Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Research on Lipase Immobilization with Multipoint Covalent Treatment by Glutaraldehyde

Author(s): Xiulin Fan, Pingbo Zhang*, Shiqi Teng, Mingming Fan, Pingping Jiang, Agus Haryono and Yan Leng

Volume 27, Issue 4, 2023

Published on: 12 May, 2023

Page: [248 - 259] Pages: 12

DOI: 10.2174/1385272827666230417084200

Price: $65

Abstract

Immobilized lipase has played an essential role in the chemical and biological sciences as a viable alternative to standard chemical catalysts. Glutaraldehyde is a low-cost crosslinking agent at risk of being superseded by developing crosslinking compounds with biocompatible, biodegradable, and non-toxic characteristics. The multipoint covalent treatment method using glutaraldehyde has both advantages and disadvantages. Immobilization techniques can be improved to improve the overall performance of immobilized lipase. The most recent update on lipase immobilization with multipoint covalent treatment by glutaraldehyde was summarized in this review. Covalent binding lipase on pre-activated support and aggregation-crosslinking lipase into crosslinked enzyme aggregates (CLEAs) or adsorptioncrosslinking lipase on support are the most common immobilization techniques. Based on the above technologies, the advancement trends in important domains, such as the advancement of supports, additives, reactors, and cross-linking agents, are summarized. In addition, the application of the improved immobilized lipase by glutaraldehyde in the production of fatty acids, glycerides, biodiesel, and drug precursors was reviewed. In view of this, we put forward further studies on multipoint covalent treatment in lipase immobilization with glutaraldehyde. Various analytical methods are required to provide additional information about the structure of glutaraldehyde and its crosslinked products for assisting the proper immobilization conditions. Applying the composite strategy can also bring new opportunities for improving the efficiency of biological catalysts.

Graphical Abstract

[1]
Francisco, T.T.; Antônio, L.G.C. Isamayra de, G.D.; Francisco, S.N.; Santos, J.C.S.d Current status and future perspectives of support and protocols for enzyme immobilization. Catalysts, 2021, 11(10), 1222.
[http://dx.doi.org/10.3390/catal11101222]
[2]
de Oliveira, A.L.B.; Cavalcante, F.T.T.; Moreira, K.S.; Monteiro, R.R.C.; Rocha, T.G.; Souza, J.E.S.; da Fonseca, A.M.; Lopes, A.A.S.; Guimarães, A.P.; de Lima, R.K.C.; de Souza, M.C.M.; Santos, J.C.S.d. Lipases immobilized onto nanomaterials as biocatalysts in biodiesel production: Scientific context, challenges, and opportunitie. Rev. Virtual Quim., 2021, 13(4), 875-897.
[http://dx.doi.org/10.21577/1984-6835.20210019]
[3]
Roberta, B.R.V.; Antonio, L.G.C.; Mota, G.F. Germano de, S.I.; da Silva Souza, J.E.; Francisco, T.T.C.; Katerine da, S.M.; Rafael de, A.F.I.; Francisco, S.N.; Santos, J.C.S.d Understanding the biocatalytic potential of lipase from Rhizopus chinensis. Biointerface. Res. App., 2022, 12(3), 4230-4260.
[http://dx.doi.org/10.33263/BRIAC123.42304260]
[4]
Guan, T.; Liu, B.; Wang, R.; Huang, Y.; Luo, J.; Li, Y. The enhanced fatty acids flavor release for low-fat cheeses by carrier immobilized lipases on O/W Pickering emulsions. Food Hydrocoll., 2021, 116(1), 106651.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106651]
[5]
Bajaj, A.; Lohan, P.; Jha, P.N.; Mehrotra, R. Biodiesel production through lipase catalyzed transesterification: An overview. J. Mol. Catal., B Enzym., 2010, 62(1), 9-14.
[http://dx.doi.org/10.1016/j.molcatb.2009.09.018]
[6]
Verdasco-Martín, C.M.; Villalba, M.; dos Santos, J.C.S.; Tobajas, M.; Fernandez-Lafuente, R.; Otero, C. Effect of chemical modification of Novozym 435 on its performance in the alcoholysis of camelina oil. Biochem. Eng. J., 2016, 111(15), 75-86.
[http://dx.doi.org/10.1016/j.bej.2016.03.004]
[7]
Lima, G.V.; Silva, M.R.d.; Fonseca, T.S.; Lima, L.B.d.; Oliveira, M.C.F.d.; Lemos, T.L.G.d.; Zampieri, D.; Santos, J.C.S.d.; Rios, N.S.; Gonçalves, L.R.B.; Molinari, F.; Mattos, M.C.d. Chemoenzymatic synthesis of ( S )-Pindolol using lipases. Appl. Catal. A, 2017, 546, 7-14.
[http://dx.doi.org/10.1016/j.apcata.2017.08.003]
[8]
Lima, R.N.; dos Anjos, C.S.; Orozco, E.V.M.; Porto, A.L.M. Versatility of Candida antarctica lipase in the amide bond formation applied in organic synthesis and biotechnological processes. Mol. Catal., 2019, 466, 75-105.
[http://dx.doi.org/10.1016/j.mcat.2019.01.007]
[9]
Bilal, M.; Iqbal, H.M.N. Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coord. Chem. Rev., 2019, 388, 1-23.
[http://dx.doi.org/10.1016/j.ccr.2019.02.024]
[10]
Ashkan, Z.; Hemmati, R.; Homaei, A.; Dinari, A.; Jamlidoost, M.; Tashakor, A. Immobilization of enzymes on nanoinorganic support materials: An update. Int. J. Biol. Macromol., 2021, 168, 708-721.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.127] [PMID: 33232698]
[11]
Maheri, H.; Hashemzadeh, F.; Shakibapour, N.; Kamelniya, E.; Malaekeh-Nikouei, B.; Mokaberi, P.; Chamani, J. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). J. Mol. Struct., 2022, 1269, 133803.
[http://dx.doi.org/10.1016/j.molstruc.2022.133803]
[12]
Sharifi-Rad, A.; Mehrzad, J.; Darroudi, M.; Saberi, M.R.; Chamani, J. Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J. Biomol. Struct. Dyn., 2021, 39(3), 1029-1043.
[http://dx.doi.org/10.1080/07391102.2020.1724568] [PMID: 32000592]
[13]
Khashkhashi-Moghadam, S.; Ezazi-Toroghi, S.; Kamkar-Vatanparast, M.; Jouyaeian, P.; Mokaberi, P.; Yazdyani, H.; Amiri-Tehranizadeh, Z.; Reza Saberi, M.; Chamani, J. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J. Mol. Liq., 2022, 356, 119042.
[http://dx.doi.org/10.1016/j.molliq.2022.119042]
[14]
Marjani, N.; Dareini, M.; Asadzade-Lotfabad, M.; Pejhan, M.; Mokaberi, P.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Evaluation of the binding effect and cytotoxicity assay of 2‐Ethyl‐5‐(4‐methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: Spectroscopic, calorimetric, and molecular dynamics approaches. Luminescence, 2022, 37(2), 310-322.
[http://dx.doi.org/10.1002/bio.4173] [PMID: 34862709]
[15]
Taheri, R.; Hamzkanlu, N.; Rezvani, Y.; Niroumand, S.; Samandar, F.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq., 2022, 368, 120826.
[http://dx.doi.org/10.1016/j.molliq.2022.120826]
[16]
Gupta, N.; Rathi, P.; Gupta, R. Simplified para-nitrophenyl palmitate assay for lipases and esterases. Anal. Biochem., 2002, 311(1), 98-99.
[http://dx.doi.org/10.1016/S0003-2697(02)00379-2] [PMID: 12441161]
[17]
Dheeman, D.S.; Frias, J.M.; Henehan, G.T.M. Influence of cultivation conditions on the production of a thermostable extracellular lipase from Amycolatopsis mediterranei DSM 43304. J. Ind. Microbiol. Biotechnol., 2010, 37(1), 1-17.
[http://dx.doi.org/10.1007/s10295-009-0643-7] [PMID: 19806375]
[18]
Rodrigues, R.C.; Berenguer-Murcia, Á.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol. Adv., 2021, 52, 107821.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107821] [PMID: 34455028]
[19]
de Sousa, R.R.; Pinto, M.C.C.; Aguieiras, E.C.G.; Cipolatti, E.P.; Manoel, E.A.; da Silva, A.S.A.; Pinto, J.C.; Freire, D.M.G.; Ferreira-Leitão, V.S. Comparative performance and reusability studies of lipases on syntheses of octyl esters with an economic approach. Bioprocess Biosyst. Eng., 2022, 45(1), 131-145.
[http://dx.doi.org/10.1007/s00449-021-02646-z] [PMID: 34605995]
[20]
Alagöz, D.; Toprak, A.; Yildirim, D.; Tükel, S.S.; Fernandez-Lafuente, R.; Technology, M. Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: Effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts. Enzyme Microb. Technol., 2021, 144, 109739.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109739] [PMID: 33541574]
[21]
Alavarse, A.C.; Frachini, E.C.G.; da Silva, R.L.C.G.; Lima, V.H.; Shavandi, A.; Petri, D.F.S. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int. J. Biol. Macromol., 2022, 202, 558-596.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.029] [PMID: 35038469]
[22]
Hopwood, D. Theoretical and practical aspects of glutaraldehyde fixation. Histochem. J., 1972, 4(4), 267-303.
[http://dx.doi.org/10.1007/BF01005005] [PMID: 4118613]
[23]
Okuda, K.; Urabe, I.; Yamada, Y.; Okada, H. Reaction of glutaraldehyde with amino and thiol compounds. J. Ferment. Bioeng., 1991, 71(2), 100-105.
[http://dx.doi.org/10.1016/0922-338X(91)90231-5]
[24]
Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 2004, 37(5), 790-802, 798-802.
[http://dx.doi.org/10.2144/04375RV01] [PMID: 15560135]
[25]
Walt, D.R.; Agayn, V.I. The chemistry of enzyme and protein immobilization with glutaraldehyde. TrAC. Trends Analyt. Chem., 1994, 13(10), 425-430.
[http://dx.doi.org/10.1016/0165-9936(94)85023-2]
[26]
Beauchamp, R.O., Jr; St Clair, M.B.G.; Fennell, T.R.; Clarke, D.O.; Morgan, K.T.; Karl, F.W. A critical review of the toxicology of glutaraldehyde. Crit. Rev. Toxicol., 1992, 22(3-4), 143-174.
[http://dx.doi.org/10.3109/10408449209145322] [PMID: 1388704]
[27]
Pinto, F.G.H.S.; Fernandes, F.R.; Caldeira, V.P.S.; de Castro, H.F.; Di Souza, L.; Santos, A.G.D. Influence of the procedure to immobilize lipase on SBA-15 for biodiesel production from palm kernel oil. Catal. Lett., 2021, 151(8), 2187-2196.
[http://dx.doi.org/10.1007/s10562-020-03510-7]
[28]
Yu, D.; Zhang, X.; Wang, T.; Geng, H.; Wang, L.; Jiang, L.; Elfalleh, W. Immobilized Candida antarctica lipase B (CALB) on functionalized MCM-41: Stability and catalysis of transesterification of soybean oil and phytosterol. Food Biosci., 2021, 40, 100906.
[http://dx.doi.org/10.1016/j.fbio.2021.100906]
[29]
Ameri, A.; Shakibaie, M.; Khoobi, M.; Faramarzi, M.A.; Ameri, A.; Forootanfar, H. Immobilization of Thermoalkalophilic lipase from Bacillus atrophaeus FSHM2 on amine-modified graphene oxide nanostructures: Statistical optimization and its application for pentyl valerate synthesis. Appl. Biochem. Biotechnol., 2020, 191(2), 579-604.
[http://dx.doi.org/10.1007/s12010-019-03180-1] [PMID: 31823273]
[30]
Ferreira, G.G.R.; Ramos, G.O.R.; Brito, M.J.P.; Bonomo, R.C.F.; da Costa, I.F.R.; Veloso, C.M. Immobilization of porcine pancreatic lipase on activated carbon by adsorption and covalent bonding and its application in the synthesis of butyl butyrate. Process Biochem., 2021, 111, 114-123.
[http://dx.doi.org/10.1016/j.procbio.2021.10.027]
[31]
Liu, P.; Liu, X.; Liu, H.; Wang, P. Efficient biodiesel production catalysed by lipase immobilized on nanowire coils. IOP Conference Series Earth and Environmental Science, Herbin, China2021, p. 012090.
[http://dx.doi.org/10.1088/1755-1315/680/1/012090]
[32]
Coşkun, G.; Çıplak, Z.; Yıldız, N.; Mehmetoğlu, U. Immobilization of Candida antarctica lipase on nanomaterials and investigation of the enzyme activity and enantioselectivity. Appl. Biochem. Biotechnol., 2021, 193(2), 430-445.
[http://dx.doi.org/10.1007/s12010-020-03443-2] [PMID: 33025565]
[33]
Moreira, K.S.; de Oliveira, A.L.B.; Júnior, L.S.M.; Monteiro, R.R.C.; da Rocha, T.N.; Menezes, F.L.; Fechine, L.M.U.D.; Denardin, J.C.; Michea, S.; Freire, R.M.; Fechine, P.B.A.; Souza, M.C.M.; dos Santos, J.C.S. Lipase From Rhizomucor miehei immobilized on magnetic nanoparticles: Performance in fatty acid ethyl ester (FAEE) optimized production by the Taguchi method. Front. Bioeng. Biotechnol., 2020, 8, 693.
[http://dx.doi.org/10.3389/fbioe.2020.00693] [PMID: 32695765]
[34]
Zhong, L.; Jiao, X.; Hu, H.; Shen, X.; Zhao, J.; Feng, Y.; Li, C.; Du, Y.; Cui, J.; Jia, S. Activated magnetic lipase-inorganic hybrid nanoflowers: A highly active and recyclable nanobiocatalyst for biodiesel production. Renew. Energy, 2021, 171, 825-832.
[http://dx.doi.org/10.1016/j.renene.2021.02.155]
[35]
Verma, M.L.; Rao, N.M.; Tsuzuki, T.; Barrow, C.J.; Puri, M. Suitability of recombinant lipase immobilised on functionalised magnetic nanoparticles for fish oil hydrolysis. Catalysts, 2019, 9(5), 420-435.
[http://dx.doi.org/10.3390/catal9050420]
[36]
Ariffin, K.M.F.; Idris, A. Fe2O3/Chitosan coated superparamagnetic nanoparticles supporting lipase enzyme from Candida antarctica for microwave assisted biodiesel production. Renew. Energy, 2022, 185, 1362-1375.
[http://dx.doi.org/10.1016/j.renene.2021.11.077]
[37]
Moreira, K.D.; de Oliveira, A.L.B.; de Moura, L.S.; de Sousa, I.G.; Cavalcante, A.L.G.; Neto, F.S.; Valerio, R.B.R.; Chaves, A.V.; Fonseca, T.D.; Cruz, D.M.V.; Lima, G.V.; de Oliveira, G.P.; de Souza, M.C.M.; Fechine, P.B.A.; de Mattos, M.C.; da Fonseca, A.M.; dos Santos, J.C.S. Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chem. Eng. Res. Des., 2022, 177, 223-244.
[http://dx.doi.org/10.1016/j.cherd.2021.10.033]
[38]
Zare, A.; Bordbar, A.K.; Jafarian, F.; Tangestaninejad, S. Candida rugosa lipase immobilization on various chemically modified Chromium terephthalate MIL-101. J. Mol. Liq., 2018, 254, 137-144.
[http://dx.doi.org/10.1016/j.molliq.2018.01.097]
[39]
Wong, W.K.L.; Wahab, R.A.; Onoja, E. Chemically modified nanoparticles from oil palm ash silica-coated magnetite as support for Candida rugosa lipase-catalysed hydrolysis: Kinetic and thermodynamic studies. Chem. Pap., 2020, 74(4), 1253-1265.
[http://dx.doi.org/10.1007/s11696-019-00976-7]
[40]
Li, Y.; Zhou, H.; Dai, L.; Liu, D.; Al-Zuhair, S.; Du, W. Immobilization of lipase from Thermomyces lanuginosus in magnetic macroporous ZIF-8 improves lipase reusability in biodiesel preparation. ACS Omega, 2022, 7(1), 274-280.
[http://dx.doi.org/10.1021/acsomega.1c04601] [PMID: 35036698]
[41]
Fahimeh, E.; Nematian, T.; Salehi, Z.; Khodadadi, A.A.; Dalai, A.K. Amine and aldehyde functionalized mesoporous silica on magnetic nanoparticles for enhanced lipase immobilization, biodiesel production, and facile separation. Fuel, 2021, 291(3), 120126.
[42]
Cao, X.; Xu, H.; Li, F.; Zou, Y.; Ran, Y.; Ma, X.; Cao, Y.; Xu, Q.; Qiao, D.; Cao, Y. One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase. Renew. Energy, 2021, 171, 11-21.
[http://dx.doi.org/10.1016/j.renene.2021.02.065]
[43]
Thangaraj, B.; Jia, Z.H.; Dai, L.M.; Liu, D.H.; Du, W. Lipase NS81006 immobilized on functionalized ferric-silica magnetic nanoparticles for biodiesel production. Biofuels-Uk, 2020, 11(7), 811-819.
[44]
Ashkevarian, S.; Badraghi, J.; Mamashli, F.; Delavari, B.; Saboury, A.A. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production. Chin. J. Chem. Eng., 2021, 37, 128-136.
[http://dx.doi.org/10.1016/j.cjche.2020.11.003]
[45]
Pan, J.; Ou, Z.; Tang, L.; Shi, H. Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine. Korean J. Chem. Eng., 2019, 36(5), 729-739.
[http://dx.doi.org/10.1007/s11814-019-0249-3]
[46]
Monteiro, R.R.C.; Lima, P.J.M.; Pinheiro, B.B.; Freire, T.M.; Dutra, L.M.U.; Fechine, P.B.A.; Gonçalves, L.R.B.; de Souza, M.C.M.; dos Santos, J.C.S.; Fernandez-Lafuente, R. Immobilization of lipase A from Candida antarctica onto chitosan-coated magnetic nanoparticles. Int. J. Mol. Sci., 2019, 20(16), 4018.
[http://dx.doi.org/10.3390/ijms20164018] [PMID: 31426510]
[47]
Restiawaty, E.; Culsum, N.T.U.; Nishiyama, N.; Budhi, Y.W. Preparation, characterization, and surface modification of cellulose nanocrystal from Lignocellulosic biomass for immobilized lipase. Fibers, 2022, 10(4), 33.
[http://dx.doi.org/10.3390/fib10040033]
[48]
Jiang, Y.; Liu, H.; Wang, L.; Zhou, L.; Huang, Z.; Ma, L.; He, Y.; Shi, L.; Gao, J. Virus-like organosilica nanoparticles for lipase immobilization: Characterization and biocatalytic applications. Biochem. Eng. J., 2019, 144, 125-134.
[http://dx.doi.org/10.1016/j.bej.2019.01.022]
[49]
Martin, L.S.; Cerón, A.A.; Molinari, D.; De Moraes, F.F.; Arroyo, P.A.; De Castro, H.F.; Zanin, G.M. Enhancement of lipase transesterification activity by immobilization on β–cyclodextrin-based polymer. J. Sol-Gel Sci. Technol., 2019, 91(1), 92-100.
[http://dx.doi.org/10.1007/s10971-019-05011-5]
[50]
Zou, T.; Duan, Y.; Wang, Q.; Cheng, H. Preparation of immobilized lipase on silica clay as a potential biocatalyst on synthesis of biodiesel. Catalysts, 2020, 10(11), 1266.
[http://dx.doi.org/10.3390/catal10111266]
[51]
Shen, J.W.; Qi, J.M.; Zhang, X.J.; Liu, Z.Q.; Zheng, Y.G. Efficient resolution of cis-(+/-)-dimethyl 1-acetylpiperidine-2,3-dicarboxylate by covalently immobilized mutant Candida antarctica lipase B in batch and semicontinuous modes. Org. Process Res. Dev., 2019, 23(5), 1017-1025.
[http://dx.doi.org/10.1021/acs.oprd.9b00066]
[52]
de Souza, T.C.; de Sousa, F.T.; de Sousa, S.J.; Lima, P.J.M.; Neto, C.A.C.G.; Monteiro, R.R.C.; Rocha, M.V.P.; de Mattos, M.C.; dos Santos, J.C.S.; Gonçalves, L.R.B. Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess Biosyst. Eng., 2020, 43(12), 2253-2268.
[http://dx.doi.org/10.1007/s00449-020-02411-8] [PMID: 32725440]
[53]
Rigo, D.; dos Santos, P.N.A.; Fischer, B.; Vendruscolo, M.D.; Fernandes, I.A.; Fricks, A.T.; Dallago, R.M.; Zeni, J. Covalent immobilization of lipase in residual yerba mate stick (Ilex paraguariensis A. St.-Hil.). Biointerface. Res. App., 2021, 11(6), 14564-14579.
[http://dx.doi.org/10.33263/BRIAC116.1456414579]
[54]
Carneiro, E.; Bastos, A.; Oliveira, U.D.; Matos, L.D.; Gonalves, L. Improving the catalytic features of the lipase from Rhizomucor miehei immobilized on chitosan-based hybrid matrices by altering the chemical activation conditions. Quim. Nova, 2020, 43(9), 1234-1239.
[http://dx.doi.org/10.21577/0100-4042.20170615]
[55]
Jacob, A.G.; Wahab, R.A.; Chandren, S.; Jumbri, K.; Mahmood, W.W.M.A. Physicochemical properties and operational stability of Taguchi design-optimized Candida rugosa lipase supported on biogenic silica/magnetite/graphene oxide for ethyl valerate synthesis. Adv. Powder Technol., 2022, 33(1), 103374.
[http://dx.doi.org/10.1016/j.apt.2021.11.026]
[56]
Badoei-dalfard, A.; Shahba, A.; Zaare, F.; Sargazi, G.; Seyedalipour, B.; Karami, Z. Lipase immobilization on a novel class of Zr-MOF/electrospun nanofibrous polymers: Biochemical characterization and efficient biodiesel production. Int. J. Biol. Macromol., 2021, 192, 1292-1303.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.106] [PMID: 34687760]
[57]
Elias, N.; Wahab, R.A.; Jye, L.W.; Mahat, N.A.; Chandren, S.; Jamalis, J. Taguchi orthogonal design assisted immobilization of Candida rugosa lipase onto nanocellulose-silica reinforced polyethersulfone membrane: Physicochemical characterization and operational stability. Cellulose, 2021, 28(9), 5669-5691.
[http://dx.doi.org/10.1007/s10570-021-03886-8]
[58]
Badoei-dalfard, A.; Tahami, A.; Karami, Z. Lipase immobilization on glutaraldehyde activated graphene oxide/chitosan/cellulose acetate electrospun nanofibrous membranes and its application on the synthesis of benzyl acetate. Colloids Surf. B Biointerfaces, 2022, 209(Pt 2), 112151.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112151] [PMID: 34687974]
[59]
Abdulmalek, S.A.; Li, K.; Wang, J.; Ghide, M.K.; Yan, Y. Enhanced performance of Rhizopus oryzae lipase immobilized onto a hybrid-nanocomposite matrix and its application for biodiesel production under the assistance of ultrasonic technique. Fuel Process. Technol., 2022, 232, 107274.
[http://dx.doi.org/10.1016/j.fuproc.2022.107274]
[60]
Nunes, Y.L.; Menezes, F.; Sousa, I.; Cavalcante, A.; Santos, J. Chemical and physical chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int. J. Biol. Macromol., 2021, 181(B), 1124-1170.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.004]
[61]
Nowroozi-Nejad, Z.; Bahramian, B.; Hosseinkhani, S. Efficient immobilization of firefly luciferase in a metal organic framework: Fe-MIL-88(NH2) as a mighty support for this purpose. Enzyme Microb. Technol., 2019, 121, 59-67.
[http://dx.doi.org/10.1016/j.enzmictec.2018.10.011] [PMID: 30554646]
[62]
Serpa, J.D.; Matias, G.A.B.; Fechine, P.B.A.; da Costa, V.M.; Freire, R.M.; Denardin, J.C.; Goncalves, L.R.B.; de Macedo, A.C.; Rocha, M.V.P. New nanocomposite made of cashew apple bagasse lignin and Fe3O4 for immobilizing of lipase B from Candida antarctica aiming at esterification. J. Chem. Technol. Biot., 2021, 2472-2487.
[http://dx.doi.org/10.1002/jctb.6770]
[63]
Braham, S.A.; Siar, E.H.; Arana-Peña, S.; Carballares, D.; Morellon-Sterling, R.; Bavandi, H.; de Andrades, D.; Kornecki, J.F.; Fernandez-Lafuente, R. Effect of concentrated salts solutions on the stability of immobilized enzymes: Influence of inactivation conditions and immobilization protocol. Molecules, 2021, 26(4), 968.
[http://dx.doi.org/10.3390/molecules26040968] [PMID: 33673063]
[64]
Zhu, R.; Li, C.; Chen, C.; Xing, S.; Cai, Y.; Zeng, X.; He, L. Effect of cross-linked enzyme aggregate strategy on characterization of sn-1,3 extracellular lipase from Aspergillus niger GZUF36. Appl. Microbiol. Biotechnol., 2021, 105(5), 1925-1941.
[http://dx.doi.org/10.1007/s00253-021-11160-x] [PMID: 33559718]
[65]
Muley, A.B.; Awasthi, S.; Bhalerao, P.P.; Jadhav, N.L.; Singhal, R.S. Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: Process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess Biosyst. Eng., 2021, 44(7), 1383-1404.
[http://dx.doi.org/10.1007/s00449-021-02509-7] [PMID: 33660099]
[66]
Guajardo, N.; Ahumada, K.; Domínguez de María, P. Immobilization of Pseudomonas stutzeri lipase through cross-linking aggregates (CLEA) for reactions in deep eutectic solvents. J. Biotechnol., 2021, 337(3), 18-23.
[http://dx.doi.org/10.1016/j.jbiotec.2021.06.021] [PMID: 34171440]
[67]
Diaz-Vidal, T.; Armenta-Perez, V.P.; Rosales-Rivera, L.C.; Mateos-Díaz, J.C.; Rodríguez, J.A. Cross-linked enzyme aggregates of recombinant Candida antarctica lipase B for the efficient synthesis of olvanil, a nonpungent capsaicin analogue. Biotechnol. Prog., 2019, 35(4), e2807.
[http://dx.doi.org/10.1002/btpr.2807] [PMID: 30883025]
[68]
Ramos, M.D.; Miranda, L.P.; Giordano, R.L.C.; Fernandez-Lafuente, R.; Kopp, W.; Tardioli, P.W. 1,3-Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates. Biotechnol. Prog., 2018, 34(4), 910-920.
[http://dx.doi.org/10.1002/btpr.2636] [PMID: 29693317]
[69]
Sharma, D.; Uniyal, S.; Tewari, L. Biocatalytic transesterification of algal oil employing a heterogenous methanol tolerant lipase enzyme aggregate from Bacillus mycoides strain CV18. Process Biochem., 2021, 111, 43-52.
[http://dx.doi.org/10.1016/j.procbio.2021.10.005]
[70]
Paitaid, P. H-Kittikun, A. Enhancing immobilization of Aspergillus oryzae ST11 lipase on polyacrylonitrile nanofibrous membrane by bovine serum albumin and its application for biodiesel production. Prep. Biochem. Biotechnol., 2021, 51(6), 536-549.
[http://dx.doi.org/10.1080/10826068.2020.1836654] [PMID: 33095111]
[71]
Harini, T.; Muddagoni, J.; Sheelu, G.; Rode, H.B.; Kumaraguru, T. Polymer supported cross-linked enzyme aggregates (CLEAs) of lipase B from Candida antarctica: An efficient and recyclable biocatalyst for reactions in both aqueous and organic media. Biocatal. Biotransform., 2022, 40(3), 182-194.
[http://dx.doi.org/10.1080/10242422.2021.1885381]
[72]
Kartal, F.; Janssen, M.H.A.; Hollmann, F.; Sheldon, R.A. Kılınc, A. Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as Cross-linked enzyme aggregates (CLEAs). J. Mol. Catal., B Enzym., 2011, 71(3-4), 85-89.
[http://dx.doi.org/10.1016/j.molcatb.2011.04.002]
[73]
Kartal, F.; Kilinc, A. Crosslinked aggregates of Rhizopus oryzae lipase as industrial biocatalysts: Preparation, optimization, characterization, and application for enantioselective resolution reactions. Biotechnol. Prog., 2012, 28(4), 937-945.
[http://dx.doi.org/10.1002/btpr.1571] [PMID: 22685034]
[74]
Khanahmadi, S.; Yusof, F.; Amid, A.; Mahmod, S.S.; Mahat, M.K. Optimized preparation and characterization of CLEA-lipase from cocoa pod husk. J. Biotechnol., 2015, 202, 153-161.
[http://dx.doi.org/10.1016/j.jbiotec.2014.11.015] [PMID: 25481099]
[75]
Tudorache, M.; Nae, A.; Coman, S.; Parvulescu, V.I. Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Advances, 2013, 3(12), 4052-4058.
[http://dx.doi.org/10.1039/c3ra23222k]
[76]
Shah, S.; Sharma, A.; Gupta, M.N. Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal. Biochem., 2006, 351(2), 207-213.
[http://dx.doi.org/10.1016/j.ab.2006.01.028] [PMID: 16500610]
[77]
Torres, G.M.P.; Foresti, M.L.; Ferreira, M.L. Effect of different parameters on the hydrolytic activity of cross-linked enzyme aggregates (CLEAs) of lipase from Thermomyces lanuginosa. Biochem. Eng. J., 2013, 72(15), 18-23.
[http://dx.doi.org/10.1016/j.bej.2012.12.010]
[78]
Sun, M.; Nie, K.; Wang, F.; Deng, L. Optimization of the lipase-catalyzed selective amidation of phenylglycinol. Front. Bioeng. Biotechnol., 2020, 7, 486.
[http://dx.doi.org/10.3389/fbioe.2019.00486] [PMID: 32039186]
[79]
Aguilera-Oviedo, J.; Yara-Varón, E.; Torres, M.; Canela-Garayoa, R.; Balcells, M. Sustainable synthesis of omega-3 fatty acid ethyl esters from monkfish liver oil. Catalysts, 2021, 11(1), 100.
[http://dx.doi.org/10.3390/catal11010100]
[80]
de Andrade Silva, T.; Keijok, W.J.; Guimarães, M.C.C.; Cassini, S.T.A.; de Oliveira, J.P. Impact of immobilization strategies on the activity and recyclability of lipases in nanomagnetic supports. Sci. Rep., 2022, 12(1), 6815.
[http://dx.doi.org/10.1038/s41598-022-10721-y] [PMID: 35474328]
[81]
Claudia, O.; Ferreira, L.; Berenguer-Murcia, Á.; Oveimar, B.; Jose, C.S.; Rodrigues, R.C. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol., 2019, 9, 2380-2420.
[http://dx.doi.org/10.1039/C9CY00415G]
[82]
Rodrigues, R.C.; Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of lipases on hydrophobic supports: Immobilization mechanism, advantages, problems, and solutions. Biotechnol. Adv., 2019, 37(5), 746-770.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.003] [PMID: 30974154]
[83]
Badgujar, K.C.; Badgujar, V.C.; Bhanage, B.M. Recent update on use of ionic liquids for enzyme immobilization, activation, and catalysis: A partnership for sustainability. Curr. Opin. Green Sustain. Chem., 2022, 36, 100621.
[http://dx.doi.org/10.1016/j.cogsc.2022.100621]
[84]
Rathankumar, A.K. SaiLavanyaa, S.; Saikia, K.; Gururajan, A.; Sivanesan, S.; Gosselin, M.; Vaidyanathan, V.K.; Cabana, H. Systemic concocting of crosslinked enzyme aggregates of Candida antarctica lipase B (Novozyme 435) for the biomanufacturing of rhamnolipids. J. Surfactants Deterg., 2019, 22(3), 477-490.
[http://dx.doi.org/10.1002/jsde.12266]
[85]
Alamsyah, G.; Albels, V.A.; Sahlan, M.; Hermansyah, H. Effect of chitosan’s amino group in adsorption-crosslinking immobilization of lipase enzyme on resin to catalyze biodiesel synthesis. Energy Procedia, 2017, 136, 47-52.
[http://dx.doi.org/10.1016/j.egypro.2017.10.278]
[86]
Nuraliyah, A.; Wijanarko, A.; Hermansyah, H. Immobilization of Candida rugosa lipase by adsorption-crosslinking onto corn husk. 2nd International Conference on Oleo and Petrochemical Engineering (ICOOPChE 2017), Pekanbaru-Riau, Indonesia2018, p. 012042.
[87]
Nuraliyah, A.; Perdani, M.S.; Putri, D.N.; Sahlan, M.; Wijanarko, A.; Hermansyah, H. Effect of additional amino group to improve the performance of immobilized lipase from Aspergillus niger by adsorption-crosslinking method. Front. Energy Res., 2021, 9, 616945.
[http://dx.doi.org/10.3389/fenrg.2021.616945]
[88]
Rios, N.S.; Morais, E.G.; dos Santos Galvão, W.; Andrade Neto, D.M.; dos Santos, J.C.S.; Bohn, F.; Correa, M.A.; Fechine, P.B.A.; Fernandez-Lafuente, R.; Gonçalves, L.R.B. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int. J. Biol. Macromol., 2019, 141, 313-324.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.003] [PMID: 31491511]
[89]
Binhayeeding, N.; Yunu, T.; Pichid, N.; Klomklao, S.; Sangkharak, K. Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochem., 2020, 95, 174-185.
[http://dx.doi.org/10.1016/j.procbio.2020.02.007]
[90]
Duan, Y.; Zou, T.; Wu, S.; Cheng, H. Immobilization of lipases on modified silica clay for bio-diesel production: the effect of surface hydrophobicity on performance. Catalysts, 2022, 12(2), 242.
[http://dx.doi.org/10.3390/catal12020242]
[91]
Gao, S.; Wang, Y.; Diao, X.; Luo, G.; Dai, Y. Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresour. Technol., 2010, 101(11), 3830-3837.
[http://dx.doi.org/10.1016/j.biortech.2010.01.023] [PMID: 20116998]
[92]
Kim, M.I.; Kim, J.; Lee, J.; Jia, H.; Na, H.B.; Youn, J.K.; Kwak, J.H.; Dohnalkova, A.; Grate, J.W.; Wang, P.; Hyeon, T.; Park, H.G.; Chang, H.N. Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng., 2007, 96(2), 210-218.
[http://dx.doi.org/10.1002/bit.21107] [PMID: 16986168]
[93]
Gao, J.; Shi, L.; Jiang, Y.; Zhou, L.; He, Y. Formation of lipase Candida sp. 99–125 CLEAs in mesoporous silica: Characterization and catalytic properties. Catal. Sci. Technol., 2013, 3(12), 3353.
[http://dx.doi.org/10.1039/c3cy00412k]
[94]
Bhattacharjee, D.; Goswami, D. Surfactant assisted production of ricinoleic acid using cross-linked and entrapped porcine pancreas lipase. J. Dispers. Sci. Technol., 2021, 42(7), 947-955.
[http://dx.doi.org/10.1080/01932691.2020.1730187]
[95]
Arana-Pea, S.; Rios, N.S.; Mendez-Sanchez, C.; Lokha, Y.; Fernández-Lafuente, R. Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts using octyl-agarose beads with very high volumetric activity: Avoiding enzyme release during multilayer production. Enzyme Microb. Technol., 2020, 137, 109535.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109535] [PMID: 32423679]
[96]
dos Santos, K.P.; Rios, N.S.; Labus, K.; Gonçalves, L.R.B. Co-immobilization of lipase and laccase on agarose-based supports via layer-by-layer strategy: Effect of diffusional limitations. Biochem. Eng. J., 2022, 185, 108533.
[http://dx.doi.org/10.1016/j.bej.2022.108533]
[97]
Jin, W.; Xu, Y.; Yu, X.W. Preparation of lipase cross-linked enzyme aggregates in octyl-modified mesocellular foams. Int. J. Biol. Macromol., 2019, 130, 342-347.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.154] [PMID: 30825565]
[98]
Butler, M.F.; Ng, Y.F.; Pudney, P.D.A. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J. Polym. Sci. A Polym. Chem., 2003, 41(24), 3941-3953.
[http://dx.doi.org/10.1002/pola.10960]
[99]
Jin, W.; Xu, Y.; Yu, X.W. Formation lipase cross-linked enzyme aggregates on octyl-modified mesocellular foams with oxidized sodium alginate. Colloids Surf. B Biointerfaces, 2019, 184, 110501.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110501] [PMID: 31541891]
[100]
Mi, F.L.; Shyu, S.S.; Peng, C.K. Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J. Polym. Sci. A Polym. Chem., 2005, 43(10), 1985-2000.
[http://dx.doi.org/10.1002/pola.20669]
[101]
Iyer, P.V.; Ananthanarayan, L. Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochem., 2008, 43(10), 1019-1032.
[http://dx.doi.org/10.1016/j.procbio.2008.06.004]
[102]
Zanna, H.; Nok, A.J.; Ibrahim, S.; Inuwa, H.M. Stabilization of Aspergillus parasiticus cytosine deaminase by immobilization on calcium alginate beads improved enzyme operational stability. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1217-1220.
[http://dx.doi.org/10.3109/14756366.2012.724406] [PMID: 23030840]
[103]
Thakur, K.; Attri, C.; Seth, A. Nanocarriers-based immobilization of enzymes for industrial application. 3 Biotech, 2021, 11(10), 427.
[http://dx.doi.org/10.1007/s13205-021-02953-y] [PMID: 34603907]
[104]
Sigurdardóttir, S.B.; Lehmann, J.; Ovtar, S.; Grivel, J.C.; Negra, M.D.; Kaiser, A.; Pinelo, M. Enzyme immobilization on inorganic surfaces for membrane reactor applications: Mass transfer challenges, enzyme leakage and reuse of materials. Adv. Synth. Catal., 2018, 360(14), 2578-2607.
[http://dx.doi.org/10.1002/adsc.201800307]
[105]
Bilal, M.; Zhao, Y.; Noreen, S.; Shah, S.Z.H.; Bharagava, R.N.; Iqbal, H.M.N. Modifying bio-catalytic properties of enzymes for efficient biocatalysis: A review from immobilization strategies viewpoint. Biocatal. Biotransform., 2019, 37(3), 159-182.
[http://dx.doi.org/10.1080/10242422.2018.1564744]
[106]
Zaitsev, S.Y.; Savina, A.A.; Zaitsev, I.S. Biochemical aspects of lipase immobilization at polysaccharides for biotechnology. Adv. Colloid Interface Sci., 2019, 272, 102016.
[http://dx.doi.org/10.1016/j.cis.2019.102016] [PMID: 31421454]
[107]
Arana-Peña, S.; Carballares, D.; Cortés Corberan, V.; Fernandez-Lafuente, R. Multi-combilipases: Co-immobilizing lipases with very different stabilities combining immobilization via interfacial activation and ion exchange. The reuse of the most stable co-immobilized enzymes after inactivation of the least stable ones. Catalysts, 2020, 10(10), 1207.
[http://dx.doi.org/10.3390/catal10101207]
[108]
Arana-Peña, S.; Rios, N.S.; Carballares, D.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catal. Today, 2021, 362, 130-140.
[http://dx.doi.org/10.1016/j.cattod.2020.03.059]
[109]
Bassi, J.J.; Todero, L.M.; Lage, F.A.P.; Khedy, G.I.; Ducas, J.D.; Custódio, A.P.; Pinto, M.A.; Mendes, A.A. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Int. J. Biol. Macromol., 2016, 92, 900-909.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.097] [PMID: 27477246]
[110]
Whipple, E.B.; Ruta, M. Structure of aqueous glutaraldehyde. J. Org. Chem., 1974, 39(12), 1666-1668.
[http://dx.doi.org/10.1021/jo00925a015]
[111]
Monsan, P.; Puzo, G.; Mazarguil, H. [Mechanism of glutaraldehyde-protein bond formation]. Biochimie, 1975, 57(11-12), 1281-1292.
[http://dx.doi.org/10.1016/S0300-9084(76)80540-8] [PMID: 4153]
[112]
Losada-Garcia, N.; Cabrera, Z.; Urrutia, P.; Garcia-Sanz, C.; Andreu, A.; Palomo, J.M. Recent advances in enzymatic and chemoenzymatic cascade processes. Catalysts, 2020, 10(11), 1258.
[http://dx.doi.org/10.3390/catal10111258]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy