Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

A Systematic Review on Pesticide-loaded Nanocapsules: A Sustainable Route for Pesticide Management to Enhance Crop Productivity

Author(s): Sumit Kumar, R Bhuvaneshwari, Sejal Jain, Shweta Nirwan, Zainab Fatima, Dharmender Kumar, Bhupendra S. Chhikara, Brijesh Rathi and Poonam*

Volume 20, Issue 3, 2024

Published on: 22 May, 2023

Page: [280 - 297] Pages: 18

DOI: 10.2174/1573413719666230417103517

open access plus

Abstract

Synthetic pesticides, crucial compounds for agricultural production, degrade quickly and damage the environment, hence solutions for their decreased usage or formulations with prolonged efficacy at low dosages are needed. Nanotechnology for nanosized formulations may reduce pesticide adverse effects. Nano-encapsulated pesticides made from nanocapsules, nanoemulsions, micelles, and nanogels outperform traditional pesticides with minimum environmental impact. Nanopesticides allowed target-based administration to decrease leaching and drainage into water bodies, and lower pesticide active component dosages. Nanocapsules with a core-shell configuration and a pesticide in the core are the most advantageous nanomaterials. Nanocapsules shield the active component. Stimuli-responsive nanocapsules may limit pesticide release by responding to pH, temperature, light, enzyme, or redox reactions. Toxicity prevents their use. This review discusses the latest developments in nanocapsule fabrication methods, their relevance, contemporary synthetic approaches to developing pesticide-loaded nanocapsules, and the features of these nanocomposites, with an emphasis on sustainable agricultural applications.

Graphical Abstract

[1]
Tudi, M.; Ruan, D.H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health, 2021, 18(3), 1112.
[http://dx.doi.org/10.3390/ijerph18031112] [PMID: 33513796]
[2]
Kim, J.H.; Moreau, J.A.; Zina, J.M.; Mazgaeen, L.; Yoon, K.S.; Pittendrigh, B.R.; Clark, J.M. Identification and interaction of multiple genes resulting in DDT resistance in the 91-R strain of Drosophila melanogaster by RNAi approaches. Pestic. Biochem. Physiol., 2018, 151, 90-99.
[http://dx.doi.org/10.1016/j.pestbp.2018.03.003] [PMID: 30704719]
[3]
An, C.; Sun, C.; Li, N.; Huang, B.; Jiang, J.; Shen, Y.; Wang, C.; Zhao, X.; Cui, B.; Wang, C.; Li, X.; Zhan, S.; Gao, F.; Zeng, Z.; Cui, H.; Wang, Y. Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J. Nanobiotechnology, 2022, 20(1), 11.
[http://dx.doi.org/10.1186/s12951-021-01214-7] [PMID: 34983545]
[4]
Huang, B.; Chen, F.; Shen, Y.; Qian, K.; Wang, Y.; Sun, C.; Zhao, X.; Cui, B.; Gao, F.; Zeng, Z.; Cui, H. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials, 2018, 8(2), 102.
[http://dx.doi.org/10.3390/nano8020102] [PMID: 29439498]
[5]
Neri-Badang, M.C.; Chakraborty, S. Carbohydrate polymers as controlled release devices for pesticides. J. Carbohydr. Chem., 2019, 38(1), 67-85.
[http://dx.doi.org/10.1080/07328303.2019.1568449]
[6]
Chhikara, B.S.; Varma, R.S. Nanochemistry and nanocatalysis science: Research advances and future perspectives. J. Mater. Nanosci., 2019, 6(1), 1-6.
[7]
Chhikara, B.S.; Kumar, R.; Bazard, P.; Varma, R.S. Viral infection mitigations using advanced nanomaterials and tools: lessons from SARS-CoV-2 for future prospective interventions. J. Mater. Nanosci., 2021, 8(2), 64-82.
[8]
Chhikara, B.S.; Singh, N.; Bazard, P.; Varma, R.S.; Parang, K. Nanotherapeutics and HIV: Four decades of infection canvass the quest for drug development using nanomedical technologies. Appl. NanoMed., 2022, 22(1), 354.
[9]
Das, S.; Gupta, A.; Vaishnavi, T.; Walia, S.; Bhatia, D.; Chakraborty, B. Aptamers functionalized biomolecular nano-vehicles for applications in cancer diagnostics & therapeutics. Appl. NanoMed, 2022, 22(2), 360.
[10]
Chhikara, B.S. Current trends in nanomedicine and nanobiotechnology research. J. Mater. Nanosci., 2017, 4(1), 19-24.
[11]
Chhikara, B.S.; Kumar, R.; Rathi, B.; Krishnamoorthy, S.; Kumar, A. Prospects of applied nanomedicine: Potential clinical and (bio) medical interventions via nanoscale research advances. J. Mater. Nanosci., 2016, 3(2), 50-56.
[12]
Chaudhary, P.M.; Murthy, R.V.; Kikkeri, R. Advances and prospects of sugar capped Quantum Dots. J. Mater. Nanosci., 2014, 1(1), 7-11.
[13]
Dangi, D.; Dhar, R. Study of Non Linear optical properties of Fe doped CdSe nanoparticles. J. Integr. Sci. Technol., 2016, 4(1), 25-28.
[14]
Patsha, A.; Dhara, S.; Chattopadhyay, S.; Chen, K-H.; Chen, L.C. Optoelectronic properties of single and array of 1-D III-nitride nanostructures: An approach to light-driven device and energy resourcing. J. Mater. Nanosci., 2018, 5(1), 1-22.
[15]
Murugesan, N.; Damodaran, C.; Krishnamoorthy, S. Niosomal formulation of quercetin and resveratrol and in vitro release studies. J. Integr. Sci. Technol., 2022, 10(2), 134-138.
[16]
Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem., 2016, 64(7), 1447-1483.
[http://dx.doi.org/10.1021/acs.jafc.5b05214] [PMID: 26730488]
[17]
Kumar, K.; Chatterjee, N.; Misra, S.K. Lipid based self-assembled nanostructures for therapeutic delivery applications. Chem. Biol. Lett., 2022, 9(4), 368.
[18]
Perlatti, B.; Bergo, P.; Silva, M.; Batista, J.; Forim, M. Polymeric nanoparticle-based insecticides: A controlled release purpose for agrochemicals. In: Insecticides - Development of Safer and More Effective Technologies; Intecopen, 2013.
[http://dx.doi.org/10.5772/53355]
[19]
Le Roy Boehm, A.L.; Zerrouk, R.; Fessi, H. Poly ε-caprolactone nanoparticles containing a poorly soluble pesticide: Formulation and stability study. J. Microencapsul., 2000, 17(2), 195-205.
[http://dx.doi.org/10.1080/026520400288436] [PMID: 10738695]
[20]
Zhang, J.; Li, M. Fan, f.; Xu, Q.; Wu, Y.; Chen, C. Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J. Polym. Res., 2013, 20, 107.
[http://dx.doi.org/10.1007/s10965-013-0107-7]
[21]
Chhikara, B.S.; Tiwari, R.; Parang, K. N-Myristoylglutamic acid derivative of 3′-fluoro-3′-deoxythymidine as an organogel. Tetrahedron Lett., 2012, 53(39), 5335-5337.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.101] [PMID: 23175585]
[22]
Kumar, S.; Wu, L.; Sharma, N. Theoretical and experimental studies of an oseltamivir–triazole-based thermoresponsive organogel. RSC Advances, 2019, 9(36)
[http://dx.doi.org/10.1039/c9ra02463h]
[23]
Kumar, S.; Bhanjana, G.; Sharma, A.; Dilbaghi, N.; Sidhu, M.C.; Kim, K.H. Development of nanoformulation approaches for the control of weeds. Sci. Total Environ., 2017, 586, 1272-1278.
[http://dx.doi.org/10.1016/j.scitotenv.2017.02.138] [PMID: 28236485]
[24]
Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K-H.J.J.C.R. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Control. Release, 2019, 294, 131-153.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.012] [PMID: 30552953]
[25]
Fathi, M.; Mozafari, M. Nanoencapsulation of food ingredients using lipid-based Delivery systems. Trends Food Sci. Technol., 2012, 23(1), 13-27.
[http://dx.doi.org/10.1016/j.tifs.2011.08.003]
[26]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[27]
Saini, G.; Chauhan, H.; Gupta, A.; Gangotia, D. Synthesis and biodegradation study of Starch/PVA/Nanoclay blend. J. Mater. Nanosci., 2018, 5(1), 29-34.
[28]
Nair, M.V.; Kumar, A.; Joseph, S.; Zachariah, A.K.; Maria, H.J.; Thomas, S. Synergistic effect of hybrid fillers on transport behavior of NR/EPDM blends. J. Integr. Sci. Technol., 2021, 9(1), 9-21.
[29]
Pant, P.; Gupta, C.; Kumar, S.; Grewal, A.; Garg, S.; Rai, A. Curcumin loaded Silica Nanoparticles and their therapeutic applications: A review. J. Mater. Nanosci., 2020, 7, 1-18.
[30]
Menon, A.A.; Pillai, R.G. Source optimization, characterization, assessing biocompatibility and drug loading efficiency of biogenic silica particles from agro wastes. Chem. Biol. Lett., 2022, 9, 31.
[31]
Simonin, M.; Richaume, A.; Guyonnet, J.P.; Dubost, A.; Martins, J.M.F.; Pommier, T. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci. Rep., 2016, 6(1), 33643.
[http://dx.doi.org/10.1038/srep33643] [PMID: 27659196]
[32]
Chariou, P.L.; Steinmetz, N.F. Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano, 2017, 11(5), 4719-4730.
[http://dx.doi.org/10.1021/acsnano.7b00823] [PMID: 28345874]
[33]
Wang, Y.; Li, P.; Truong-Dinh Tran, T.; Zhang, J.; Kong, L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials, 2016, 6(2), 6.
[http://dx.doi.org/10.3390/ma10010006] [PMID: 28344283]
[34]
Pulingam, T.; Foroozandeh, P.; Chuah, J.A.; Sudesh, K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials, 2022, 12(3), 576.
[http://dx.doi.org/10.3390/nano12030576] [PMID: 35159921]
[35]
Jafari, A.; Sun, H.; Sun, B.; Mohamed, M.A.; Cui, H.; Cheng, C. Layer-by-layer preparation of polyelectrolyte multilayer nanocapsules via crystallized miniemulsions. Chem. Commun., 2019, 55(9), 1267-1270.
[http://dx.doi.org/10.1039/C8CC08043G]
[36]
Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 2010, 385(1-2), 113-142.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018] [PMID: 19825408]
[37]
Shutava, T.G.; Pattekari, P.P.; Arapov, K.A.; Torchilin, V.P.; Lvov, Y.M. Architectural layer-by-layer assembly of drug nanocapsules with PEGylated polyelectrolytes. Soft Matter, 2012, 8(36), 9418-9427.
[http://dx.doi.org/10.1039/c2sm25683e] [PMID: 23144650]
[38]
Arpagaus, C.; John, P.; Collenberg, A.; Rütti, D. 10 - Nanocapsules formation by nano spray drying. In: Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Jafari, S.M., Ed.; Academic Press, 2017; pp. 346-401.
[http://dx.doi.org/10.1016/B978-0-12-809436-5.00010-0]
[39]
Hoang, N.H.; Le Thanh, T.; Sangpueak, R.; Treekoon, J.; Saengchan, C.; Thepbandit, W.; Papathoti, N.K.; Kamkaew, A.; Buensanteai, N. Chitosan nanoparticles-based ionic gelation method: A promising candidate for plant disease management. Polymers, 2022, 14(4), 662.
[http://dx.doi.org/10.3390/polym14040662] [PMID: 35215574]
[40]
Sahoo, S.; Gopalan, A.; Ramesh, S.; Nirmala, P.; Ramkumar, G.; Shifani, A.S.; Subbiah, R. Preparation of polymeric nanomaterials using emulsion polymerization. Adv. Mater. Sci. Eng., 2021, 2021, 1539230.
[http://dx.doi.org/10.1155/2021/1539230]
[41]
Quintanar-Guerrero, D.; Allémann, E.; Doelker, E.; Fessi, H. A mechanistic study of the formation of polymer nanoparticles by the emulsification-diffusion technique. Colloid Polym. Sci., 1997, 275(7), 640-647.
[http://dx.doi.org/10.1007/s003960050130]
[42]
Perez, C.; Sanchez, A.; Putnam, D.; Ting, D.; Langer, R.; Alonso, M.J. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J. Control. Release, 2001, 75(1-2), 211-224.
[http://dx.doi.org/10.1016/S0168-3659(01)00397-2] [PMID: 11451511]
[43]
Ma, J.; Feng, P.; Ye, C.; Wang, Y.; Fan, Y. An improved interfacial coacervation technique to fabricate biodegradable nanocapsules of an aqueous peptide solution from polylactide and its block copolymers with poly(ethylene glycol). Colloid Polym. Sci., 2001, 279(4), 387-392.
[http://dx.doi.org/10.1007/s003960000467]
[44]
Zakeri-Milani, P.; Loveymi, B.D.; Jelvehgari, M.; Valizadeh, H. The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids Surf. B Biointerfaces, 2013, 103, 174-181.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.021] [PMID: 23201735]
[45]
Bitar, A.; Zafar, N.; Valour, J.P.; Agusti, G.; Fessi, H.; Humbert, P.; Robin, S.; Viennet, C.; Lévêque, N.; Elaissari, A. Elaboration of sponge-like particles for textile functionalization and skin penetration. Colloid Polym. Sci., 2015, 293(10), 2967-2977.
[http://dx.doi.org/10.1007/s00396-015-3704-7]
[46]
Li, H.; Deng, Y.; Liu, B.; Ren, Y.; Liang, J.; Qian, Y.; Qiu, X.; Li, C.; Zheng, D. Preparation of nanocapsules via the self-assembly of kraft lignin: A totally green process with renewable resources. ACS Sustain. Chem.& Eng., 2016, 4(4), 1946-1953.
[http://dx.doi.org/10.1021/acssuschemeng.5b01066]
[47]
Zhai, Y.; Whitten, J.J.; Zetterlund, P.B.; Granville, A.M. Synthesis of hollow polydopamine nanoparticles using miniemulsion templating. Polymer, 2016, 105, 276-283.
[http://dx.doi.org/10.1016/j.polymer.2016.10.038]
[48]
Pasquoto-Stigliani, T.; Campos, E.V.R.; Oliveira, J.L.; Silva, C.M.G.; Bilesky-José, N.; Guilger, M.; Troost, J.; Oliveira, H.C.; Stolf-Moreira, R.; Fraceto, L.F.; de Lima, R. Nanocapsules containing neem (Azadirachta Indica) oil: Development, characterization, and toxicity evaluation. Sci. Rep., 2017, 7(1), 5929.
[http://dx.doi.org/10.1038/s41598-017-06092-4] [PMID: 28724950]
[49]
Xu, X.; Bo, B.; Honglun, W.; Yourui, S. A near-infrared and temperature-responsive pesticide release platform through core–shell polydopamine@pnipam nanocomposites. ACS Appl. Mater. Interfaces, 2017, 9(7), 6424-6432.
[http://dx.doi.org/10.1021/acsami.6b15393] [PMID: 28124891]
[50]
Chi, Y.; Zhang, G.; Xiang, Y.; Cai, D.; Wu, Z. Fabrication of a temperature-controlled-release herbicide using a nanocomposite. ACS Sustain. Chem.& Eng., 2017, 5(6), 4969-4975.
[http://dx.doi.org/10.1021/acssuschemeng.7b00348]
[51]
Oliveira, J.L.; Campos, E.V.R.; Pereira, A.E.S.; Pasquoto, T.; Lima, R.; Grillo, R.; Andrade, D.J.; Santos, F.A.; Fraceto, L.F. Zein nanoparticles as eco-friendly carrier systems for botanical repellents aiming sustainable agriculture. J. Agric. Food Chem., 2018, 66(6), 1330-1340.
[http://dx.doi.org/10.1021/acs.jafc.7b05552] [PMID: 29345934]
[52]
Schnoor, B.; Elhendawy, A.; Joseph, S.; Putman, M.; Chacón-Cerdas, R.; Flores-Mora, D.; Bravo-Moraga, F.; Gonzalez-Nilo, F.; Salvador-Morales, C. Engineering atrazine loaded poly (lactic- co -glycolic Acid) nanoparticles to ameliorate environmental challenges. J. Agric. Food Chem., 2018, 66(30), 7889-7898.
[http://dx.doi.org/10.1021/acs.jafc.8b01911] [PMID: 30039704]
[53]
Abbaspoor, S.; Ashrafi, A.; Salehi, M. Synthesis and characterization of ethyl cellulose micro/nanocapsules using solvent evaporation method. Colloid Polym. Sci., 2018, 296(9), 1509-1514.
[http://dx.doi.org/10.1007/s00396-018-4371-2]
[54]
Diyanat, M.; Saeidian, H.; Baziar, S.; Mirjafary, Z. Preparation and characterization of polycaprolactone nanocapsules containing pretilachlor as a herbicide nanocarrier. Environ. Sci. Pollut. Res. Int., 2019, 26(21), 21579-21588.
[http://dx.doi.org/10.1007/s11356-019-05257-0] [PMID: 31127512]
[55]
Khoshraftar, Z.; Safekordi, A.A.; Shamel, A.; Zaefizadeh, M.J.G.C.L. Reviews, Synthesis of natural nanopesticides with the origin of Eucalyptus globulus extract for pest control. Green Chem. Lett. Rev., 2019, 12.
[http://dx.doi.org/10.1080/17518253.2019.1643930]
[56]
Gao, Y.; Zhang, Y.; He, S.; Xiao, Y.; Qin, X.; Zhang, Y.; Li, D.; Ma, H.; You, H.; Li, J. Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide. Chem. Eng. J., 2019, 364, 361-369.
[http://dx.doi.org/10.1016/j.cej.2019.01.105]
[57]
Luo, J.; Zhang, D.; Jing, T.; Liu, G.; Cao, H.; Li, B.; Hou, Y.; Liu, F. Pyraclostrobin loaded lignin-modified nanocapsules: Delivery efficiency enhancement in soil improved control efficacy on tomato Fusarium crown and root rot. Chem. Eng. J., 2020, 394, 124854.
[http://dx.doi.org/10.1016/j.cej.2020.124854]
[58]
Bueno, V.; Ghoshal, S. Self-assembled surfactant-templated synthesis of porous hollow silica nanoparticles: Mechanism of formation and feasibility of post-synthesis nanoencapsulation. Langmuir, 2020, 36(48), 14633-14643.
[http://dx.doi.org/10.1021/acs.langmuir.0c02501] [PMID: 33226821]
[59]
Bueno, V.; Wang, P.; Harrisson, O.; Bayen, S.; Ghoshal, S. Impacts of a porous hollow silica nanoparticle-encapsulated pesticide applied to soils on plant growth and soil microbial community. Environ. Sci. Nano, 2022, 9(4), 1476-1488.
[http://dx.doi.org/10.1039/D1EN00975C]
[60]
Chen, H.; Zhi, H.; Liang, J.; Yu, M.; Cui, B.; Zhao, X.; Sun, C.; Wang, Y.; Cui, H.; Zeng, Z. Development of leaf-adhesive pesticide nanocapsules with pH-responsive release to enhance retention time on crop leaves and improve utilization efficiency. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(3), 783-792.
[http://dx.doi.org/10.1039/D0TB02430A] [PMID: 33333547]
[61]
Huang, B.; Chen, F.; Shen, Y.; An, C.; Li, N.; Jiang, J.; Wang, C.; Sun, C.; Zhao, X.; Cui, B.; Zeng, Z.; Cui, H.; Wang, Y. Preparation, characterization, and evaluation of pyraclostrobin nanocapsules by in situ polymerization. Nanomaterials, 2022, 12(3), 549.
[http://dx.doi.org/10.3390/nano12030549] [PMID: 35159893]
[62]
Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 2014, 32(4), 711-726.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.006] [PMID: 24252561]
[63]
Guo, M.; Zhang, W.; Ding, G.; Guo, D.; Zhu, J.; Wang, B.; Punyapitak, D.; Cao, Y. Preparation and characterization of enzyme-responsive emamectin benzoate microcapsules based on a copolymer matrix of silica–epichlorohydrin–carboxymethylcellulose. RSC Advances, 2015, 5(113), 93170-93179.
[http://dx.doi.org/10.1039/C5RA17901G]
[64]
Sikder, A.; Pearce, A.K.; Parkinson, S.J.; Napier, R.; O’Reilly, R.K. Recent trends in advanced polymer materials in agriculture related applications. ACS Appl. Polym. Mater., 2021, 3(3), 1203-1217.
[http://dx.doi.org/10.1021/acsapm.0c00982]
[65]
Kong, X.P.; Zhang, B.H.; Wang, J. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review. J. Agric. Food Chem., 2021, 69(24), 6735-6754.
[http://dx.doi.org/10.1021/acs.jafc.1c01091] [PMID: 34110151]
[66]
Virutkar, P.D.; Mahajan, A.P.; Meshram, B.H.; Kondawar, S.B. Conductive polymer nanocomposite enzyme immobilized biosensor for pesticide detection. J. Mater. Nanosci., 2019, 6(1), 7-12.
[67]
Gao, Y.; Xiao, Y.; Mao, K.; Qin, X.; Zhang, Y.; Li, D.; Zhang, Y.; Li, J.; Wan, H.; He, S. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chem. Eng. J., 2020, 383, 123169.
[http://dx.doi.org/10.1016/j.cej.2019.123169]
[68]
Jegede, O.O.; Owojori, O.J.; Römbke, J. Temperature influences the toxicity of deltamethrin, chlorpyrifos and dimethoate to the predatory mite Hypoaspis aculeifer (Acari) and the springtail Folsomia candida (Collembola). Ecotoxicol. Environ. Saf., 2017, 140, 214-221.
[http://dx.doi.org/10.1016/j.ecoenv.2017.02.046] [PMID: 28260687]
[69]
Matanović M.R.; Kristl, J.; Grabnar, P.A. Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int. J. Pharm., 2014, 472(1-2), 262-275.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.029] [PMID: 24950367]
[70]
Ji, Y.; Zhu, M.; Gong, Y.; Tang, H.; Li, J.; Cao, Y. Thermoresponsive polymers with lower critical solution temperature- or upper critical solution temperature-type phase behaviour do not induce toxicity to human endothelial cells. Basic Clin. Pharmacol. Toxicol., 2017, 120(1), 79-85.
[http://dx.doi.org/10.1111/bcpt.12643] [PMID: 27422748]
[71]
Cao, L.; Zhou, Z.; Niu, S.; Cao, C.; Li, X.; Shan, Y.; Huang, Q. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. J. Agric. Food Chem., 2018, 66(26), 6594-6603.
[http://dx.doi.org/10.1021/acs.jafc.7b01957] [PMID: 28640597]
[72]
Meng, L.; Huang, W.; Wang, D.; Huang, X.; Zhu, X.; Yan, D. Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. Biomacromolecules, 2013, 14(8), 2601-2610.
[http://dx.doi.org/10.1021/bm400451v] [PMID: 23819825]
[73]
Xu, C.; Cao, L.; Zhao, P.; Zhou, Z.; Cao, C.; Li, F.; Huang, Q. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chem. Eng. J., 2018, 348, 244-254.
[http://dx.doi.org/10.1016/j.cej.2018.05.008]
[74]
Shen, Z.; Wen, H.; Zhou, H.; Hao, L.; Chen, H.; Zhou, X. Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin release. Mater. Sci. Eng. C, 2019, 105, 110073.
[http://dx.doi.org/10.1016/j.msec.2019.110073] [PMID: 31546444]
[75]
Mal, N.K.; Fujiwara, M.; Tanaka, Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 2003, 421(6921), 350-353.
[http://dx.doi.org/10.1038/nature01362] [PMID: 12540896]
[76]
Atta, S.; Jana, A.; Ananthakirshnan, R.; Dhuleep, N.P.S. Fluorescent caged compounds of 2,4-dichlorophenoxyacetic acid (2,4-d): photorelease technology for controlled release of 2,4-D. J. Agric. Food Chem., 2010, 58(22), 11844-11851.
[http://dx.doi.org/10.1021/jf1027763] [PMID: 20973537]
[77]
Kaziem, A.E. Gao, Y.; Zhang, Y.; Qin, X.; Xiao, Y.; Zhang, Y.; You, H.; Li, J.; He, S. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella. J. Hazard. Mater., 2018, 359, 213-221.
[http://dx.doi.org/10.1016/j.jhazmat.2018.07.059] [PMID: 30036751]
[78]
Kaziem, A.E.; Gao, Y.; He, S.; Li, J. Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release. J. Agric. Food Chem., 2017, 65(36), 7854-7864.
[http://dx.doi.org/10.1021/acs.jafc.7b02560] [PMID: 28809107]
[79]
Liang, Y.; Fan, C.; Dong, H.; Zhang, W.; Tang, G.; Yang, J.; Jiang, N.; Cao, Y. Preparation of MSNs-Chitosan@Prochloraz nanoparticles for reducing toxicity and improving release properties of prochloraz. ACS Sustain. Chem. Eng., 2018, 6(8), 10211-10220.
[http://dx.doi.org/10.1021/acssuschemeng.8b01511]
[80]
Camara, M.C.; Campos, E.V.R.; Monteiro, R.A.; do Espirito, S.P.A.; de Freitas, P.P.L.; Fraceto, L.F. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J. Nanobiotechnology, 2019, 17(1), 100.
[81]
Song, Y.; Li, Y.; Xu, Q.; Liu, Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: Advances, challenges, and outlook. Int. J. Nanomedicine, 2017, 12, 87-110.
[http://dx.doi.org/10.2147/IJN.S117495]
[82]
Deka, B.; Babu, A.; Baruah, C.; Barthakur, M. Nanopesticides: A systematic review of their prospects with special reference to tea pest management. Front. Nutr., 2021, 8, 686131.
[http://dx.doi.org/10.3389/fnut.2021.686131] [PMID: 34447773]
[83]
Mahato, D.K.; Mishra, A.K.; Kumar, P. Nanoencapsulation for agri-food applications and associated health and environmental concerns. Front. Nutr., 2021, 8, 663229.
[http://dx.doi.org/10.3389/fnut.2021.663229] [PMID: 33898505]
[84]
Karimi, M.; Sadeghi, R.; Kokini, J. Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends Food Sci. Technol., 2018, 75, 129-145.
[http://dx.doi.org/10.1016/j.tifs.2018.03.012]
[85]
Shekhar, S.; Sharma, S.; Kumar, A.; Taneja, A.; Sharma, B. The framework of nanopesticides: A paradigm in biodiversity. Adv. Mater., 2021, 2(20), 6569-6588.
[http://dx.doi.org/10.1039/D1MA00329A]
[86]
Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kaushik, A.; Sonne, C.; Kim, K.H.; Kumar, S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. J. Hazard. Mater., 2021, 401, 123369.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123369] [PMID: 32763682]
[87]
Souza, V.G.L.; Fernando, A.L.J.F.P. Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packag. Shelf Life, 2016, 8, 63-70.
[http://dx.doi.org/10.1016/j.fpsl.2016.04.001]
[88]
Powell, J.J.; Faria, N.; Thomas-McKay, E.; Pele, L.C. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun., 2010, 34(3), J226-J233.
[http://dx.doi.org/10.1016/j.jaut.2009.11.006] [PMID: 20096538]
[89]
Bertrand, N.; Leroux, J.C. The journey of a drug-carrier in the body: An anatomo-physiological perspective. J. Control. Release, 2012, 161(2), 152-163.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.098] [PMID: 22001607]
[90]
Devi, S.; Singh, J.; Kumar, V.; Malik, V. Monocrotophos induced Biochemical and histopathological alterations in the kidney tissues of mice. Chem. Biol. Lett., 2019, 6(2), 39-45.
[91]
Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J., 2016, 20(1), 1-11.
[PMID: 26286636]
[92]
Hagens, W.I.; Oomen, A.G.; de Jong, W.H.; Cassee, F.R.; Sips, A.J.A.M. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol., 2007, 49(3), 217-229.
[http://dx.doi.org/10.1016/j.yrtph.2007.07.006] [PMID: 17868963]
[93]
Nemmar, A.; Hoet, P.H.M.; Vanquickenborne, B.; Dinsdale, D.; Thomeer, M.; Hoylaerts, M.F.; Vanbilloen, H.; Mortelmans, L.; Nemery, B. Passage of inhaled particles into the blood circulation in humans. Circulation, 2002, 105(4), 411-414.
[http://dx.doi.org/10.1161/hc0402.104118] [PMID: 11815420]
[94]
Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; Heinzmann, U.; Schramel, P.; Heyder, J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect., 2001, 109(S4), 547-551.
[http://dx.doi.org/10.1289/ehp.01109s4547] [PMID: 11544161]
[95]
Xavier, M.; Parente, I.A.; Rodrigues, P.M.; Cerqueira, M.A.; Pastrana, L.M.; Gonçalves, C.J.T.F.S. Technology, safety and fate of nanomaterials in food: The role of in vitro tests. Trends Food Sci. Technol., 2021, 109, 593-607.
[http://dx.doi.org/10.1016/j.tifs.2021.01.050]
[96]
Shvedova, A.A.; Kagan, V.E.; Fadeel, B. Close encounters of the small kind: Adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu. Rev. Pharmacol. Toxicol., 2010, 50(1), 63-88.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105819] [PMID: 20055698]
[97]
Lockman, P.R.; Oyewumi, M.O.; Koziara, J.M.; Roder, K.E.; Mumper, R.J.; Allen, D.D. Brain uptake of thiamine-coated nanoparticles. J. Control. Release, 2003, 93(3), 271-282.
[http://dx.doi.org/10.1016/j.jconrel.2003.08.006] [PMID: 14644577]
[98]
Lanone, S.; Boczkowski, J. Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Curr. Mol. Med., 2006, 6(6), 651-663.
[http://dx.doi.org/10.2174/156652406778195026] [PMID: 17022735]
[99]
Oberdörster, G.; Stone, V.; Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 2007, 1(1), 2-25.
[http://dx.doi.org/10.1080/17435390701314761]
[100]
Kabanov, A. Polymer genomics: An insight into pharmacology and toxicology of nanomedicines. Adv. Drug Deliv. Rev., 2006, 58(15), 1597-1621.
[http://dx.doi.org/10.1016/j.addr.2006.09.019] [PMID: 17126450]
[101]
Fujimoto, A.; Tsukue, N.; Watanabe, M.; Sugawara, I.; Yanagisawa, R.; Takano, H.; Yoshida, S.; Takeda, K. Diesel exhaust affects immunological action in the placentas of mice. Environ. Toxicol., 2005, 20(4), 431-440.
[http://dx.doi.org/10.1002/tox.20129] [PMID: 16007645]
[102]
Bouwmeester, H.; Dekkers, S.; Noordam, M.Y.; Hagens, W.I.; Bulder, A.S.; de Heer, C.; ten Voorde, S.E.C.G.; Wijnhoven, S.W.P.; Marvin, H.J.P.; Sips, A.J.A.M. Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol., 2009, 53(1), 52-62.
[http://dx.doi.org/10.1016/j.yrtph.2008.10.008] [PMID: 19027049]
[103]
Grillo, R.; Fraceto, L.F.; Amorim, M.J.B.; Scott-Fordsmand, J.J.; Schoonjans, R.; Chaudhry, Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J. Hazard. Mater., 2021, 404(Pt. A), 124148.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124148] [PMID: 33059255]
[104]
Lowry, G.V.; Gregory, K.B.; Apte, S.C.; Lead, J.R. Transformations of nanomaterials in the environment. Environ. Sci. Technol., 2012, 46(13), 6893-6899.
[http://dx.doi.org/10.1021/es300839e]
[105]
Faizan, M.; Rajput, V.D.; Al-Khuraif, A.A.; Arshad, M.; Minkina, T.; Sushkova, S.; Yu, F. Effect of foliar fertigation of chitosan nanoparticles on cadmium accumulation and toxicity in Solanum lycopersicum. Biology, 2021, 10(7), 666.
[http://dx.doi.org/10.3390/biology10070666] [PMID: 34356521]
[106]
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346-2353.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]

© 2025 Bentham Science Publishers | Privacy Policy