Abstract
The present work describes the synthesis of cis-3-(substituted acetoxy)azetidin-2-ones from cis-3-hydroxyazetidin-2-ones. Two different routes have been investigated for the substitution at the C-3 position of the azetidin-2-ones. Method A involves the use of acetyl chloride XCOCl in the presence of pyridine and method B consists of using appropriate acid XCOOH in a catalytic amount of DMAP which was found to be the best to furnish the target azetidin-2-one. All the newly synthesized compounds were characterized on the basis of various spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and elemental analysis). Two different routes have been investigated for the substitution at the C-3 position of the azetidin-2-ones.
Graphical Abstract
[http://dx.doi.org/10.1007/978-3-319-55621-5_12]
[http://dx.doi.org/10.1016/j.ejmech.2020.112829] [PMID: 33002736]
[http://dx.doi.org/10.2174/1570193X15666180914165303]
[http://dx.doi.org/10.1007/7081_2012_86]
[http://dx.doi.org/10.1016/j.tet.2012.07.090];
b) Wei, C.; Zhu, J.F.; Zhang, J.Q.; Deng, Q.; Mo, D.L. Adv. Synth. Catal., 2019, 361, 3965-3973.
[http://dx.doi.org/10.1002/adsc.201900523];
c) Zhang, J.Q.; Qiu, P.W.; Liang, C.; Mo, D.L. Org. Lett., 2022, 24, 7801-7805.
[http://dx.doi.org/10.1021/acs.orglett.2c03156]
[http://dx.doi.org/10.1007/978-1-4939-0694-9_10]
[http://dx.doi.org/10.1038/ja.2013.49] [PMID: 23756684]
[http://dx.doi.org/10.3390/ijms22020617] [PMID: 33435500]
[http://dx.doi.org/10.3390/molecules26092601] [PMID: 33946916]
[http://dx.doi.org/10.1016/j.bmcl.2020.127514] [PMID: 32860980]
[http://dx.doi.org/10.1128/CMR.00077-17] [PMID: 29540434]
[http://dx.doi.org/10.1039/c2dt30514c] [PMID: 22473422]
[http://dx.doi.org/10.1016/j.ejmech.2011.10.033] [PMID: 22071256]
[http://dx.doi.org/10.1016/j.bmc.2013.04.033] [PMID: 23684232]
[http://dx.doi.org/10.1007/s00044-015-1474-x]
[http://dx.doi.org/10.1021/acsmedchemlett.1c00344] [PMID: 34795859]
[http://dx.doi.org/10.1016/j.ejmech.2019.06.036] [PMID: 31260892]
[http://dx.doi.org/10.1016/j.bioorg.2019.103515] [PMID: 31884134]
[http://dx.doi.org/10.1002/slct.202101194]
b) Adlington, R.M.; Baldwin, J.E.; Chen, B.; Cooper, S.L.; McCoull, W.; Pritchard, G.J.; Howe, T.J.; Becker, G.W.; Hermann, R.B.; McNulty, A.M.; Neubauer, B.L. Bioorg. Med. Chem. Lett., 1997, 7(13), 1689-1694.
[http://dx.doi.org/10.1016/S0960-894X(97)00285-0];
c) Bittermann, H.; Gmeiner, P. J. Org. Chem., 2006, 71(1), 97-102.
[http://dx.doi.org/10.1021/jo0517287] [PMID: 16388623];
d) Veeraraghavan, B.; Bakthavatchalam, Y.D.; Sahni, R.D. Infect. Dis. Ther., 2021, 10(4), 1815-1835.
[http://dx.doi.org/10.1007/s40121-021-00509-4] [PMID: 34357517];
e) Klimberg, I.W.; Malek, G.H.; Cox, C.E.; Patterson, A.L.; Whalen, E.; Kowalsky, S.F.; Echols, R.M. J. Antimicrob. Chemother., 1999, 43(Suppl. 1), 77-84.
[http://dx.doi.org/10.1093/jac/43.suppl_1.77] [PMID: 10225576];
f) Markley, J.L.; Morse, T.L.; Rath, N.P.; Wencewicz, T.A. Tetrahedron, 2018, 74(22), 2743-2753.
[http://dx.doi.org/10.1016/j.tet.2018.04.040]
[http://dx.doi.org/10.1080/00397911.2021.1992441];
b) Berry, S.; Bari, S.S.; Yadav, P.; Garg, A.; Khullar, S.; Mandal, S.K.; Bhalla, A. Synth. Commun., 2020, 50(19), 2969-2980.
[http://dx.doi.org/10.1080/00397911.2020.1788599]
[http://dx.doi.org/10.1016/S0957-4166(98)00049-4];
b) Buttero, P.D.; Molteni, G.; Pilati, T. Tetrahedron Asymmetry, 2010, 21(21-22), 2607-2611.
[http://dx.doi.org/10.1016/j.tetasy.2010.10.018];
c) Moyna, G.; Williams, H.J.; Scott, A.I. Synth. Commun., 1997, 27(9), 1561-1567.
[http://dx.doi.org/10.1080/00397919708006094]
[http://dx.doi.org/10.1021/jo00057a018]
[http://dx.doi.org/10.1016/j.bmc.2018.04.007] [PMID: 29703423]