Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

A Novel pH-sensitive Nanocomposite Based on Graphene Oxide for Improving Doxorubicin Release

Author(s): Marziye Javaheri Kachousangi*, Amir Shadboorestan, Azam Shamsian, Mohsen Amini, Fatemeh Atyabi and Mohammad Hossein Ghahremani*

Volume 21, Issue 1, 2024

Published on: 11 May, 2023

Page: [140 - 153] Pages: 14

DOI: 10.2174/1567201820666230413094206

Price: $65

Abstract

Background: Doxorubicin (DOX) as a chemotherapeutic drug has been widely used for treatment of cancer but because of adverse side effects of this drug, different drug delivery systems have been tested. One of them has been immobilization of DOX on the graphene oxide (GO) sheets through non-covalent interactions (GO-DOX) with high efficiency however the release was very low and slow due to strong forces between DOX and GO.

Objective: The aim of this research was to increase the release of DOX and this goal was achieved through the covalent binding of DOX to the GO-poly(ethyleneimine) 2KDa conjugate.

Methods: A novel nanocarrier for delivering DOX was fabricated using GO as a basic plane for conjugating and assembling other compounds. DOX was attached to GO-poly(ethyleneimine) 2KDa conjugate via a linker containing hydrazide bond. Drug loading and release was investigated at pH 7.5 and pH 5.5. Cytotoxicity was determined by MTT on MCF7 cells and compared with previous nanocarrier.

Results: The fabrication of the nanocarrier and the covalent attachment of DOX to the nanocarrier were confirmed through FT-IR spectroscopy. The capacity of nanocarrier to load drug was as high as 383%. 96% of initial drug was loaded in the nanocarrier. The weight percentage of the drug in the nanocarrierdrug conjugate was 79%. Release of drug at pH 5.5 was two times more than release at pH 7.5 and this evidence supports conjugation of DOX to nanocarrier through hydrazide bond and pH-sensitivity of related bond. Because of the reliable results, ease of operation, safety and high reproducibility, MTT was chosen to evaluate the cytotoxicity of samples. Nanocarrier didn’t show significant toxicity even at high concentrations. IC50 value for chemically-bound DOX to hydrazide-containing GO nanocomposite was 9.5 μg/ml whereas the IC50 value for GO-DOX was 39 μg/ml after 72 h. Loading of DOX via hydrazide bond was as low as 4% versus near 75% physical loading of drug while hydrazide bondcontaining nanocomposite was 4 to 6 fold more toxic than GO-DOX.

Conclusion: Based on the obtained data, the covalent attachment of DOX to the nanocarrier through hydrazide linkers was an interesting idea that increased drug release and toxicity despite much lower percentage of covalent attachment compared to non-covalent immobilization. As could be concluded from this study, nanocarriers based on hydrazide bond could be a good candidate for drug delivery.

[1]
Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[2]
Watson, L. Breast cancer: Diagnosis, treatment and prognosis. Radiol. Technol., 2001, 73(1), 45-61.
[PMID: 11579771]
[3]
Connolly, K.; Mann, B.; Chua, B.; Segelov, E. Early breast cancer: New developments in diagnosis and treatment. Med. Today, 2013, 14(6), 18-24.
[4]
Chen, C.; Fan, Y.; Gu, J.; Wu, L.; Passerini, S.; Mai, L. One-dimensional nanomaterials for energy storage. J. Phys. D Appl. Phys., 2018, 51(11), 113002.
[http://dx.doi.org/10.1088/1361-6463/aaa98d]
[5]
Yang, F.; Song, P.; Ruan, M.; Xu, W. Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.
[http://dx.doi.org/10.1016/j.flatc.2019.100133]
[6]
Huang, Z.; Zhang, A.; Zhang, Q.; Cui, D. Nanomaterial-based SERS sensing technology for biomedical application. J. Mater. Chem. B, 2019, 7(24), 3755-3774.
[http://dx.doi.org/10.1039/C9TB00666D]
[7]
Kim, K.M.; Kang, J.H.; Vinu, A.; Choy, J.H.; Oh, J.M. Inorganic nanomedicines and their labeling for biological imaging. Curr. Top. Med. Chem., 2013, 13(4), 488-503.
[http://dx.doi.org/10.2174/1568026611313040009] [PMID: 23432011]
[8]
Curley, S.M.; Cady, N.C. Biologically-derived nanomaterials for targeted therapeutic delivery to the brain. Sci. Prog., 2018, 101(3), 273-292.
[http://dx.doi.org/10.3184/003685018X15306123582346] [PMID: 30071918]
[9]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12320-12364.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[10]
Parani, M.; Lokhande, G.; Singh, A.; Gaharwar, A.K. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces, 2016, 8(16), 10049-10069.
[http://dx.doi.org/10.1021/acsami.6b00291] [PMID: 27043006]
[11]
Mohan, A.; Nair, S.V.; Lakshmanan, V.K. Polymeric nanomicelles for cancer theragnostics. Int. J. Polym. Mater. Polym. Biomater., 2018, 67(2), 119-130.
[http://dx.doi.org/10.1080/00914037.2017.1309540]
[12]
Wu, W.D.; Yi, X.L.; Jiang, L.X.; Li, Y.Z.; Gao, J.; Zeng, Y.; Yi, R. D.; Dai, L. P.; Li, W.; Ci, X. Y.; Si, D. Y.; Liu, C.X. The targeted-liposome delivery system of antitumor drugs. Curr. Drug Metab., 2015, 16(10), 894-910.
[http://dx.doi.org/10.2174/138920021610151210184654] [PMID: 26652257]
[13]
Henna, T.K.; Raphey, V.R.; Sankar, R.; Ameena Shirin, V.K.; Gangadharappa, H.V.; Pramod, K. Carbon nanostructures: The drug and the delivery system for brain disorders. Int. J. Pharm., 2020, 587, 119701.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119701] [PMID: 32736018]
[14]
Taghavi Pourianazar, N.; Mutlu, P.; Gunduz, U. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J. Nanopart. Res., 2014, 16(4), 2342.
[http://dx.doi.org/10.1007/s11051-014-2342-1]
[15]
Gautier, J.; Allard-Vannier, E.; Hervé-Aubert, K.; Soucé, M.; Chourpa, I. Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology, 2013, 24(43), 432002.
[http://dx.doi.org/10.1088/0957-4484/24/43/432002] [PMID: 24107712]
[16]
Behera, A.; Padhi, S. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: A review. Environ. Chem. Lett., 2020, 18(5), 1557-1567.
[http://dx.doi.org/10.1007/s10311-020-01022-9]
[17]
Wang, J.; Wang, T.T.; Gao, P.F.; Huang, C.Z. Biomolecules-conjugated nanomaterials for targeted cancer therapy. J. Mater. Chem. B., 2014, 2(48), 8452-8465.
[http://dx.doi.org/10.1039/C4TB01263A] [PMID: 32262204]
[18]
Sattar, T. Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem., 2019, 377(2), 10.
[http://dx.doi.org/10.1007/s41061-019-0235-6] [PMID: 30874921]
[19]
Coroş, M.; Pogăcean, F.; Măgeruşan, L.; Socaci, C.; Pruneanu, S. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Front. Mater. Sci., 2019, 13(1), 23-32.
[http://dx.doi.org/10.1007/s11706-019-0452-5]
[20]
Banerjee, A.N. Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus, 2018, 8(3), 20170056.
[http://dx.doi.org/10.1098/rsfs.2017.0056] [PMID: 29696088]
[21]
Deb, A.; Vimala, R. Graphene mediated drug delivery - A boon to cancer therapy. Res J Pharm Technol., 2017, 10(5), 1571-1576.
[http://dx.doi.org/10.5958/0974-360X.2017.00276.1]
[22]
Zhu, H.; Duan, Z.; Zhang, L.; Yin, K. Review on preparation and structure of graphene oxide. Cailiao Kexue yu Gongyi. Mater. Sci. Technol., 2017, 25(6), 82-88.
[http://dx.doi.org/10.11951/j.issn.1005-0299.20160400]
[23]
Dideikin, A.T.; Vul’, A.Y. Graphene oxide and derivatives: The place in graphene family. Front. Phys., 2019, 6, 149.
[http://dx.doi.org/10.3389/fphy.2018.00149]
[24]
Daniyal, M.; Liu, B.; Wang, W. Comprehensive review on graphene oxide for use in drug delivery system. Curr. Med. Chem., 2020, 27(22), 3665-3685.
[http://dx.doi.org/10.2174/13816128256661902011296290] [PMID: 30706776]
[25]
Yi, L.; Zhang, Y.; Shi, X.; Du, X.; Wang, X.; Yu, A.; Zhai, G. Recent progress of functionalised graphene oxide in cancer therapy. J. Drug Target., 2019, 27(2), 125-144.
[http://dx.doi.org/10.1080/1061186X.2018.1474359] [PMID: 29730956]
[26]
Nurunnabi, M.; Parvez, K.; Nafiujjaman, M.; Revuri, V.; Khan, H.A.; Feng, X.; Lee, Y.K. Bioapplication of graphene oxide derivatives: Drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Advances, 2015, 5(52), 42141-42161.
[http://dx.doi.org/10.1039/C5RA04756K]
[27]
Hwang, D.W.; Hong, B.H.; Lee, D.S. Multifunctional graphene oxide for bioimaging: Emphasis on biological research. Eur. J. Nanomed., 2017, 9(2), 47-57.
[http://dx.doi.org/10.1515/ejnm-2016-0036]
[28]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[29]
Kim, J.; Park, S.J.; Min, D.H. Emerging approaches for graphene oxide biosensor. Anal. Chem., 2017, 89(1), 232-248.
[http://dx.doi.org/10.1021/acs.analchem.6b04248] [PMID: 28105836]
[30]
Lee, J.; Kim, J.; Kim, S.; Min, D.H. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev., 2016, 105(Pt B), 275-287.
[http://dx.doi.org/10.1016/j.addr.2016.06.001] [PMID: 27302607]
[31]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[32]
Yan, Y.; Piao, L.; Kim, S.H.; Li, W.; Zhou, H. Effect of Pluronic block copolymers on aqueous dispersions of graphene oxide. RSC Advances, 2015, 5(50), 40199-40204.
[http://dx.doi.org/10.1039/C5RA03525B]
[33]
Imani, R.; Emami, S.H.; Faghihi, S. Nano-graphene oxide carboxylation for efficient bioconjugation applications: A quantitative optimization approach. J. Nanopart. Res., 2015, 17(2), 88.
[http://dx.doi.org/10.1007/s11051-015-2888-6]
[34]
Kim, H.; Namgung, R.; Singha, K.; Oh, I.K.; Kim, W.J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug. Chem., 2011, 22(12), 2558-2567.
[http://dx.doi.org/10.1021/bc200397j] [PMID: 22034966]
[35]
Perumbilavil, S.; Sankar, P.; Priya Rose, T.; Philip, R. White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Appl. Phys. Lett., 2015, 107(5), 051104.
[http://dx.doi.org/10.1063/1.4928124]
[36]
Khan, M.; Al-Marri, A.H.; Khan, M.; Shaik, M.R.; Mohri, N.; Adil, S.F.; Kuniyil, M.; Alkhathlan, H.Z.; Al-Warthan, A.; Tremel, W.; Tahir, M.N.; Siddiqui, M.R.H. Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract. Nanoscale Res. Lett., 2015, 10(281), 1-9.
[http://dx.doi.org/10.1186/s11671-015-0987-z]
[37]
Zhang, H.; Kuila, T.; Kim, N.H.; Yu, D.S.; Lee, J.H. Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon, 2014, 69, 66-78.
[http://dx.doi.org/10.1016/j.carbon.2013.11.059]
[38]
Kuila, T.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 2013, 5(1), 52-71.http://dx.doi.org/10.2147%2FIJN.S58783
[PMID: 23179249]
[39]
Wang, H.; Gu, W.; Xiao, N.; Ye, L.; Xu, Q. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. Int. J. Nanomedicine, 2014, 9(1), 1433-1442.
[PMID: 24672236]
[40]
Zhang, B.; Yang, X.; Wang, Y.; Zhai, G. Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 75, 198-206.
[http://dx.doi.org/10.1016/j.msec.2017.02.048] [PMID: 28415455]
[41]
Singh, M.; Gupta, P.; Baronia, R.; Singh, P.; Karuppiah, S.; Shanker, R.; Dwivedi, P.D.; Singh, S.P. In vitro cytotoxicity of GO–DOx on FaDu squamous carcinoma cell lines. Int. J. Nanomedicine, 2018, 13, 107-111.
[http://dx.doi.org/10.2147/IJN.S124891] [PMID: 29593407]
[42]
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008, 112(45), 17554-17558.
[http://dx.doi.org/10.1021/jp806751k]
[43]
Liu, G.; Shen, H.; Mao, J.; Zhang, L.; Jiang, Z.; Sun, T.; Lan, Q.; Zhang, Z. Transferrin modified graphene oxide for glioma-targeted drug delivery: In vitro and in vivo evaluations. ACS Appl. Mater. Interfaces, 2013, 5(15), 6909-6914.
[http://dx.doi.org/10.1021/am402128s] [PMID: 23883622]
[44]
Matvienko, T.; Sokolova, V.; Prylutska, S.; Harahuts, Y.; Kutsevol, N.; Kostjukov, V.; Evstigneev, M.; Prylutskyy, Y.; Epple, M.; Ritter, U. In vitro study of the anticancer activity of various doxorubicin-containing dispersions. Bioimpacts, 2019, 9(1), 57-63.
[http://dx.doi.org/10.15171/bi.2019.07] [PMID: 30788260]
[45]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[46]
Gong, P.; Zhang, L.; Yuan, X.; Liu, X.; Diao, X.; Zhao, Q.; Tian, Z.; Sun, J.; Liu, Z.; You, J. Multifunctional fluorescent PEGylated fluorinated graphene for targeted drug delivery: An experiment and DFT study. Dyes Pigm., 2019, 162, 573-582.
[http://dx.doi.org/10.1016/j.dyepig.2018.10.031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy