Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Current Status and Future Direction of Extracellular Nano-vesicles in the Alleviation of Skin Disorders

Author(s): Raziyeh Ghorbani, Simzar Hosseinzadeh, Arezo Azari, Niloofar Taghipour, Masoud Soleimani, Azam Rahimpour* and Hojjat Allah Abbaszadeh*

Volume 19, Issue 3, 2024

Published on: 19 May, 2023

Page: [351 - 366] Pages: 16

DOI: 10.2174/1574888X18666230418121053

Price: $65

Abstract

Exosomes are extracellular vesicles (EVs) that originate from endocytic membranes. The transfer of biomolecules and biological compounds such as enzymes, proteins, RNA, lipids, and cellular waste disposal through exosomes plays an essential function in cell-cell communication and regulation of pathological and physiological processes in skin disease. The skin is one of the vital organs that makes up about 8% of the total body mass. This organ consists of three layers, epidermis, dermis, and hypodermis that cover the outer surface of the body. Heterogeneity and endogeneity of exosomes is an advantage that distinguishes them from nanoparticles and liposomes and leads to their widespread usage in the remedy of dermal diseases. The biocompatible nature of these extracellular vesicles has attracted the attention of many health researchers. In this review article, we will first discuss the biogenesis of exosomes, their contents, separation methods, and the advantages and disadvantages of exosomes. Then we will highlight recent developments related to the therapeutic applications of exosomes in the treatment of common skin disorders like atopic dermatitis, alopecia, epidermolysis bullosa, keloid, melanoma, psoriasis, and systemic sclerosis.

Graphical Abstract

[1]
Montagna W. The structure and function of skin. (3rd ed.), AmsterdamElsevier 2012.
[2]
Halata Z, Grim M, Baumann KI. Current understanding of Merkel cells, touch reception and the skin. Expert Rev Dermatol 2010; 5(1): 109-16.
[http://dx.doi.org/10.1586/edm.09.70]
[3]
Tsatmali M, Ancans J, Thody AJ. Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 2002; 50(2): 125-33.
[http://dx.doi.org/10.1177/002215540205000201] [PMID: 11799132]
[4]
Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans cells—programmed by the epidermis. Front Immunol 2017; 8: 1676.
[http://dx.doi.org/10.3389/fimmu.2017.01676] [PMID: 29238347]
[5]
Benson HA, Watkinson AC. Topical and transdermal drug delivery: principles and practice. Hoboken, New Jersey John Wiley & Sons 2012.
[6]
Gupta RK. Adipocytes. Curr Biol 2014; 24(20): R988-93.
[http://dx.doi.org/10.1016/j.cub.2014.09.003] [PMID: 25442852]
[7]
Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res 2012; 49(1): 35-43.
[http://dx.doi.org/10.1159/000339613] [PMID: 22797712]
[8]
Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. s. Eur Surg Res 2017; 58(1-2): 81-94.
[http://dx.doi.org/10.1159/000454919] [PMID: 27974711]
[9]
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412-20.
[http://dx.doi.org/10.1016/S0021-9258(18)48095-7] [PMID: 3597417]
[10]
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116-25.
[http://dx.doi.org/10.1016/j.ceb.2014.05.004] [PMID: 24959705]
[11]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cellderived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[12]
Lindenbergh MFS, Wubbolts R, Borg EGF. ’T Veld EM, Boes M, Stoorvogel W. Dendritic cells release exosomes together with phagocytosed pathogen; potential implications for the role of exosomes in antigen presentation. J Extracell Vesicles 2020; 9(1): 1798606.
[http://dx.doi.org/10.1080/20013078.2020.1798606] [PMID: 32944186]
[13]
Manchon E, Hirt N, Bouaziz JD, Jabrane-Ferrat N, Al-Daccak R. Stem cells-derived extracellular vesicles: Potential therapeutics for wound healing in chronic inflammatory skin diseases. Int J Mol Sci 2021; 22(6): 3130.
[http://dx.doi.org/10.3390/ijms22063130] [PMID: 33808520]
[14]
Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. Exosomes: New molecular targets of diseases. Acta Pharmacol Sin 2018; 39(4): 501-13.
[http://dx.doi.org/10.1038/aps.2017.162] [PMID: 29219950]
[15]
Gonda A, Kabagwira J, Senthil GN, Wall NR. Internalization of exosomes through receptor-mediated endocytosis. Mol Cancer Res 2019; 17(2): 337-47.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0891] [PMID: 30487244]
[16]
Harischandra DS, Ghaisas S, Rokad D, Kanthasamy AG. Exosomes in toxicology: Relevance to chemical exposure and pathogenesis of environmentally linked diseases. Toxicol Sci 2017; 158(1): 3-13.
[http://dx.doi.org/10.1093/toxsci/kfx074] [PMID: 28505322]
[17]
Rajendran L, Honsho M, Zahn TR, et al. Alzheimer’s disease βamyloid peptides are released in association with exosomes. Proc Natl Acad Sci 2006; 103(30): 11172-7.
[http://dx.doi.org/10.1073/pnas.0603838103] [PMID: 16837572]
[18]
Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527(7578): 329-35.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[19]
Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Badiavas EV. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 2015; 24(14): 1635-47.
[http://dx.doi.org/10.1089/scd.2014.0316] [PMID: 25867197]
[20]
Ferreira AF, Cunha PS, Carregal VM, et al. Extracellular vesicles from adipose-derived mesenchymal stem/stromal cells accelerate migration and activate AKT pathway in human keratinocytes and fibroblasts independently of miR-205 activity. Stem Cells Int 2017; 2017: 1-14.
[http://dx.doi.org/10.1155/2017/9841035] [PMID: 29358958]
[21]
Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 1983; 97(2): 329-39.
[http://dx.doi.org/10.1083/jcb.97.2.329] [PMID: 6309857]
[22]
Batista BS, Eng WS, Pilobello KT, Hendricks-Muñoz KD, Mahal LK. Identification of a conserved glycan signature for microvesicles. J Proteome Res 2011; 10(10): 4624-33.
[http://dx.doi.org/10.1021/pr200434y] [PMID: 21859146]
[23]
Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 2015; 40: 41-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.010]
[24]
Sahu R, Kaushik S, Clement CC, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20(1): 131-9.
[http://dx.doi.org/10.1016/j.devcel.2010.12.003] [PMID: 21238931]
[25]
Record M. Intercellular communication by exosomes in placenta: A possible role in cell fusion? Placenta 2014; 35(5): 297-302.
[http://dx.doi.org/10.1016/j.placenta.2014.02.009] [PMID: 24661568]
[26]
Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell 2011; 21(1): 77-91.
[http://dx.doi.org/10.1016/j.devcel.2011.05.015] [PMID: 21763610]
[27]
Henne WM, Stenmark H, Emr SD. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 2013; 5(9): a016766.
[http://dx.doi.org/10.1101/cshperspect.a016766] [PMID: 24003212]
[28]
Juan T, Fürthauer M. Biogenesis and function of ESCRTdependent extracellular vesicles. Semin Cell Dev Biol 2018; 74: 66-77.
[http://dx.doi.org/10.1016/j.semcdb.2017.08.022]
[29]
Tschuschke M, Kocherova I, Bryja A, et al. Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J Clin Med 2020; 9(2): 436.
[http://dx.doi.org/10.3390/jcm9020436] [PMID: 32041096]
[30]
Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 2008; 7(12): 5157-66.
[http://dx.doi.org/10.1021/pr8004887] [PMID: 19367702]
[31]
Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 2010; 51(8): 2105-20.
[http://dx.doi.org/10.1194/jlr.M003657] [PMID: 20424270]
[32]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[33]
Théry C, Boussac M, Véron P, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001; 166(12): 7309-18.
[http://dx.doi.org/10.4049/jimmunol.166.12.7309] [PMID: 11390481]
[34]
Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012; 10(12): e1001450.
[http://dx.doi.org/10.1371/journal.pbio.1001450] [PMID: 23271954]
[35]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[36]
Record M, Subra C, Silvente-Poirot S, Poirot M. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 2011; 81(10): 1171-82.
[http://dx.doi.org/10.1016/j.bcp.2011.02.011] [PMID: 21371441]
[37]
Futter CE, White IJ. Annexins and Endocytosis. Traffic 2007; 8(8): 951-8.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00590.x] [PMID: 17547702]
[38]
Gastpar R, Gehrmann M, Bausero MA, et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 2005; 65(12): 5238-47.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3804] [PMID: 15958569]
[39]
Nguyen DG, Booth A, Gould SJ, Hildreth JEK. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J Biol Chem 2003; 278(52): 52347-54.
[http://dx.doi.org/10.1074/jbc.M309009200] [PMID: 14561735]
[40]
Mears R, Craven RA, Hanrahan S, et al. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 2004; 4(12): 4019-31.
[http://dx.doi.org/10.1002/pmic.200400876] [PMID: 15478216]
[41]
Hegmans JPJJ, Bard MPL, Hemmes A, et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 2004; 164(5): 1807-15.
[http://dx.doi.org/10.1016/S0002-9440(10)63739-X] [PMID: 15111327]
[42]
de Gassart A, Géminard C, Février B, Raposo G, Vidal M. Lipid raft-associated protein sorting in exosomes. Blood 2003; 102(13): 4336-44.
[http://dx.doi.org/10.1182/blood-2003-03-0871] [PMID: 12881314]
[43]
Antimisiaris S, Mourtas S, Marazioti A. Exosomes and exosomeinspired vesicles for targeted drug delivery. Pharmaceutics 2018; 10(4): 218.
[http://dx.doi.org/10.3390/pharmaceutics10040218] [PMID: 30404188]
[44]
Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 2009; 284(49): 34211-22.
[http://dx.doi.org/10.1074/jbc.M109.041152] [PMID: 19801663]
[45]
Piccin A, Murphy WG, Smith OP. Circulating microparticles: Pathophysiology and clinical implications. Blood Rev 2007; 21(3): 157-71.
[http://dx.doi.org/10.1016/j.blre.2006.09.001] [PMID: 17118501]
[46]
Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 2007; 89(2): 205-12.
[http://dx.doi.org/10.1016/j.biochi.2006.10.014]
[47]
Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells 2021; 10(8): 1959.
[http://dx.doi.org/10.3390/cells10081959] [PMID: 34440728]
[48]
Blanchard N, Lankar D, Faure F, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J Immun 2002; 168(7): 3235-41.
[http://dx.doi.org/10.4049/jimmunol.168.7.3235]
[49]
Monypenny J, Milewicz H, Flores-Borja F, et al. ALIX regulates tumor-mediated immunosuppression by controlling EGFR activity and PD-L1 presentation. Cell Rep 2018; 24(3): 630-41.
[http://dx.doi.org/10.1016/j.celrep.2018.06.066] [PMID: 30021161]
[50]
Roucourt B, Meeussen S, Bao J, Zimmermann P, David G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res 2015; 25(4): 412-28.
[http://dx.doi.org/10.1038/cr.2015.29] [PMID: 25732677]
[51]
Liu H, Chen L, Peng Y, et al. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget 2018; 9(2): 2887-94.
[http://dx.doi.org/10.18632/oncotarget.20812] [PMID: 29416821]
[52]
Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids.Curr Protoc Cell Biol 2006; 30(1): 3.22.1-3.22.29.
[http://dx.doi.org/10.1002/0471143030.cb0322s30]
[53]
Livshits MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep 2015; 5(1): 17319.
[http://dx.doi.org/10.1038/srep17319] [PMID: 26616523]
[54]
Momen-Heravi F. Isolation of extracellular vesicles by ultracentrifugation, Extracellular Vesicles. Methods Mol Biol 2017; 1660: 25-32.
[http://dx.doi.org/10.1007/978-1-4939-7253-1_3] [PMID: 28828645]
[55]
Kang YT, Kim YJ, Bu J, Cho YH, Han SW, Moon BI. High-purity capture and release of circulating exosomes using an exosomespecific dual-patterned immunofiltration (ExoDIF) device. Nanoscale 2017; 9(36): 13495-505.
[http://dx.doi.org/10.1039/C7NR04557C] [PMID: 28862274]
[56]
Liu F, Vermesh O, Mani V, et al. The exosome total isolation chip. ACS nano 2017; 11(11): 10712-23. 7
[http://dx.doi.org/10.1021/acsnano.7b04878]
[57]
Wunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol 2016; 11(11): 936-40.
[http://dx.doi.org/10.1038/nnano.2016.134] [PMID: 27479757]
[58]
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106((Pt A)): 148-56.
[http://dx.doi.org/10.1016/j.addr.2016.02.006] [PMID: 26928656]
[59]
Gu Y, Chen C, Mao Z, et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci Adv 2021; 7(1): eabc0467.
[http://dx.doi.org/10.1126/sciadv.abc0467] [PMID: 33523836]
[60]
Shi L, Kuhnell D, Borra VJ, Langevin SM, Nakamura T, Esfandiari L. Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device. Lab Chip 2019; 19(21): 3726-34.
[http://dx.doi.org/10.1039/C9LC00902G] [PMID: 31588942]
[61]
Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-free isolation of exosomes using microfluidic technologies. ACS Nano 2021; 15(11): 17047-79.
[http://dx.doi.org/10.1021/acsnano.1c03469] [PMID: 34723478]
[62]
Zhang M, Jin K, Gao L, et al. Methods and technologies for exosome isolation and characterization. Small Methods 2018; 2(9): 1800021.
[http://dx.doi.org/10.1002/smtd.201800021]
[63]
Yang XX, Sun C, Wang L, Guo XL. New insight into isolation, identification techniques and medical applications of exosomes. J Control Release 2019; 308: 119-29.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.021] [PMID: 31325471]
[64]
Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 2014; 3(1): 23430.
[65]
Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 2014; 3(1): 23111.
[http://dx.doi.org/10.3402/jev.v3.23111] [PMID: 24678386]
[66]
Tauro BJ, Greening DW, Mathias RA, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 2012; 56(2): 293-304.
[http://dx.doi.org/10.1016/j.ymeth.2012.01.002] [PMID: 22285593]
[67]
Xu X, Liu Y, Li Y, et al. Selective exosome exclusion of miR-375 by glioma cells promotes glioma progression by activating the CTGF-EGFR pathway. J Exp Clin Cancer Res 2021; 40(1): 16.
[http://dx.doi.org/10.1186/s13046-020-01810-9] [PMID: 33407703]
[68]
Doldán. Fagúndez, Cayota A, Laíz J, Tosar JP. Electrochemical sandwich immunosensor for determination of exosomes based on surface markermediated signal amplification. Anal Chem 2016; 88: 10466-73.
[http://dx.doi.org/10.1021/acs.analchem.6b02421] [PMID: 27734678]
[69]
Cheruvanky A, Zhou H, Pisitkun T, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 2007; 292(5): F1657-61.
[http://dx.doi.org/10.1152/ajprenal.00434.2006] [PMID: 17229675]
[70]
Takov K, Yellon DM, Davidson SM. Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: Yield, purity and functional potential. J Extracell Vesicles 2019; 8(1): 1560809.
[http://dx.doi.org/10.1080/20013078.2018.1560809] [PMID: 30651940]
[71]
Bohmer N, Demarmels N, Tsolaki E, et al. Removal of cells from body fluids by magnetic separation in batch and continuous mode: Influence of bead size, concentration, and contact time. ACS Appl Mater Interfaces 2017; 9(35): 29571-9.
[http://dx.doi.org/10.1021/acsami.7b10140] [PMID: 28805365]
[72]
Lee S, Tae S, Jee N, Shin S. LDA-based model for measuring impact of change orders in apartment projects and its application for prerisk assessment and postevaluation. J Constr Eng Manage 2015; 141(7): 04015011.
[http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000971]
[73]
Aghilinejad A, Aghaamoo M, Chen X, Xu J. Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation. Electrophoresis 2018; 39(5-6): 869-77.
[http://dx.doi.org/10.1002/elps.201700264] [PMID: 28975645]
[74]
Ibsen SD, Wright J, Lewis JM, et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano 2017; 11(7): 6641-51.
[http://dx.doi.org/10.1021/acsnano.7b00549] [PMID: 28671449]
[75]
Zeming KK, Thakor NV, Zhang Y, Chen CH. Real-time modulated nanoparticle separation with an ultra-large dynamic range. Lab Chip 2016; 16(1): 75-85.
[http://dx.doi.org/10.1039/C5LC01051A] [PMID: 26575003]
[76]
Wunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol 2016; 11(11): 936-40.
[http://dx.doi.org/10.1038/nnano.2016.134] [PMID: 27479757]
[77]
Malhotra H, Sheokand N, Kumar S, et al. Exosomes: Tunable nano vehicles for macromolecular delivery of transferrin and lactoferrin to specific intracellular compartment. JBN 2016; 12(5): 1101-14.
[http://dx.doi.org/10.1166/jbn.2016.2229]
[78]
Rupert DLM, Claudio V, Lässer C, Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta, Gen Subj 2017; 1861(1): 3164-79.
[http://dx.doi.org/10.1016/j.bbagen.2016.07.028] [PMID: 27495390]
[79]
Zhang M, Zang X, Wang M, et al. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: Recent advances and challenges. J Mater Chem B Mater Biol Med 2019; 7(15): 2421-33.
[http://dx.doi.org/10.1039/C9TB00170K] [PMID: 32255119]
[80]
Peng H, Ji W, Zhao R, et al. Exosome: A significant nano-scale drug delivery carrier. J Mater Chem B Mater Biol Med 2020; 8(34): 7591-608.
[http://dx.doi.org/10.1039/D0TB01499K] [PMID: 32697267]
[81]
Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 2019; 20(19): 4684.
[http://dx.doi.org/10.3390/ijms20194684] [PMID: 31546622]
[82]
Lee M, Ban JJ, Im W, Kim M. Influence of storage condition on exosome recovery. Biotechnol Bioprocess Eng; BBE 2016; 21(2): 299-304.
[http://dx.doi.org/10.1007/s12257-015-0781-x]
[83]
Charoenviriyakul C, Takahashi Y, Nishikawa M, Takakura Y. Preservation of exosomes at room temperature using lyophilization. Int J Pharm 2018; 553(1-2): 1-7.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.032] [PMID: 30316791]
[84]
Shin K-O, Ha DH, Kim JO, et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de novo synthesis of ceramides in atopic dermatitis. Cells 2020; 9(3): 680.
[85]
Sophie N. Dermatitis atópica: Epidemiología global y factores de riesgo. Ann Nutr Metab 2015; 66(S1): 8-16.
[86]
Leung DYM. Atopic dermatitis: New insights and opportunities for therapeutic intervention. J Allergy Clin Immunol 2000; 105(5): 860-76.
[http://dx.doi.org/10.1067/mai.2000.106484] [PMID: 10808164]
[87]
Leung DYM. New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol Int 2013; 62(2): 151-61.
[http://dx.doi.org/10.2332/allergolint.13-RAI-0564] [PMID: 23712284]
[88]
Sullivan M, Silverberg NB. Current and emerging concepts in atopic dermatitis pathogenesis. Clin Dermatol 2017; 35(4): 349-53.
[http://dx.doi.org/10.1016/j.clindermatol.2017.03.006] [PMID: 28709564]
[89]
Irvine AD, Irwin McLean WH. Breaking the (un)sound barrier: filaggrin is a major gene for atopic dermatitis. J Invest Dermatol 2006; 126(6): 1200-2.
[http://dx.doi.org/10.1038/sj.jid.5700365] [PMID: 16702964]
[90]
Mendt M, Kamerkar S, Sugimoto H, et al. Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 2018; 3(8): e99263.
[http://dx.doi.org/10.1172/jci.insight.99263] [PMID: 29669940]
[91]
Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther 2018; 9(1): 187.
[http://dx.doi.org/10.1186/s13287-018-0939-5] [PMID: 29996938]
[92]
Snast I, Reiter O, Hodak E, Friedland R, Mimouni D, Leshem YA. Are biologics efficacious in atopic dermatitis? A systematic review and meta-analysis. Am J Clin Dermatol 2018; 19(2): 145-65.
[http://dx.doi.org/10.1007/s40257-017-0324-7] [PMID: 29098604]
[93]
Prussin C, Metcalfe DD. 4. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 2003; 111(2): S486-94.
[http://dx.doi.org/10.1067/mai.2003.120]
[94]
Liu FT, Goodarzi H, Chen HY. IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol 2011; 41(3): 298-310.
[http://dx.doi.org/10.1007/s12016-011-8252-4] [PMID: 21249468]
[95]
Wollenberg A, Oppel T, Schottdorf E-M, Günther S, Moderer M, Mommaas M. Expression and function of the mannose receptor CD206 on epidermal dendritic cells in inflammatory skin diseases. J Invest Dermatol 2002; 118(2): 327-34.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01665.x] [PMID: 11841552]
[96]
Schuller E, Teichmann B, Haberstok J, Moderer M, Bieber T, Wollenberg A. In situ expression of the costimulatory molecules CD80 and CD86 on Langerhans cells and inflammatory dendritic epidermal cells (IDEC) in atopic dermatitis. Arch Dermatol Res 2001; 293(9): 448-54.
[http://dx.doi.org/10.1007/s004030100263] [PMID: 11758787]
[97]
Proksch E, Brandner JM, Jensen JM. The skin: An indispensable barrier. Exp Dermatol 2008; 17(12): 1063-72.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00786.x] [PMID: 19043850]
[98]
Wang M, Zhao Y, Zhang Q. Human mesenchymal stem cellderived exosomes accelerate wound healing of mice eczema. J Dermatolog Treat 2020; 1-5.
[http://dx.doi.org/10.1080/09546634.2020.1820935] [PMID: 32893705]
[99]
Verhagen J, Akdis M, Traidlhoffmann C, et al. Absence of Tregulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol 2006; 117(1): 176-83.
[http://dx.doi.org/10.1016/j.jaci.2005.10.040] [PMID: 16387603]
[100]
Mohr A, Atif M, Balderas R, Gorochov G, Miyara M. The role of FOXP3+ regulatory T cells in human autoimmune and inflammatory diseases. Clin Exp Immunol 2019; 197(1): 24-35.
[http://dx.doi.org/10.1111/cei.13288]
[101]
Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005; 366(9498): 1736-43.
[http://dx.doi.org/10.1016/S0140-6736(05)67700-8] [PMID: 16291068]
[102]
Park KY, Han HS, Park JW, Kwon HH, Park GH, Seo SJ. Exosomes derived from human adipose tissue derived mesenchymal stem cells for the treatment of dupilumab‐related facial redness in patients with atopic dermatitis: a report of two cases. J Cosmet Dermatol 2022; 21(2): 844-9.
[http://dx.doi.org/10.1111/jocd.14153]
[103]
Mallipeddi R. Epidermolysis bullosa and cancer. Clin Exp Dermatol 2002; 27(8): 616-23.
[http://dx.doi.org/10.1046/j.1365-2230.2002.01130.x] [PMID: 12472531]
[104]
Pitt JM, André F, Amigorena S, et al. Dendritic cell–derived exosomes for cancer therapy. JCI 2016 Apr 1; 126(4): 1224-32.
[105]
Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: A review. Endocrine 2017; 57(1): 9-17.
[http://dx.doi.org/10.1007/s12020-017-1280-y] [PMID: 28349362]
[106]
Slominski A, Paus R, Plonka P, et al. Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle. J Invest Dermatol 1994; 102(6): 862-9.
[http://dx.doi.org/10.1111/1523-1747.ep12382606] [PMID: 8006449]
[107]
Cash TF. The psychosocial consequences of androgenetic alopecia: A review of the research literature. Br J Dermatol 1999; 141(3): 398-405.
[http://dx.doi.org/10.1046/j.1365-2133.1999.03030.x] [PMID: 10583042]
[108]
Mohammadi P, Youssef KK, Abbasalizadeh S, Baharvand H, Aghdami N. Human hair reconstruction: Close, but yet so far. Stem Cells Dev 2016; 25(23): 1767-79.
[http://dx.doi.org/10.1089/scd.2016.0137] [PMID: 27649771]
[109]
Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, et al. Therapeutic potential of stem cells in follicle regeneration. Stem Cells Int 2018; 2018: 1-16.
[http://dx.doi.org/10.1155/2018/1049641] [PMID: 30154860]
[110]
Kanti V, Messenger A, Dobos G, et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men - short version. J Eur Acad Dermatol Venereol 2018; 32(1): 11-22.
[http://dx.doi.org/10.1111/jdv.14624] [PMID: 29178529]
[111]
Ajit A, Nair MD, Venugopal B. Exploring the Potential of Mesenchymal Stem Cell–Derived Exosomes for the Treatment of Alopecia. Regen Eng Transl Med 2021; 7(2): 119-28.
[http://dx.doi.org/10.1007/s40883-021-00204-3]
[112]
Rajendran RL, Gangadaran P, Bak SS, et al. Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep 2017; 7(1): 15560.
[http://dx.doi.org/10.1038/s41598-017-15505-3] [PMID: 29138430]
[113]
Zhou L, Wang H, Jing J, Yu L, Wu X, Lu Z. Regulation of hair follicle development by exosomes derived from dermal papilla cells. Biochem Biophys Res Commun 2018; 500(2): 325-32.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.067] [PMID: 29654758]
[114]
Limat A, Breitkreutz D, Stark HJ, et al. Experimental modulation of the differentiated phenotype of keratinocytes from epidermis andhair follicle outer root sheath and matrix cells. Ann N Y Acad Sci 1991; 642(1): 125-46.
[http://dx.doi.org/10.1111/j.1749-6632.1991.tb24385.x] [PMID: 1725578]
[115]
Taylor M, Ashcroft ATT, Westgate GE, Gibson WT, Messenger AG. Glycosaminoglycan synthesis by cultured human hair follicle dermal papilla cells: Comparison with non-follicular dermal fibroblasts. Br J Dermatol 1992; 126(5): 479-84.
[http://dx.doi.org/10.1111/j.1365-2133.1992.tb15120.x] [PMID: 1610689]
[116]
Limat A, Hunziker T, Waelti ER, Inaebnit SP, Wiesmann U, Braathen LR. Soluble factors from human hair papilla cells and dermal fibroblasts dramatically increase the clonal growth of outer root sheath cells. Arch Dermatol Res 1993; 285(4): 205-10.
[http://dx.doi.org/10.1007/BF00372010] [PMID: 8342964]
[117]
Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol 2002; 118(2): 216-25.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01670.x] [PMID: 11841536]
[118]
Burke J, Kolhe R, Hunter M, Isales C, Hamrick M, Fulzele S. Stem cell-derived exosomes: A potential alternative therapeutic agent in orthopaedics. Stem Cells Int 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/5802529] [PMID: 26904130]
[119]
Wong T, Gammon L, Liu L, et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2008; 128(9): 2179-89.
[http://dx.doi.org/10.1038/jid.2008.78] [PMID: 18385758]
[120]
Rashidghamat E, McGrath JA. Novel and emerging therapies in the treatment of recessive dystrophic epidermolysis bullosa. Intractable Rare Dis Res 2017; 6(1): 6-20.
[http://dx.doi.org/10.5582/irdr.2017.01005] [PMID: 28357176]
[121]
Mallipeddi R. Epidermolysis bullosa and cancer. Clin Exp Dermatol 2002; 27(8): 616-23.
[http://dx.doi.org/10.1046/j.1365-2230.2002.01130.x] [PMID: 12472531]
[122]
McBride JD, Rodriguez-Menocal L, Candanedo A, Guzman W, Garcia-Contreras M, Badiavas EV. Dual mechanism of type VII collagen transfer by bone marrow mesenchymal stem cell extracellular vesicles to recessive dystrophic epidermolysis bullosa fibroblasts. Biochimie 2018; 155: 50-8.
[http://dx.doi.org/10.1016/j.biochi.2018.04.007] [PMID: 29653141]
[123]
Tanabe T, Maeda M, Saito K, Katada T. Dual function of cTAGE5 in collagen export from the endoplasmic reticulum. Mol Biol Cell 2016; 27(13): 2008-13.
[http://dx.doi.org/10.1091/mbc.E16-03-0180] [PMID: 27170179]
[124]
Malhotra V, Erlmann P. The pathway of collagen secretion. Annu Rev Cell Dev Biol 2015; 31(1): 109-24.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013002] [PMID: 26422332]
[125]
Christiano AM, Amano S, Eichenfield LF, Burgeson RE, Uitto J. Premature termination codon mutations in the type VII collagen gene in recessive dystrophic epidermolysis bullosa result in nonsense-mediated mRNA decay and absence of functional protein. J Invest Dermatol 1997; 109(3): 390-4.
[http://dx.doi.org/10.1111/1523-1747.ep12336276] [PMID: 9284110]
[126]
Moon JH, Kwak SS, Park G, et al. Isolation and characterization of multipotent human keloid-derived mesenchymal-like stem cells. Stem Cells Dev 2008; 17(4): 713-24.
[http://dx.doi.org/10.1089/scd.2007.0210] [PMID: 18710345]
[127]
Jannati P, Aref S, Jannati AA, Jannati F, Moravvej H. Comparison of therapeutic response of keloids to cryotherapy plus intralesional triamcinolone acetonide or verapamil hydrochloride. J Skin Stem Cell 2015; 2(1): jssc2928.
[http://dx.doi.org/10.17795/jssc2928]
[128]
Bayat A, Arscott G, Ollier WER, Mc Grouther DA, Ferguson MWJ. Keloid disease: Clinical relevance of single versus multiple site scars. Br J Plast Surg 2005; 58(1): 28-37.
[http://dx.doi.org/10.1016/j.bjps.2004.04.024] [PMID: 15629164]
[129]
Lee G, Hunter-Smith DJ, Rozen WM. Autologous fat grafting in keloids and hypertrophic scars: A review. Scars Burn Heal 2017; 3.
[http://dx.doi.org/10.1177/2059513117700157] [PMID: 29799555]
[130]
Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen 2010; 18(2): 139-53.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00553.x] [PMID: 20002895]
[131]
Michael O. The search for the genetic basis of african keloids. Ann Ib Postgrad Med 2012; 10(2): 53-5.
[132]
Naylor M, Brissett A. Current concepts in the etiology and treatment of keloids. Facial Plast Surg 2012; 28(5): 504-12.
[http://dx.doi.org/10.1055/s-0032-1325644] [PMID: 23027217]
[133]
Clark JA, Turner ML, Howard L, Stanescu H, Kleta R, Kopp JB. Description of familial keloids in five pedigrees: evidence for autosomal dominant inheritance and phenotypic heterogeneity. BMC Dermatol 2009; 9(1): 8.
[http://dx.doi.org/10.1186/1471-5945-9-8] [PMID: 19638218]
[134]
Rabello FB, Souza CD, Júnior JAF. Update on hypertrophic scar treatment. Clinics 2014; 69(8): 565-73.
[http://dx.doi.org/10.6061/clinics/2014(08)11] [PMID: 25141117]
[135]
Olaitan P, Olabanji J, Oladele A, Oseni G. Symptomatology of keloids in Africans. J Biomed Res 2013; 5(1): 29-33.
[PMID: 23554791]
[136]
Gauglitz G, Ngwane S. Management of keloids and hypertrophic scars: current and emerging options. Clin Cosmet Investig Dermatol 2013; 6(2): 103.
[http://dx.doi.org/10.2147/CCID.S35252]
[137]
Goyal S, Saini I, Goyal S. Familial keloid in Indian Scenario: Case report and review of literature. OAlib 2015; 2(7): 1-4.
[http://dx.doi.org/10.4236/oalib.1101578]
[138]
Berman B, Elston D. Keloid and Hypertrophic Scar Clinical Presentation Med 2016.
[139]
Shaheen A, Khaddam J, Kesh F. Risk factors of keloids in Syrians. BMC Dermatol 2016; 16(1): 13.
[http://dx.doi.org/10.1186/s12895-016-0050-5] [PMID: 27646558]
[140]
Marneros AG, Norris JEC, Watanabe S, Reichenberger E, Olsen BR. Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol 2004; 122(5): 1126-32.
[http://dx.doi.org/10.1111/j.0022-202X.2004.22327.x] [PMID: 15140214]
[141]
Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Mol Med 2011; 17(1-2): 113-25.
[http://dx.doi.org/10.2119/molmed.2009.00153] [PMID: 20927486]
[142]
Mandal A, Imran D, Rao GS. Spontaneous keloids in siblings. Ir Med J 2004; 97(8): 250-1.
[PMID: 15532974]
[143]
Cheraghi N, Cognetta A Jr, Goldberg D. Radiation therapy for the adjunctive treatment of surgically excised keloids: a review. J Clin Aesthet Dermatol 2017; 10(8): 12-5.
[PMID: 28979658]
[144]
Wu ZY, Zhang HJ, Zhou ZH, et al. The effect of inhibiting exosomes derived from adipose-derived stem cells via the TGFβ1/Smad pathway on the fibrosis of keloid fibroblasts. Gland Surg 2021; 10(3): 1046-56.
[http://dx.doi.org/10.21037/gs-21-4] [PMID: 33842249]
[145]
Hata A, Chen YG. TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 2016; 8(9): a022061.
[http://dx.doi.org/10.1101/cshperspect.a022061] [PMID: 27449815]
[146]
Meng XM, Tang PMK, Li J, Lan HY. TGF-Î2/Smad signaling in renal fibrosis. Front Physiol 2015; 6: 82.
[http://dx.doi.org/10.3389/fphys.2015.00082] [PMID: 25852569]
[147]
Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem 2016; 64(3): 157-67.
[http://dx.doi.org/10.1369/0022155415627681] [PMID: 26747705]
[148]
Fang S, Xu C, Zhang YT, et al. Umbilical cord derived mesenchymal stem cell-derived exosomal micrornas suppress myofibroblast differentiation by inhibiting the transforming growth factor-oblasts fibroblast functionnd healing. Stem Cells Transl Med 2016; 5: 1425-39.
[http://dx.doi.org/10.5966/sctm.2015-0367] [PMID: 27388239]
[149]
Litin SC. Mayo Clinic Family Health Book. 5th Edition: Completely Revised and Updated. RochesterMN: Mayo Clinic Press 2018.
[150]
Berwick M, Erdei E, Hay J. Melanoma epidemiology and public health. Dermatol Clin 2009 Apr 1; 27(2): 205-14.
[151]
Balch CM, Gershenwald JE, Soong S, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009; 27(36): 6199-206.
[http://dx.doi.org/10.1200/JCO.2009.23.4799] [PMID: 19917835]
[152]
Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: Systematic review and meta-analysis. BMJ 2012; 345(jul24 2): e4757.
[http://dx.doi.org/10.1136/bmj.e4757] [PMID: 22833605]
[153]
Rhodes AR, Weinstock MA, Fitzpatrick TB, Mihm MC Jr, Sober AJ. Risk factors for cutaneous melanoma. A practical method of recognizing predisposed individuals. JAMA 1987; 258(21): 3146-54.
[http://dx.doi.org/10.1001/jama.1987.03400210088032] [PMID: 3312689]
[154]
Oliveria SA, Saraiya M, Geller AC, Heneghan MK, Jorgensen C. Sun exposure and risk of melanoma. Arch Dis Child 2005; 91(2): 131-8.
[http://dx.doi.org/10.1136/adc.2005.086918] [PMID: 16326797]
[155]
Azoury SC, Lange JR. Epidemiology, risk factors, prevention, and early detection of melanoma. Surg Clin North Am 2014; 94(5): 945-62. vii
[http://dx.doi.org/10.1016/j.suc.2014.07.013] [PMID: 25245960]
[156]
Perkins A, Duffy RL. Atypical moles: Diagnosis and management. AFP 2015; 91(11): 762-7.
[PMID: 26034853]
[157]
Chin L, Garraway LA, Fisher DE. Malignant melanoma: Genetics and therapeutics in the genomic era. Genes Dev 2006; 20(16): 2149-82.
[http://dx.doi.org/10.1101/gad.1437206] [PMID: 16912270]
[158]
Balsamo M, Pietra G, Vermi W, Moretta L, Mingari MC, Vitale M. Melanoma immunoediting by NK cells. OncoImmunology 2012; 1(9): 1607-9.
[http://dx.doi.org/10.4161/onci.21456] [PMID: 23264909]
[159]
Sconocchia G, Arriga R, Tornillo L, Terracciano L, Ferrone S, Spagnoli GC. Melanoma cells inhibit NK cell functions. Cancer Res 2012; 72(20): 5428-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1181] [PMID: 23047870]
[160]
Kalimuthu S, Gangadaran P, Li XJ, et al. In vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model. Sci Rep 2016; 6(1): 30418.
[http://dx.doi.org/10.1038/srep30418] [PMID: 27452924]
[161]
Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derivedexosomes: Results of thefirst phase I clinical trial. J Transl Med 2005; 3(1): 10.
[http://dx.doi.org/10.1186/1479-5876-3-10] [PMID: 15740633]
[162]
Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 2017; 7(10): 2732-45.
[http://dx.doi.org/10.7150/thno.18752] [PMID: 28819459]
[163]
Shimasaki N, Coustan-Smith E, Kamiya T, Campana D. Expanded and armed natural killer cells for cancer treatment. Cytotherapy 2016; 18(11): 1422-34.
[http://dx.doi.org/10.1016/j.jcyt.2016.06.013] [PMID: 27497701]
[164]
Hellström I, Hellström KE. Cytotoxic effect of lymphocytes from pregnant mice on cultivated tumor cells. I. Specificity, nature of effector cells and blocking by serum. Int J Cancer 1975; 15(1): 1-16.
[http://dx.doi.org/10.1002/ijc.2910150102] [PMID: 1168624]
[165]
Fais S. NK cell-released exosomes. OncoImmunology 2013; 2(1): e22337.
[http://dx.doi.org/10.4161/onci.22337] [PMID: 23482694]
[166]
Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 2013; 335(1): 201-4.
[http://dx.doi.org/10.1016/j.canlet.2013.02.019] [PMID: 23419525]
[167]
Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295(5562): 2097-100.
[http://dx.doi.org/10.1126/science.1068440] [PMID: 11896281]
[168]
Chen X, Han J, Chu J, et al. A combinational therapy of EGFRCAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 2016; 7(19): 27764-77.
[http://dx.doi.org/10.18632/oncotarget.8526] [PMID: 27050072]
[169]
Augstein P, Heinke P, Schober C, Salzsieder E. Impact of cytokineand FasL-induced apoptosis in the β-cell line NIT-1. Horm Metab Res 2009; 41(3): 207-12.
[http://dx.doi.org/10.1055/s-0028-1093343] [PMID: 18975252]
[170]
Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol 2016; 17(9): 1025-36.
[http://dx.doi.org/10.1038/ni.3518] [PMID: 27540992]
[171]
Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2(10): 735-47.
[http://dx.doi.org/10.1038/nri911] [PMID: 12360212]
[172]
Harden JL, Krueger JG, Bowcock AM. The immunogenetics of Psoriasis: A comprehensive review. J Autoimmun 2015; 64: 66-73.
[http://dx.doi.org/10.1016/j.jaut.2015.07.008] [PMID: 26215033]
[173]
Deng Y, Chang C, Lu Q. The inflammatory response in psoriasis: A comprehensive review. Clin Rev Allergy Immunol 2016; 50(3): 377-89.
[http://dx.doi.org/10.1007/s12016-016-8535-x] [PMID: 27025861]
[174]
Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020; 323(19): 1945-60.
[http://dx.doi.org/10.1001/jama.2020.4006] [PMID: 32427307]
[175]
World Health Organization. Global report on psoriasis 2016. Available from http://apps. who. int/iris/handle/10665/204417
[176]
Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol 2017; 31(2): 205-12.
[http://dx.doi.org/10.1111/jdv.13854] [PMID: 27573025]
[177]
Boehncke WH, Schön MP. Psoriasis. Lancet 2015; 386(9997): 983-94.
[http://dx.doi.org/10.1016/S0140-6736(14)61909-7] [PMID: 26025581]
[178]
Augustin M, Glaeske G, Radtke MA, Christophers E, Reich K, Schäfer I. Epidemiology and comorbidity of psoriasis in children. Br J Dermatol 2010; 162(3): 633-6.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09593.x] [PMID: 19922529]
[179]
Huerta C, Rivero E, Rodríguez LAG. Incidence and risk factors for psoriasis in the general population. Arch Dermatol 2007; 143(12): 1559-65.
[http://dx.doi.org/10.1001/archderm.143.12.1559] [PMID: 18087008]
[180]
Brandon A, Mufti A, Gary Sibbald R. Diagnosis and management of cutaneous psoriasis: a review. Adv Skin Wound Care 2019; 32(2): 58-69.
[http://dx.doi.org/10.1097/01.ASW.0000550592.08674.43] [PMID: 30653184]
[181]
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[182]
Kim WB, Jerome D, Yeung J. Diagnosis and management of psoriasis. Can Fam Physician 2017; 63(4): 278-85.
[PMID: 28404701]
[183]
Malatjalian DA, Ross JB, Williams CN, Colwell SJ, Eastwood BJ. Methotrexate hepatotoxicity in psoriatics: report of 104 patients from Nova Scotia, with analysis of risks from obesity, diabetes and alcohol consumption during long term follow-up. Can J Gastroenterol 1996; 10(6): 369-75.
[http://dx.doi.org/10.1155/1996/213596] [PMID: 9193771]
[184]
Zhang B, Lai RC, Sim WK, Choo ABH, Lane EB, Lim SK. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like inflammation. Int J Mol Sci 2021; 22(2): 720.
[http://dx.doi.org/10.3390/ijms22020720] [PMID: 33450859]
[185]
Dahl MV, Lindroos WE, Nelson RD. Chemokinetic and chemotactic factors in psoriasis scale extracts. J Invest Dermatol 1978; 71(6): 402-6.
[http://dx.doi.org/10.1111/1523-1747.ep12558281] [PMID: 722120]
[186]
Weiss VC, van Den Broek H, Barrett S, West DP. Immunopathology of psoriasis: a comparison with other parakeratotic lesions. J Invest Dermatol 1982; 78(3): 256-60.
[http://dx.doi.org/10.1111/1523-1747.ep12506623] [PMID: 7057057]
[187]
Terui T, Kato T, Tagami H. Stratum corneum activation of complement through the antibody-independent alternative pathway. J Invest Dermatol 1989; 92(4): 593-7.
[http://dx.doi.org/10.1111/1523-1747.ep12709634] [PMID: 2649596]
[188]
Zhang Y, Yan J, Li Z, Zheng J, Sun Q. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate psoriasislike skin inflammation. J Interferon Cytokine Res 2022; 42(1): 8-18.
[http://dx.doi.org/10.1089/jir.2021.0146] [PMID: 35041513]
[189]
Zhu Z, Tang H, Zhu Y, Wang H, Shen Y. Exosomes From ADSCs Attenuate Bleomycin-Induced Skin Fibrosis And Oxidative Stress In Scleroderma via Circ-Zfyve9 Delivery 2021. Available from https://www.researchsquare.com/article/rs-551751/v1
[http://dx.doi.org/10.21203/rs.3.rs-551751/v1]
[190]
Yamamoto T, Takagawa S, Katayama I, et al. Animal model of sclerotic skin. I: Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 1999; 112(4): 456-62.
[http://dx.doi.org/10.1046/j.1523-1747.1999.00528.x] [PMID: 10201529]
[191]
Allanore Y, Distler O. Advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol 2015; 11(2): 72-4.
[http://dx.doi.org/10.1038/nrrheum.2014.222] [PMID: 25561368]
[192]
Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 2010; 69(10): 1809-15.
[http://dx.doi.org/10.1136/ard.2009.114264] [PMID: 20551155]
[193]
Shah AA, Wigley FM. My approach to the treatment of scleroderma. Mayo Clin Proc 2013; 88(4): 377-93.
[http://dx.doi.org/10.1016/j.mayocp.2013.01.018]
[194]
Ranque B, Mouthon L. Geoepidemiology of systemic sclerosis. Autoimmun Rev 2010; 9(5): A311-8.
[http://dx.doi.org/10.1016/j.autrev.2009.11.003] [PMID: 19906362]
[195]
Hussein M, Hassan H, Hofny E, et al. Alterations of mononuclear inflammatory cells, CD4/CD8+ T cells, interleukin 1β, and tumour necrosis factor α in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis. J Clin Pathol 2005; 58(2): 178-84.
[http://dx.doi.org/10.1136/jcp.2004.019224]
[196]
Gustafsson R, Tötterman TH, Klareskog L, Hällgren R. Increase in activated T cells and reduction in suppressor inducer T cells in systemic sclerosis. Ann Rheum Dis 1990; 49(1): 40-5.
[http://dx.doi.org/10.1136/ard.49.1.40] [PMID: 2138008]
[197]
Riccieri V, Parisi G, Spadaro A, et al. Reduced circulating natural killer T cells and gamma/delta T cells in patients with systemic sclerosis. J Rheumatol 2005; 32(2): 283-6.
[PMID: 15693088]
[198]
Masi AT. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 1980; 23(5): 581-90.
[http://dx.doi.org/10.1002/art.1780230510] [PMID: 7378088]
[199]
Zuber JP, Spertini F. Immunological basis of systemic sclerosis. Rheumatology 2006; 45 (Suppl. 3): 23-5.
[http://dx.doi.org/10.1093/rheumatology/kel285] [PMID: 16987826]
[200]
Artlett CM. Immunology of systemic sclerosis. Front Biosci 2005; 10(1-3): 1707-19.
[http://dx.doi.org/10.2741/1654] [PMID: 15769660]
[201]
Wei J, Bhattacharyya S, Tourtellotte WG, Varga J. Fibrosis in systemic sclerosis: Emerging concepts and implications for targeted therapy. Autoimmun Rev 2011; 10(5): 267-75.
[http://dx.doi.org/10.1016/j.autrev.2010.09.015] [PMID: 20863909]
[202]
Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 2007; 117(3): 557-67.
[http://dx.doi.org/10.1172/JCI31139] [PMID: 17332883]
[203]
Higashi-Kuwata N, Jinnin M, Makino T, et al. Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther 2010; 12(4): R128.
[http://dx.doi.org/10.1186/ar3066] [PMID: 20602758]
[204]
Huang J, Maier C, Zhang Y, et al. Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis. Ann Rheum Dis 2017; 76(11): 1941-8.
[http://dx.doi.org/10.1136/annrheumdis-2016-210823] [PMID: 28814429]
[205]
Colletti M, Galardi A. Santis Exosomes in systemic sclerosis: messengers between immune, vascular and fibrotic components? Int J Mol Sci 2019; 20(18): 4337.
[http://dx.doi.org/10.3390/ijms20184337] [PMID: 31487964]
[206]
Jin J, Qingjian O, Wang Z, et al. BMSC-Derived exosomes intervened the pathogenic changes of scleroderma in mouse through its microRNAs 2021. Available from https://www.researchsquare. com/article/rs-222441/v1
[http://dx.doi.org/10.21203/rs.3.rs-222441/v1]
[207]
Lee H, Han S, Kwon CS, Lee D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 2016; 7(2): 100-13.
[http://dx.doi.org/10.1007/s13238-015-0212-y] [PMID: 26399619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy