo-amides. Eur. J. Org. Chem., 2014, 2014(5), 1059-1065.
[http://dx.doi.org/10.1002/ejoc.201301547]
[105]
Yeung, D.K.J.; Gao, T.; Huang, J.; Sun, S.; Guo, H.; Wang, J. Organocatalytic 1,3-dipolar cycloaddition reactions of ketones and azides with water as a solvent. Green Chem., 2013, 15(9), 2384-2388.
[http://dx.doi.org/10.1039/c3gc41126e]
[106]
Li, W.; Du, Z.; Zhang, K.; Wang, J. Organocatalytic 1,3-dipolar cycloaddition reaction of α,β-unsaturated ketones with azides through iminium catalysis. Green Chem., 2015, 17(2), 781-784.
[http://dx.doi.org/10.1039/C4GC01929F]
[107]
Li, W.; Du, Z.; Huang, J.; Jia, Q.; Zhang, K.; Wang, J. Direct access to 1,2,3-triazoles through organocatalytic 1,3-dipolar cycloaddition reaction of allyl ketones with azides. Green Chem., 2014, 16(6), 3003-3006.
[http://dx.doi.org/10.1039/C4GC00406J]
[108]
Kwok, S.W.; Fotsing, J.R.; Fraser, R.J.; Rodionov, V.O.; Fokin, V.V. Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3-triazoles. Org. Lett., 2010, 12(19), 4217-4219.
[http://dx.doi.org/10.1021/ol101568d] [PMID: 20825167]
[109]
Kloss, F.; Köhn, U.; Jahn, B.O.; Hager, M.D.; Görls, H.; Schubert, U.S. Metal-free 1,5-regioselective azide-alkyne [3+2]-cycloaddition. Chem. Asian J., 2011, 6(10), 2816-2824.
[http://dx.doi.org/10.1002/asia.201100404] [PMID: 21882350]
[110]
Guo, N.; Liu, X.; Xu, H.; Zhou, X.; Zhao, H. A simple route towards the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles from primary amines and 1,3-dicarbonyl compounds under metal-free conditions. Org. Biomol. Chem., 2019, 17(25), 6148-6152.
[http://dx.doi.org/10.1039/C9OB01156K] [PMID: 31187848]
[111]
Kayet, A.; Pathak, T. 1,5-disubstituted 1,2,3-triazolylation at C1, C2, C3, C4, and C6 of pyranosides: a metal-free route to triazolylated monosaccharides and triazole-linked disaccharides. J. Org. Chem., 2013, 78(19), 9865-9875.
[http://dx.doi.org/10.1021/jo401576n] [PMID: 24050453]
[112]
Dey, S.; Pathak, T. A general route to 1,5-disubstituted 1,2,3-triazoles with alkyl/alkyl, alkyl/aryl, aryl/aryl combinations: a metal-free, regioselective, one-pot three component approach. RSC Advances, 2014, 4(18), 9275-9278.
[http://dx.doi.org/10.1039/c3ra47062h]
[113]
Kayet, A.; Dey, S.; Pathak, T. A metal free aqueous route to 1,5-disubstituted 1,2,3-triazolylated monofuranosides and difuranosides. Tetrahedron Lett., 2015, 56(41), 5521-5524.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.030]
[114]
Kayet, A.; Ganguly, A.; Pathak, T. Vinyl sulfone modified-azidofuranoside building-blocks: 1,4-/1,5-disubstituted-1,2,3-triazole linked trisaccharides via an aqueous/ionic-liquid route and “Click” chemistry. RSC Advances, 2016, 6(10), 7977-7981.
[http://dx.doi.org/10.1039/C5RA25942H]
[115]
Li, W.; Wang, J. Lewis base catalyzed aerobic oxidative intermolecular azide-zwitterion cycloaddition. Angew. Chem. Int. Ed., 2014, 53(51), 14186-14190.
[http://dx.doi.org/10.1002/anie.201408265] [PMID: 25319520]
[116]
Quan, X.J.; Ren, Z.H.; Wang, Y.Y.; Guan, Z.H. p-Toluenesulfonic acid mediated 1,3-dipolar cycloaddition of nitroolefins with NaN3 for synthesis of 4-aryl-NH-1,2,3-triazoles. Org. Lett., 2014, 16(21), 5728-5731.
[http://dx.doi.org/10.1021/ol5027975] [PMID: 25343314]
[117]
Sangwan, R. Javed; Dubey, A.; Mandal, P.K. Organocatalytic [3+2] cycloadditions: Toward facile synthesis of sulfonyl-1,2,3-triazolyl and fully substituted 1,2,3-triazolyl glycoconjugates. ChemistrySelect, 2017, 2(17), 4733-4743.
[http://dx.doi.org/10.1002/slct.201700805]
[118]
Thomas, J.; John, J.; Parekh, N.; Dehaen, W. A metal-free three-component reaction for the regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed., 2014, 53(38), 10155-10159.
[http://dx.doi.org/10.1002/anie.201403453] [PMID: 24989456]
[119]
Thomas, J.; Jana, S.; John, J.; Liekens, S.; Dehaen, W. A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem. Commun. (Camb.), 2016, 52(14), 2885-2888.
[http://dx.doi.org/10.1039/C5CC08347H] [PMID: 26744743]
[120]
González-Calderón, D.; Santillán-Iniesta, I.; González-González, C.A.; Fuentes-Benítes, A.; González-Romero, C. A novel and facile synthesis of 1,4,5-trisubstituted 1,2,3-triazoles from benzylic alcohols through a one-pot, three-component system. Tetrahedron Lett., 2015, 56(3), 514-516.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.019]
[121]
González-Calderón, D.; Mejía-Dionicio, M.G.; Morales-Reza, M.A.; Ramírez-Villalva, A.; Morales-Rodríguez, M.; Jauregui-Rodríguez, B.; Díaz-Torres, E.; González-Romero, C.; Fuentes-Benítes, A. Azide-enolate 1,3-dipolar cycloaddition in the synthesis of novel triazole-based miconazole analogues as promising antifungal agents. Eur. J. Med. Chem., 2016, 112, 60-65.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.013] [PMID: 26890112]
[122]
Wan, J.P.; Cao, S.; Liu, Y. A metal- and azide-free multicomponent assembly toward regioselective construction of 1,5-disubstituted 1,2,3-triazoles. J. Org. Chem., 2015, 80(18), 9028-9033.
[http://dx.doi.org/10.1021/acs.joc.5b01121] [PMID: 26292022]
[123]
Bai, H.W.; Cai, Z.J.; Wang, S.Y.; Ji, S.J. Aerobic Oxidative Cycloaddition of α-Chlorotosylhydrazones with Arylamines: General Chemoselective Construction of 1,4-Disubstituted and 1,5-Disubstituted 1,2,3-Triazoles under Metal-Free and Azide-Free Conditions. Org. Lett., 2015, 17(12), 2898-2901.
[http://dx.doi.org/10.1021/acs.orglett.5b01000] [PMID: 26040561]
[124]
Cao, S.; Liu, Y.; Hu, C.; Wen, C.; Wan, J.P. Alkyl Propiolates Participated [3+2] Annulation for the Switchable Synthesis of 1,5- and 1,4-Disubstituted 1,2,3-Triazoles Containing Ester Side Chain. ChemCatChem, 2018, 10(21), 5007-5011.
[http://dx.doi.org/10.1002/cctc.201801366]
[125]
Zhang, X.; Cui, X.; Wang, W.; Zeng, T.; Wang, Y.; Tan, Y.; Liu, D.; Wang, X.; Li, Y. Base-promoted regiospecific synthesis of fully substituted 1,2,3-triazoles and 1,5-disubstituted 1,2,3-triazoles. Asian J. Org. Chem., 2020, 9(12), 2176-2183.
[http://dx.doi.org/10.1002/ajoc.202000479]
[126]
Kiranmye, T.; Vadivelu, M.; Sampath, S.; Muthu, K.; Karthikeyan, K. Ultrasound-assisted catalyst free synthesis of 1,4-/1,5-disubstituted-1,2,3-triazoles in aqueous medium. Sustain. Chem. Pharm., 2021, 19, 100358.
[http://dx.doi.org/10.1016/j.scp.2020.100358]
[127]
(a) Mishra, K.B.; Tiwari, V.K. Click chemistry inspired synthesis of morpholine-fused triazoles. J. Org. Chem., 2014, 79(12), 5752-5762.
[http://dx.doi.org/10.1021/jo500890w] [PMID: 24845771];
(b) Mishra, K.B.; Shashi, S.; Tiwari, V.K. Metal free synthesis of morpholine fused [5,1-c] triazolyl glycoconjugates via glycosyl azido alcohols. RSC Advances, 2015, 5(105), 86840-86848.
[http://dx.doi.org/10.1039/C5RA17181D];
(c) Mishra, K.B.; Shashi, S.; Tiwari, V.K. Click Inspired Facile Synthesis of Novel bis-Triazolyl Glycoconjugates. Trends Carbohydr. Res., 2016, 9(2), 53-58.;
(d) Mishra, K.B.; Mishra, R.C.; Tiwari, V.K. First noscapine glycoconjugates inspired by click chemistry. RSC Advances, 2015, 5(64), 51779-51789.
[http://dx.doi.org/10.1039/C5RA07321A];
(e) Mishra, K.B.; Tiwari, N.; Bose, P.; Singh, R.; Rawat, A.K.; Singh, S.K.; Mishra, R.C.; Singh, R.K.; Tiwari, V.K. Design, Synthesis and Pharmacological Evaluation of Noscapine Glycoconjugates. ChemistrySelect, 2019, 4(9), 2644-2648.
[http://dx.doi.org/10.1002/slct.201803588];
(f) Mishra, K.B.; Agrihari, A.K.; Tiwari, V.K. One-pot facile synthesis of carbohydrate derived oxazolodine-2-thiones from sugar azido alcohols. Carbohydr. Res., 2017, 450, 1-9.
[http://dx.doi.org/10.1016/j.carres.2017.08.002] [PMID: 28818771]
[128]
Reddy, Y.S.; John Pal, A.P.; Gupta, P.; Ansari, A.A.; Vankar, Y.D. Ceric ammonium nitrate-catalyzed azidation of 1,2-anhydro sugars: application in the synthesis of structurally diverse sugar-derived morpholine 1,2,3-triazoles and 1,4-oxazin-2-ones. J. Org. Chem., 2011, 76(15), 5972-5984.
[http://dx.doi.org/10.1021/jo200260w] [PMID: 21679000]
[129]
Dell’Isola, A.; McLachlan, M.M.W.; Neuman, B.W.; Al-Mullah, H.M.N.; Binks, A.W.D.; Elvidge, W.; Shankland, K.; Cobb, A.J.A. Synthesis and antiviral properties of spirocyclic [1,2,3]-triazolooxazine nucleosides. Chemistry, 2014, 20(37), 11685-11689.
[http://dx.doi.org/10.1002/chem.201403560] [PMID: 25082061]
[130]
Pathigoolla, A.; Gonnade, R.G.; Sureshan, K.M. Topochemical click reaction: spontaneous self-stitching of a monosaccharide to linear oligomers through lattice-controlled azide-alkyne cycloaddition. Angew. Chem. Int. Ed., 2012, 51(18), 4362-4366.
[http://dx.doi.org/10.1002/anie.201201023] [PMID: 22431207]
[131]
Hema, K.; Sureshan, K.M. Solid-state synthesis of two different polymers in a single crystal: a miscible polymer blend from a topochemical reaction. Angew. Chem. Int. Ed., 2019, 58(9), 2754-2759.
[http://dx.doi.org/10.1002/anie.201813198] [PMID: 30609210]
[132]
Hema, K.; Sureshan, K.M. Three-way competition in a topochemical reaction: permutative azide–alkyne cycloaddition reactions leading to a vast library of products in the crystal. CrystEngComm, 2018, 20(11), 1478-1482.
[http://dx.doi.org/10.1039/C8CE00131F]
[133]
Krishnan, B.P.; Ramakrishnan, S.; Sureshan, K.M. Supramolecular design of a bicomponent topochemical reaction between two non-identical molecules. Chem. Commun. (Camb.), 2013, 49(15), 1494-1496.
[http://dx.doi.org/10.1039/C2CC37067K] [PMID: 23208380]
[134]
Das Adhikary, N.; Chattopadhyay, P. Design and synthesis of 1,2,3-triazole-fused chiral medium-ring benzo-heterocycles, scaffolds mimicking benzolactams. J. Org. Chem., 2012, 77(12), 5399-5405.
[http://dx.doi.org/10.1021/jo3004327] [PMID: 22647142]
[135]
Oliva, A.I.; Christmann, U.; Font, D.; Cuevas, F.; Ballester, P.; Buschmann, H.; Torrens, A.; Yenes, S.; Pericàs, M.A. Intramolecular azide-alkyne cycloaddition for the fast assembly of structurally diverse, tricyclic 1,2,3-triazoles. Org. Lett., 2008, 10(8), 1617-1619.
[http://dx.doi.org/10.1021/ol800291t] [PMID: 18348569]
[136]
Rungta, P.; Mangla, P.; Maikhuri, V.K.; Singh, S.K.; Prasad, A.K. Microwave-assisted synthesis of C -4′-(1,5-disubstituted)-triazole - spiro- α -L-arabinofuranosyl nucleosides. ChemistrySelect, 2017, 2(26), 7808-7812.
[http://dx.doi.org/10.1002/slct.201701111]
[137]
Balducci, E.; Bellucci, L.; Petricci, E.; Taddei, M.; Tafi, A. Microwave-assisted intramolecular Huisgen cycloaddition of azido alkynes derived from α-amino acids. J. Org. Chem., 2009, 74(3), 1314-1321.
[http://dx.doi.org/10.1021/jo802463r] [PMID: 19138079]
[138]
Chatterjee, N.; Pal, R.; Sarkar, S.; Sen, A.K. Synthesis of triazole-fused tetracyclic glycosides in aqueous medium: application of nanodomain cubic cuprous oxide as reusable catalyst in one-pot domino Sonogashira-cyclization. Tetrahedron Lett., 2015, 56(25), 3886-3889.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.106]
[139]
Mishra, K.B.; Tiwari, V.K. One-pot facile synthesis of 1,5-disubstituted triazolyl glycoconjugates from nitrostyrenes. ChemistrySelect, 2016, 1(13), 3693-3698.
[http://dx.doi.org/10.1002/slct.201600994]
[140]
Wang, Y.C.; Xie, Y.Y.; Qu, H.E.; Wang, H.S.; Pan, Y.M.; Huang, F.P. Ce(OTf)₃-catalyzed [3 + 2] cycloaddition of azides with nitroolefins: regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles. J. Org. Chem., 2014, 79(10), 4463-4469.
[http://dx.doi.org/10.1021/jo5004339] [PMID: 24742349]
[141]
De Nino, A.; Merino, P.; Algieri, V.; Nardi, M.; Di Gioia, M.L.; Russo, B.; Tallarida, M.A.; Maiuolo, L. Synthesis of 1,5-functionalized 1,2,3-triazoles using ionic liquid/iron(III) chloride as an efficient and reusable homogeneous catalyst. Catalysts, 2018, 8(9), 364.
[http://dx.doi.org/10.3390/catal8090364]
[142]
De Nino, A.; Maiuolo, L.; Merino, P.; Nardi, M.; Procopio, A.; Roca-López, D.; Russo, B.; Algieri, V. Efficient organocatalyst supported on a simple ionic liquid as a recoverable system for the asymmetric diels-alder reaction in the presence of water. ChemCatChem, 2015, 7(5), 830-835.
[http://dx.doi.org/10.1002/cctc.201402973]
[143]
Sahu, D.; Dey, S.; Pathak, T.; Ganguly, B. Regioselectivity of vinyl sulfone based 1,3-dipolar cycloaddition reactions with sugar azides by computational and experimental studies. Org. Lett., 2014, 16(8), 2100-2103.
[http://dx.doi.org/10.1021/ol500461s] [PMID: 24697165]
[144]
Kumar, N.; Ansari, M.Y.; Kant, R.; Kumar, A. Copper-catalyzed decarboxylative regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles. Chem. Commun. (Camb.), 2018, 54(21), 2627-2630.
[http://dx.doi.org/10.1039/C7CC09934G] [PMID: 29468231]
[145]
Bulman Page, P.; Stephenson, G.; Harvey, J.; Slawin, A. Ruthenium-free preparation of 1,5-disubstituted triazoles by alkylative debenzylation of 1,4-disubstituted triazoles. Synlett, 2016, 27(17), 2500-2504.
[http://dx.doi.org/10.1055/s-0035-1562603]
[146]
Wu, L.; Chen, Y.; Tang, M.; Song, X.; Chen, G.; Song, X.; Lin, Q. Potassium tert-butoxide promoted cycloaddition reaction for the synthesis of 1,5-disubstituted 1,2,3-triazoles from aromatic azides and trimethylsilyl-protected alkynes. Synlett, 2012, 23(10), 1529-1533.
[http://dx.doi.org/10.1055/s-0031-1291042]
[147]
Smith, C.D.; Greaney, M.F. Zinc mediated azide-alkyne ligation to 1,5- and 1,4,5-substituted 1,2,3-triazoles. Org. Lett., 2013, 15(18), 4826-4829.
[http://dx.doi.org/10.1021/ol402225d] [PMID: 24001177]
[148]
Camberlein, V.; Kraupner, N.; Bou Karroum, N.; Lipka, E.; Deprez-Poulain, R.; Deprez, B.; Bosc, D. Multi-component reaction for the preparation of 1,5-disubstituted 1,2,3-triazoles by in-situ generation of azides and nickel-catalyzed azide-alkyne cycloaddition. Tetrahedron Lett., 2021, 73, 153131.
[http://dx.doi.org/10.1016/j.tetlet.2021.153131]
[149]
Kim, W.G.; Kang, M.E.; Lee, J.B.; Jeon, M.H.; Lee, S.; Lee, J.; Choi, B.; Cal, P.M.S.D.; Kang, S.; Kee, J.M.; Bernardes, G.J.L.; Rohde, J.U.; Choe, W.; Hong, S.Y. Nickel-catalyzed azide-alkyne cycloaddition to access 1,5-disubstituted 1,2,3-triazoles in air and water. J. Am. Chem. Soc., 2017, 139(35), 12121-12124.
[http://dx.doi.org/10.1021/jacs.7b06338] [PMID: 28814075]
[150]
Chen, R.; Zeng, L.; Lai, Z.; Cui, S. Iridium-catalyzed hydroxyl-enabled cycloaddition of azides and alkynes. Adv. Synth. Catal., 2019, 361(5), 989-994.
[http://dx.doi.org/10.1002/adsc.201801410]
[151]
Nanjundaswamy, H.M.; Abrahamse, H. Regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles by reusable AlCl3 immobilized on γ -Al2O3. Synth. Commun., 2015, 45(8), 967-974.
[http://dx.doi.org/10.1080/00397911.2014.997366]
[152]
Bubyrev, A.; Malkova, K.; Kantin, G.; Dar’in, D.; Krasavin, M. Metal-free synthesis of 1,5-disubstituted 1,2,3-triazoles. J. Org. Chem., 2021, 86(23), 17516-17522.
[http://dx.doi.org/10.1021/acs.joc.1c02309] [PMID: 34797670]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy