Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

DNA-based Nanomaterials in the Immunotherapy

Author(s): Hongxiao Huang, Shaojingya Gao* and Xiaoxiao Cai*

Volume 24, Issue 5, 2023

Published on: 19 May, 2023

Page: [367 - 384] Pages: 18

DOI: 10.2174/1389200224666230413082047

Price: $65

Abstract

Background: Nucleic acid is a genetic material that shows great potential in a variety of biological applications. With the help of nanotechnology, the fabrication of DNA-based nanomaterials has emerged. From genetic DNA to non-genetic functional DNA, from single-layer and flat structure to multi-layer and complex structure, and from two-dimensional to three-dimensional structure, DNA-based nanomaterials have been greatly developed, bringing significant changes to our lives. In recent years, the research of DNA-based nanomaterials for biological applications has developed rapidly.

Methods: We extensively searched the bibliographic database for a research article on nanotechnology and immunotherapy and further discussed the advantages and drawbacks of current DNA-based nanomaterials in immunotherapy. By comparing DNA-based nanomaterials with traditional biomaterials applied in immunotherapy, we found that DNA-based nanomaterials are a promising candidate material in Immunotherapy.

Results: Due to the unrivaled editability and biocompatibility, DNA-based nanomaterials are not only investigated as therapeutic particles to influence cell behavior but also as drug delivery systems to treat a variety of diseases. Moreover, when DNA-based nanomaterials are loaded with therapeutic agents, including chemical drugs and biomolecules, which significantly enhance the therapeutic effects, DNA-based nanomaterials have great potential in immunotherapy.

Conclusion: This review summarizes the structural development history of DNA-based nanomaterials and their biological applications in immunotherapy, including the potential treatment of cancer, autoimmune diseases, and inflammatory diseases.

Graphical Abstract

[1]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[2]
Seeman, N.C. DNA Nanotechnology: From the Pub to Information-Based Chemistry. Methods Mol. Biol., 2018, 1811, 1-9.
[http://dx.doi.org/10.1007/978-1-4939-8582-1_1] [PMID: 29926442]
[3]
Seeman, N.C. Dna nanotechnology: Novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct., 1998, 27(1), 225-248.
[http://dx.doi.org/10.1146/annurev.biophys.27.1.225] [PMID: 9646868]
[4]
Dong, Y.; Yao, C.; Zhu, Y.; Yang, L.; Luo, D.; Yang, D. DNA functional materials assembled from branched DNA: Design, synthesis, and applications. Chem. Rev., 2020, 120(17), 9420-9481.
[http://dx.doi.org/10.1021/acs.chemrev.0c00294] [PMID: 32672036]
[5]
Goodman, R.P.; Schaap, I.A.T.; Tardin, C.F.; Erben, C.M.; Berry, R.M.; Schmidt, C.F.; Turberfield, A.J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310(5754), 1661-1665.
[http://dx.doi.org/10.1126/science.1120367] [PMID: 16339440]
[6]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[7]
Roh, Y.H.; Ruiz, R.C.H.; Peng, S.; Lee, J.B.; Luo, D. Engineering DNA-based functional materials. Chem. Soc. Rev., 2011, 40(12), 5730-5744.
[http://dx.doi.org/10.1039/c1cs15162b] [PMID: 21858293]
[8]
Li, J.; Mo, L.; Lu, C.H.; Fu, T.; Yang, H.H.; Tan, W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev., 2016, 45(5), 1410-1431.
[http://dx.doi.org/10.1039/C5CS00586H] [PMID: 26758955]
[9]
Samanta, A.; Medintz, I.L. Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8(17), 9037-9095.
[http://dx.doi.org/10.1039/C5NR08465B] [PMID: 27080924]
[10]
Shi, S.; Peng, Q.; Shao, X.; Xie, J.; Lin, S.; Zhang, T.; Li, Q.; Li, X.; Lin, Y. Self-assembled tetrahedral dna nanostructures promote adipose-derived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway. ACS Appl. Mater. Interfaces, 2016, 8(30), 19353-19363.
[http://dx.doi.org/10.1021/acsami.6b06528] [PMID: 27403707]
[11]
Shao, X.; Lin, S.; Peng, Q.; Shi, S.; Wei, X.; Zhang, T.; Lin, Y. Tetrahedral DNA nanostructure: A potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small, 2017, 13(12), 1602770.
[http://dx.doi.org/10.1002/smll.201602770] [PMID: 28112870]
[12]
Shi, S.; Lin, S.; Li, Y.; Zhang, T.; Shao, X.; Tian, T.; Zhou, T.; Li, Q.; Lin, Y. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem. Commun., 2018, 54(11), 1327-1330.
[http://dx.doi.org/10.1039/C7CC09397G] [PMID: 29349457]
[13]
Ma, W.; Shao, X.; Zhao, D.; Li, Q.; Liu, M.; Zhou, T.; Xie, X.; Mao, C.; Zhang, Y.; Lin, Y. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl. Mater. Interfaces, 2018, 10(9), 7892-7900.
[http://dx.doi.org/10.1021/acsami.8b00833] [PMID: 29424522]
[14]
Ma, W.; Xie, X.; Shao, X.; Zhang, Y.; Mao, C.; Zhan, Y.; Zhao, D.; Liu, M.; Li, Q.; Lin, Y. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif., 2018, 51(6), e12503.
[http://dx.doi.org/10.1111/cpr.12503] [PMID: 30091500]
[15]
Li, M.; Wang, C.; Di, Z.; Li, H.; Zhang, J.; Xue, W.; Zhao, M.; Zhang, K.; Zhao, Y.; Li, L. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem. Int. Ed., 2019, 58(5), 1350-1354.
[http://dx.doi.org/10.1002/anie.201810735] [PMID: 30506904]
[16]
Maeda, M.; Kojima, T.; Song, Y.; Takayama, S. DNA-based biomaterials for immunoengineering. Adv. Healthc. Mater., 2019, 8(4), e1801243.
[PMID: 30516349]
[17]
Liu, S.; Jiang, Q.; Wang, Y.; Ding, B. Biomedical applications of DNA-based molecular devices. Adv. Healthc. Mater., 2019, 8(10), 1801658.
[http://dx.doi.org/10.1002/adhm.201801658] [PMID: 30938489]
[18]
Liu, N.; Zhang, X.; Li, N.; Zhou, M.; Zhang, T.; Li, S.; Cai, X.; Ji, P.; Lin, Y. Tetrahedral framework nucleic acids promote corneal epithelial wound healing in vitro and in vivo. Small, 2019, 15(31), 1901907.
[http://dx.doi.org/10.1002/smll.201901907] [PMID: 31192537]
[19]
Chandrasekaran, A.R.; Punnoose, J.A.; Zhou, L.; Dey, P.; Dey, B.K.; Halvorsen, K. DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Res., 2019, 47(20), 10489-10505.
[http://dx.doi.org/10.1093/nar/gkz580] [PMID: 31287874]
[20]
Khajouei, S.; Ravan, H.; Ebrahimi, A. DNA hydrogel-empowered biosensing. Adv. Colloid Interface Sci., 2020, 275, 102060.
[http://dx.doi.org/10.1016/j.cis.2019.102060] [PMID: 31739981]
[21]
Morpurgo, M.; Radu, A.; Bayer, E.A.; Wilchek, M. DNA condensation by high-affinity interaction with avidin. J. Mol. Recognit., 2004, 17(6), 558-566.
[http://dx.doi.org/10.1002/jmr.689] [PMID: 15386619]
[22]
Utsuno, K. Uludağ; H. Thermodynamics of polyethylenimine-DNA binding and DNA condensation. Biophys. J., 2010, 99(1), 201-207.
[http://dx.doi.org/10.1016/j.bpj.2010.04.016] [PMID: 20655848]
[23]
Tian, T.; Zhang, T.; Zhou, T.; Lin, S.; Shi, S.; Lin, Y. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale, 2017, 9(46), 18402-18412.
[http://dx.doi.org/10.1039/C7NR07130B] [PMID: 29147695]
[24]
Zhang, Y.; Lin, L.; Liu, L.; Liu, F.; Maruyama, A.; Tian, H.; Chen, X. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr. Polym., 2018, 201, 246-256.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.063] [PMID: 30241817]
[25]
Liu, W.; Sun, S.; Cao, Z.; Zhang, X.; Yao, K.; Lu, W.W.; Luk, K.D.K. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials, 2005, 26(15), 2705-2711.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.038] [PMID: 15585274]
[26]
Gu, T.; Wang, J.; Xia, H.; Wang, S.; Yu, X. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in a DNA/Chitosan-Fe3O4 magnetic nanoparticle bio-complex film. Materials, 2014, 7(2), 1069-1083.
[http://dx.doi.org/10.3390/ma7021069] [PMID: 28788500]
[27]
Kumar, S.; Garg, P.; Pandey, S.; Kumari, M.; Hoon, S.; Jang, K.J.; Kapavarapu, R.; Choung, P.H.; Sobral, A.J.F.N.; Hoon Chung, J. Enhanced chitosan–DNA interaction by 2-acrylamido-2-methylpropane coupling for an efficient transfection in cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(17), 3465-3475.
[http://dx.doi.org/10.1039/C4TB02070G] [PMID: 32262229]
[28]
Lee, H.; Dam, D.H.M.; Ha, J.W.; Yue, J.; Odom, T.W. Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs. ACS Nano, 2015, 9(10), 9859-9867.
[http://dx.doi.org/10.1021/acsnano.5b05138] [PMID: 26335372]
[29]
Edwardson, T.G.W.; Lau, K.L.; Bousmail, D.; Serpell, C.J.; Sleiman, H.F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem., 2016, 8(2), 162-170.
[http://dx.doi.org/10.1038/nchem.2420] [PMID: 26791900]
[30]
Liu, B.; Song, C.; Zhu, D.; Wang, X.; Zhao, M.; Yang, Y. DNa-origami-based assembly of anisotropic plasmonic gold nanostructures. Small, 2017, 13(23)
[http://dx.doi.org/10.1002/smll.201603991] [PMID: 28452121]
[31]
Zhan, Y.; Ma, W.; Zhang, Y.; Mao, C.; Shao, X.; Xie, X.; Wang, F.; Liu, X.; Li, Q.; Lin, Y. DNA-based nanomedicine with targeting and enhancement of therapeutic efficacy of breast cancer cells. ACS Appl. Mater. Interfaces, 2019, 11(17), 15354-15365.
[http://dx.doi.org/10.1021/acsami.9b03449] [PMID: 30924334]
[32]
Hendrikson, W.J.; Zeng, X.; Rouwkema, J.; van Blitterswijk, C.A.; van der Heide, E.; Moroni, L. Biological and tribological assessment of poly(ethylene oxide terephthalate)/poly(butylene terephthalate), polycaprolactone, and poly (L) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration. Adv. Healthc. Mater., 2016, 5(2), 232-243.
[http://dx.doi.org/10.1002/adhm.201500067] [PMID: 26775915]
[33]
Taniguchi, J.; Pandian, G.N.; Hidaka, T.; Hashiya, K.; Bando, T.; Kim, K.K.; Sugiyama, H. A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res., 2017, 45(16), 9219-9228.
[http://dx.doi.org/10.1093/nar/gkx693] [PMID: 28934500]
[34]
Ma, W.; Zhan, Y.; Zhang, Y.; Shao, X.; Xie, X.; Mao, C.; Cui, W.; Li, Q.; Shi, J.; Li, J.; Fan, C.; Lin, Y. An intelligent DNA Nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett., 2019, 19(7), 4505-4517.
[http://dx.doi.org/10.1021/acs.nanolett.9b01320] [PMID: 31185573]
[35]
Jayme, C.C.; de Paula, L.B.; Rezende, N.; Calori, I.R.; Franchi, L.P.; Tedesco, A.C. DNA polymeric films as a support for cell growth as a new material for regenerative medicine: Compatibility and applicability. Exp. Cell Res., 2017, 360(2), 404-412.
[http://dx.doi.org/10.1016/j.yexcr.2017.09.033] [PMID: 28943462]
[36]
Wang, M.; He, F.; Li, H.; Yang, S.; Zhang, J.; Ghosh, P.; Wang, H.H.; Nie, Z. Near-infrared light-activated DNA-agonist nanodevice for nongenetically and remotely controlled cellular signaling and behaviors in live animals. Nano Lett., 2019, 19(4), 2603-2613.
[http://dx.doi.org/10.1021/acs.nanolett.9b00421] [PMID: 30907088]
[37]
Feng, G.; Zhang, Z.; Dang, M.; Zhang, X.; Doleyres, Y.; Song, Y.; Chen, D.; Ma, P.X. Injectable nanofibrous spongy microspheres for NR4A1 plasmid DNA transfection to reverse fibrotic degeneration and support disc regeneration. Biomaterials, 2017, 131, 86-97.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.029] [PMID: 28376367]
[38]
Basu, S.; Pacelli, S.; Feng, Y.; Lu, Q.; Wang, J.; Paul, A. Harnessing the noncovalent interactions of dna backbone with 2d silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano, 2018, 12(10), 9866-9880.
[http://dx.doi.org/10.1021/acsnano.8b02434] [PMID: 30189128]
[39]
Zhang, Y.; Ma, W.; Zhan, Y.; Mao, C.; Shao, X.; Xie, X.; Wei, X.; Lin, Y. Nucleic acids and analogs for bone regeneration. Bone Res., 2018, 6(1), 37.
[http://dx.doi.org/10.1038/s41413-018-0042-7] [PMID: 30603226]
[40]
Zhang, M.; Zhang, X.; Tian, T.; Zhang, Q.; Wen, Y.; Zhu, J.; Xiao, D.; Cui, W.; Lin, Y. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater., 2022, 8, 368-380.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.003] [PMID: 34541407]
[41]
Zhou, M.; Gao, S.; Zhang, X.; Zhang, T.; Zhang, T.; Tian, T.; Li, S.; Lin, Y.; Cai, X. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact. Mater., 2021, 6(6), 1676-1688.
[http://dx.doi.org/10.1016/j.bioactmat.2020.11.018] [PMID: 33313447]
[42]
Gao, S.; Li, Y.; Xiao, D.; Zhou, M.; Cai, X.; Lin, Y. Tetrahedral framework nucleic acids induce immune tolerance and prevent the onset of type 1 diabetes. Nano Lett., 2021, 21(10), 4437-4446.
[http://dx.doi.org/10.1021/acs.nanolett.1c01131] [PMID: 33955221]
[43]
Gao, S.; Wang, Y.; Li, Y.; Xiao, D.; Lin, Y.; Chen, Y.; Cai, X. Tetrahedral framework nucleic acids reestablish immune tolerance and restore saliva secretion in a sjögren’s syndrome mouse model. ACS Appl. Mater. Interfaces, 2021, 13(36), 42543-42553.
[http://dx.doi.org/10.1021/acsami.1c14861] [PMID: 34477358]
[44]
Li, Q.; Zhao, D.; Shao, X.; Lin, S.; Xie, X.; Liu, M.; Ma, W.; Shi, S.; Lin, Y. Aptamer-modified tetrahedral DNA Nanostructure for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(42), 36695-36701.
[http://dx.doi.org/10.1021/acsami.7b13328] [PMID: 28991436]
[45]
Meng, L.; Ma, W.; Lin, S.; Shi, S.; Li, Y.; Lin, Y. Tetrahedral DNA nanostructure-delivered dnazyme for gene silencing to suppress cell growth. ACS Appl. Mater. Interfaces, 2019, 11(7), 6850-6857.
[http://dx.doi.org/10.1021/acsami.8b22444] [PMID: 30698411]
[46]
Broker, T.R.; Lehman, I.R. Branched DNA molecules: Intermediates in T4 recombination. J. Mol. Biol., 1971, 60(1), 131-149.
[http://dx.doi.org/10.1016/0022-2836(71)90453-0] [PMID: 4937189]
[47]
Tian, T.; Li, Y.; Lin, Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res., 2022, 10(1), 40.
[http://dx.doi.org/10.1038/s41413-022-00212-1] [PMID: 35606345]
[48]
Ahmed, S.; Kintanar, A.; Henderson, E. Human telomeric C–strand tetraplexes. Nat. Struct. Mol. Biol., 1994, 1(2), 83-88.
[http://dx.doi.org/10.1038/nsb0294-83] [PMID: 7656022]
[49]
Cho, E.J.; Yang, L.; Levy, M.; Ellington, A.D. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J. Am. Chem. Soc., 2005, 127(7), 2022-2023.
[http://dx.doi.org/10.1021/ja043490u] [PMID: 15713061]
[50]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[51]
Joyce, G.F. RNA cleavage by the 10-23 DNA enzyme. Methods Enzymol., 2001, 341, 503-517.
[http://dx.doi.org/10.1016/S0076-6879(01)41173-6] [PMID: 11582801]
[52]
Travascio, P.; Bennet, A.J.; Wang, D.Y.; Sen, D. A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem. Biol., 1999, 6(11), 779-787.
[http://dx.doi.org/10.1016/S1074-5521(99)80125-2] [PMID: 10574780]
[53]
Chen, J.; Seeman, N.C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 1991, 350(6319), 631-633.
[http://dx.doi.org/10.1038/350631a0] [PMID: 2017259]
[54]
Kochoyan, M.; Havel, T.F.; Nguyen, D.T.; Dahl, C.E.; Keutmann, H.T.; Weiss, M.A. Alternating zinc fingers in the human male associated protein ZFY: 2D NMR structure of an even finger and implications for jumping-linker DNA recognition. Biochemistry, 1991, 30(14), 3371-3386.
[http://dx.doi.org/10.1021/bi00228a004] [PMID: 1849423]
[55]
Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol., 1982, 99(2), 237-247.
[http://dx.doi.org/10.1016/0022-5193(82)90002-9] [PMID: 6188926]
[56]
Seeman, N.C. Structural DNA nanotechnology: an overview. Methods Mol. Biol., 2005, 303, 143-166.
[PMID: 15923682]
[57]
Zheng, J.; Birktoft, J.J.; Chen, Y.; Wang, T.; Sha, R.; Constantinou, P.E.; Ginell, S.L.; Mao, C.; Seeman, N.C. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 2009, 461(7260), 74-77.
[http://dx.doi.org/10.1038/nature08274] [PMID: 19727196]
[58]
Gao, Y.; Chen, X.; Tian, T.; Zhang, T.; Gao, S.; Zhang, X.; Yao, Y.; Lin, Y.; Cai, X. A lysosome-activated tetrahedral nanobox for encapsulated sirna delivery. Adv. Mater., 2022, 34(46), 2201731.
[http://dx.doi.org/10.1002/adma.202201731] [PMID: 35511782]
[59]
Li, S.; Liu, Y.; Tian, T.; Zhang, T.; Lin, S.; Zhou, M.; Zhang, X.; Lin, Y.; Cai, X. Bioswitchable delivery of microRNA by framework nucleic acids: Application to bone regeneration. Small, 2021, 17(47), 2104359.
[http://dx.doi.org/10.1002/smll.202104359] [PMID: 34716653]
[60]
Goodman, R.P.; Berry, R.M.; Turberfield, A.J. The single-step synthesis of a DNA tetrahedronElectronic supplementary information (ESI) available: stoichiometry control. See http://www.rsc.org/suppdata/cc/b4/b402293a/Chem. Commun., 2004, (12), 1372-1373.
[http://dx.doi.org/10.1039/b402293a] [PMID: 15179470]
[61]
Shih, W.M.; Quispe, J.D.; Joyce, G.F.A. 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 2004, 427(6975), 618-621.
[http://dx.doi.org/10.1038/nature02307] [PMID: 14961116]
[62]
Simmel, S.S.; Nickels, P.C.; Liedl, T. Wireframe and tensegrity DNA nanostructures. Acc. Chem. Res., 2014, 47(6), 1691-1699.
[http://dx.doi.org/10.1021/ar400319n] [PMID: 24720250]
[63]
Vindigni, G.; Raniolo, S.; Ottaviani, A.; Falconi, M.; Franch, O.; Knudsen, B.R.; Desideri, A.; Biocca, S. Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells. ACS Nano, 2016, 10(6), 5971-5979.
[http://dx.doi.org/10.1021/acsnano.6b01402] [PMID: 27214742]
[64]
Walsh, A.S.; Yin, H.; Erben, C.M.; Wood, M.J.A.; Turberfield, A.J. DNA cage delivery to mammalian cells. ACS Nano, 2011, 5(7), 5427-5432.
[http://dx.doi.org/10.1021/nn2005574] [PMID: 21696187]
[65]
Zagorovsky, K.; Chou, L.Y.T.; Chan, W.C.W. Controlling DNA–nanoparticle serum interactions. Proc. Natl. Acad. Sci., 2016, 113(48), 13600-13605.
[http://dx.doi.org/10.1073/pnas.1610028113] [PMID: 27856755]
[66]
Zhang, W.; Li, L.J. Observation of phonon anomaly at the armchair edge of single-layer graphene in air. ACS Nano, 2011, 5(4), 3347-3353.
[http://dx.doi.org/10.1021/nn200550g] [PMID: 21388225]
[67]
Cortez, M.A.; Godbey, W.T.; Fang, Y.; Payne, M.E.; Cafferty, B.J.; Kosakowska, K.A.; Grayson, S.M. The synthesis of cyclic poly(ethylene imine) and exact linear analogues: An evaluation of gene delivery comparing polymer architectures. J. Am. Chem. Soc., 2015, 137(20), 6541-6549.
[http://dx.doi.org/10.1021/jacs.5b00980] [PMID: 25927655]
[68]
Aiuti, A.; Biasco, L.; Scaramuzza, S.; Ferrua, F.; Cicalese, M.P.; Baricordi, C.; Dionisio, F.; Calabria, A.; Giannelli, S.; Castiello, M.C.; Bosticardo, M.; Evangelio, C.; Assanelli, A.; Casiraghi, M.; Di Nunzio, S.; Callegaro, L.; Benati, C.; Rizzardi, P.; Pellin, D.; Di Serio, C.; Schmidt, M.; Von Kalle, C.; Gardner, J.; Mehta, N.; Neduva, V.; Dow, D.J.; Galy, A.; Miniero, R.; Finocchi, A.; Metin, A.; Banerjee, P.P.; Orange, J.S.; Galimberti, S.; Valsecchi, M.G.; Biffi, A.; Montini, E.; Villa, A.; Ciceri, F.; Roncarolo, M.G.; Naldini, L. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science, 2013, 341(6148), 1233151.
[http://dx.doi.org/10.1126/science.1233151] [PMID: 23845947]
[69]
Angelin, A.; Weigel, S.; Garrecht, R.; Meyer, R.; Bauer, J.; Kumar, R.K.; Hirtz, M.; Niemeyer, C.M. Multiscale origami structures as interface for cells. Angew. Chem. Int. Ed., 2015, 54(52), 15813-15817.
[http://dx.doi.org/10.1002/anie.201509772] [PMID: 26639034]
[70]
Pei, H.; Zuo, X.; Zhu, D.; Huang, Q.; Fan, C. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res., 2014, 47(2), 550-559.
[http://dx.doi.org/10.1021/ar400195t] [PMID: 24380626]
[71]
Liang, L.; Li, J.; Li, Q.; Huang, Q.; Shi, J.; Yan, H.; Fan, C. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed., 2014, 53(30), 7745-7750.
[http://dx.doi.org/10.1002/anie.201403236] [PMID: 24827912]
[72]
Xia, K.; Kong, H.; Cui, Y.; Ren, N.; Li, Q.; Ma, J. Systematic study in mammalian cells showing no adverse response to tetrahedral DNA nanostructure. ACS Appl. Mater. Interfaces, 2018, 10(18), 15442-15448.
[http://dx.doi.org/10.1021/acsami.8b02626] [PMID: 29668248]
[73]
Jiang, Q.; Song, C.; Nangreave, J.; Liu, X.; Lin, L.; Qiu, D.; Wang, Z.G.; Zou, G.; Liang, X.; Yan, H.; Ding, B. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc., 2012, 134(32), 13396-13403.
[http://dx.doi.org/10.1021/ja304263n] [PMID: 22803823]
[74]
Song, H.; Zhang, Y.; Cheng, P.; Chen, X.; Luo, Y.; Xu, W. A rapidly self-assembling soft-brush DNA hydrogel based on RCA products. Chem. Commun., 2019, 55(37), 5375-5378.
[http://dx.doi.org/10.1039/C9CC01022J] [PMID: 30994649]
[75]
Jin, C.; Liu, X.; Bai, H.; Wang, R.; Tan, J.; Peng, X.; Tan, W. Engineering stability-tunable dna micelles using photocontrollable dissociation of an intermolecular g-quadruplex. ACS Nano, 2017, 11(12), 12087-12093.
[http://dx.doi.org/10.1021/acsnano.7b04882] [PMID: 29232100]
[76]
Gradishar, W.J.; Anderson, B.O.; Balassanian, R.; Blair, S.L.; Burstein, H.J.; Cyr, A.; Elias, A.D.; Farrar, W.B.; Forero, A.; Giordano, S.H.; Goetz, M.P.; Goldstein, L.J.; Isakoff, S.J.; Lyons, J.; Marcom, P.K.; Mayer, I.A.; McCormick, B.; Moran, M.S.; O’Regan, R.M.; Patel, S.A.; Pierce, L.J.; Reed, E.C.; Salerno, K.E.; Schwartzberg, L.S.; Sitapati, A.; Smith, K.L.; Smith, M.L.; Soliman, H.; Somlo, G.; Telli, M.; Ward, J.H.; Shead, D.A.; Kumar, R. NCCN guidelines insights: Breast cancer, version 1.2017. J. Natl. Compr. Canc. Netw., 2017, 15(4), 433-451.
[http://dx.doi.org/10.6004/jnccn.2017.0044] [PMID: 28404755]
[77]
Stulz, E.; Clever, G.; Shionoya, M.; Mao, C. DNA in a modern world. Chem. Soc. Rev., 2011, 40(12), 5633-5635.
[http://dx.doi.org/10.1039/c1cs90048j] [PMID: 22037663]
[78]
Saccà, B.; Niemeyer, C.M. DNA origami: The art of folding DNA. Angew. Chem. Int. Ed., 2012, 51(1), 58-66.
[http://dx.doi.org/10.1002/anie.201105846] [PMID: 22162047]
[79]
Mei, Q.; Wei, X.; Su, F.; Liu, Y.; Youngbull, C.; Johnson, R.; Lindsay, S.; Yan, H.; Meldrum, D. Stability of DNA origami nanoarrays in cell lysate. Nano Lett., 2011, 11(4), 1477-1482.
[http://dx.doi.org/10.1021/nl1040836] [PMID: 21366226]
[80]
Zhang, Q.; Jiang, Q.; Li, N.; Dai, L.; Liu, Q.; Song, L.; Wang, J.; Li, Y.; Tian, J.; Ding, B.; Du, Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano, 2014, 8(7), 6633-6643.
[http://dx.doi.org/10.1021/nn502058j] [PMID: 24963790]
[81]
Liu, J.; Song, L.; Liu, S.; Jiang, Q.; Liu, Q.; Li, N.; Wang, Z.G.; Ding, B. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy. Nano Lett., 2018, 18(6), 3328-3334.
[http://dx.doi.org/10.1021/acs.nanolett.7b04812] [PMID: 29708760]
[82]
Liu, J.; Song, L.; Liu, S.; Zhao, S.; Jiang, Q.; Ding, B. A tailored DNA nanoplatform for synergistic rnai-/chemotherapy of multidrug-resistant tumors. Angew. Chem. Int. Ed., 2018, 57(47), 15486-15490.
[http://dx.doi.org/10.1002/anie.201809452] [PMID: 30288887]
[83]
Zhao, Y.X.; Shaw, A.; Zeng, X.; Benson, E.; Nyström, A.M.; Högberg, B. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano, 2012, 6(10), 8684-8691.
[http://dx.doi.org/10.1021/nn3022662] [PMID: 22950811]
[84]
Pei, H.; Liang, L.; Yao, G.; Li, J.; Huang, Q.; Fan, C. Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew. Chem. Int. Ed., 2012, 51(36), 9020-9024.
[http://dx.doi.org/10.1002/anie.201202356] [PMID: 22887892]
[85]
Ge, Z.; Lin, M.; Wang, P.; Pei, H.; Yan, J.; Shi, J.; Huang, Q.; He, D.; Fan, C.; Zuo, X. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal. Chem., 2014, 86(4), 2124-2130.
[http://dx.doi.org/10.1021/ac4037262] [PMID: 24495151]
[86]
Zhang, Y.; Shuai, Z.; Zhou, H.; Luo, Z.; Liu, B.; Zhang, Y.; Zhang, L.; Chen, S.; Chao, J.; Weng, L.; Fan, Q.; Fan, C.; Huang, W.; Wang, L. Single-molecule analysis of MicroRNA and logic operations using a smart plasmonic nanobiosensor. J. Am. Chem. Soc., 2018, 140(11), 3988-3993.
[http://dx.doi.org/10.1021/jacs.7b12772] [PMID: 29504757]
[87]
Zhang, T.; Tian, T.; Lin, Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application. Adv. Mater., 2022, 34(46), 2107820.
[http://dx.doi.org/10.1002/adma.202107820] [PMID: 34787933]
[88]
Zhou, Q.; Son, K.; Liu, Y.; Revzin, A. Biosensors for cell analysis. Annu. Rev. Biomed. Eng., 2015, 17(1), 165-190.
[http://dx.doi.org/10.1146/annurev-bioeng-071114-040525] [PMID: 26274599]
[89]
Lin, M.; Song, P.; Zhou, G.; Zuo, X.; Aldalbahi, A.; Lou, X.; Shi, J.; Fan, C. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat. Protoc., 2016, 11(7), 1244-1263.
[http://dx.doi.org/10.1038/nprot.2016.071] [PMID: 27310264]
[90]
Ma, W.; Yang, Y.; Zhu, J.; Jia, W.; Zhang, T.; Liu, Z.; Chen, X.; Lin, Y. Biomimetic nanoerythrosome-coated aptamer–dna tetrahedron/maytansine conjugates: ph-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv. Mater., 2022, 34(46), 2109609.
[http://dx.doi.org/10.1002/adma.202109609] [PMID: 35064993]
[91]
Wu, C.L.; McNeill, J.; Goon, K.; Little, D.; Kimmerling, K.; Huebner, J.; Kraus, V.; Guilak, F. Conditional macrophage depletion increases inflammation and does not inhibit the development of osteoarthritis in obese macrophage fas-induced apoptosis-transgenic mice. Arthritis Rheumatol., 2017, 69(9), 1772-1783.
[http://dx.doi.org/10.1002/art.40161] [PMID: 28544542]
[92]
Liu, M.; Ma, W.; Zhao, D.; Li, J.; Li, Q.; Liu, Y.; Hao, L.; Lin, Y. Enhanced penetrability of a tetrahedral framework nucleic acid by modification with irgd for dox-targeted delivery to triple-negative breast cancer. ACS Appl. Mater. Interfaces, 2021, 13(22), 25825-25835.
[http://dx.doi.org/10.1021/acsami.1c07297] [PMID: 34038071]
[93]
Guo, Z.; Li, S.; Liu, Z.; Xue, W. Tumor-penetrating peptide-functionalized redox-responsive hyperbranched Poly(amido amine) delivering siRNA for lung cancer therapy. ACS Biomater. Sci. Eng., 2018, 4(3), 988-996.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00971] [PMID: 33418781]
[94]
Kim, K.R.; Kim, D.R.; Lee, T.; Yhee, J.Y.; Kim, B.S.; Kwon, I.C.; Ahn, D.R. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun., 2013, 49(20), 2010-2012.
[http://dx.doi.org/10.1039/c3cc38693g] [PMID: 23380739]
[95]
Setyawati, M.I.; Kutty, R.V.; Leong, D.T. DNA nanostructures carrying stoichiometrically definable antibodies. Small, 2016, 12(40), 5601-5611.
[http://dx.doi.org/10.1002/smll.201601669] [PMID: 27571230]
[96]
Sun, W.; Jiang, T.; Lu, Y.; Reiff, M.; Mo, R.; Gu, Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J. Am. Chem. Soc., 2014, 136(42), 14722-14725.
[http://dx.doi.org/10.1021/ja5088024] [PMID: 25336272]
[97]
Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev., 2014, 43(10), 3324-3341.
[http://dx.doi.org/10.1039/c3cs60439j] [PMID: 24643375]
[98]
Ouyang, X.; Li, J.; Liu, H.; Zhao, B.; Yan, J.; Ma, Y.; Xiao, S.; Song, S.; Huang, Q.; Chao, J.; Fan, C. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small, 2013, 9(18), 3082-3087.
[http://dx.doi.org/10.1002/smll.201300458] [PMID: 23613456]
[99]
Zhao, W.; Ali, M.M.; Brook, M.A.; Li, Y. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids. Angew. Chem. Int. Ed., 2008, 47(34), 6330-6337.
[http://dx.doi.org/10.1002/anie.200705982] [PMID: 18680110]
[100]
Geng, J.; Yao, C.; Kou, X.; Tang, J.; Luo, D.; Yang, D. A fluorescent biofunctional dna hydrogel prepared by enzymatic polymerization. Adv. Healthc. Mater., 2018, 7(5), 1700998.
[http://dx.doi.org/10.1002/adhm.201700998] [PMID: 29280301]
[101]
Ali, M.M.; Li, Y. Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe. Angew. Chem. Int. Ed., 2009, 48(19), 3512-3515.
[http://dx.doi.org/10.1002/anie.200805966] [PMID: 19360817]
[102]
Dong, H.; Wang, C.; Xiong, Y.; Lu, H.; Ju, H.; Zhang, X. Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplified synthesis of DNAzyme. Biosens. Bioelectron., 2013, 41, 348-353.
[http://dx.doi.org/10.1016/j.bios.2012.08.050] [PMID: 22981413]
[103]
Zhao, H.; Yuan, X.; Yu, J.; Huang, Y.; Shao, C.; Xiao, F.; Lin, L.; Li, Y.; Tian, L. Magnesium-stabilized multifunctional DNA nanoparticles for tumor-targeted and ph-responsive drug delivery. ACS Appl. Mater. Interfaces, 2018, 10(18), 15418-15427.
[http://dx.doi.org/10.1021/acsami.8b01932] [PMID: 29676144]
[104]
Zhao, W.; Cui, C.H.; Bose, S.; Guo, D.; Shen, C.; Wong, W.P.; Halvorsen, K.; Farokhzad, O.C.; Teo, G.S.L.; Phillips, J.A.; Dorfman, D.M.; Karnik, R.; Karp, J.M. Bioinspired multivalent DNA network for capture and release of cells. Proc. Natl. Acad. Sci., 2012, 109(48), 19626-19631.
[http://dx.doi.org/10.1073/pnas.1211234109] [PMID: 23150586]
[105]
Zhu, G.; Hu, R.; Zhao, Z.; Chen, Z.; Zhang, X.; Tan, W. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. J. Am. Chem. Soc., 2013, 135(44), 16438-16445.
[http://dx.doi.org/10.1021/ja406115e] [PMID: 24164620]
[106]
Um, S.H.; Lee, J.B.; Park, N.; Kwon, S.Y.; Umbach, C.C.; Luo, D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater., 2006, 5(10), 797-801.
[http://dx.doi.org/10.1038/nmat1741] [PMID: 16998469]
[107]
Lee, J.B.; Roh, Y.H.; Um, S.H.; Funabashi, H.; Cheng, W.; Cha, J.J.; Kiatwuthinon, P.; Muller, D.A.; Luo, D. Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat. Nanotechnol., 2009, 4(7), 430-436.
[http://dx.doi.org/10.1038/nnano.2009.93] [PMID: 19581895]
[108]
Ma, Y.; Liu, H.; Mou, Q.; Yan, D.; Zhu, X.; Zhang, C. Floxuridine-containing nucleic acid nanogels for anticancer drug delivery. Nanoscale, 2018, 10(18), 8367-8371.
[http://dx.doi.org/10.1039/C8NR01226A] [PMID: 29722417]
[109]
Mintzer, M.A.; Grinstaff, M.W. Biomedical applications of dendrimers: A tutorial. Chem. Soc. Rev., 2011, 40(1), 173-190.
[http://dx.doi.org/10.1039/B901839P] [PMID: 20877875]
[110]
Li, J.; Zheng, C.; Cansiz, S.; Wu, C.; Xu, J.; Cui, C.; Liu, Y.; Hou, W.; Wang, Y.; Zhang, L.; Teng, I.; Yang, H.H.; Tan, W. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J. Am. Chem. Soc., 2015, 137(4), 1412-1415.
[http://dx.doi.org/10.1021/ja512293f] [PMID: 25581100]
[111]
Zhang, H.; Ma, Y.; Xie, Y.; An, Y.; Huang, Y.; Zhu, Z.; Yang, C.J. A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci. Rep., 2015, 5(1), 10099.
[http://dx.doi.org/10.1038/srep10099] [PMID: 25959874]
[112]
Xia, Z.; Wang, P.; Liu, X.; Liu, T.; Yan, Y.; Yan, J.; Zhong, J.; Sun, G.; He, D. Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery. Biochemistry, 2016, 55(9), 1326-1331.
[http://dx.doi.org/10.1021/acs.biochem.5b01181] [PMID: 26789283]
[113]
Yao, C.; Yuan, Y.; Yang, D. Magnetic DNA nanogels for targeting delivery and multistimuli-triggered release of anticancer drugs. ACS Appl. Bio Mater., 2018, 1(6), 2012-2020.
[http://dx.doi.org/10.1021/acsabm.8b00516] [PMID: 34996263]
[114]
Wang, D.; Cao, Q.; Qu, M.; Xiao, Z.; Zhang, M.; Di, S. MicroRNA-616 promotes the growth and metastasis of non-small cell lung cancer by targeting SOX7. Oncol. Rep., 2017, 38(4), 2078-2086.
[http://dx.doi.org/10.3892/or.2017.5854] [PMID: 28765960]
[115]
Lee, S.Y.; Kim, K.R.; Bang, D.; Bae, S.W.; Kim, H.J.; Ahn, D.R. Biophysical and chemical handles to control the size of DNA nanoparticles produced by rolling circle amplification. Biomater. Sci., 2016, 4(9), 1314-1317.
[http://dx.doi.org/10.1039/C6BM00296J] [PMID: 27464359]
[116]
Xie, X.; Shao, X.; Ma, W.; Zhao, D.; Shi, S.; Li, Q.; Lin, Y. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale, 2018, 10(12), 5457-5465.
[http://dx.doi.org/10.1039/C7NR09692E] [PMID: 29484330]
[117]
Huang, Y.; Huang, W.; Chan, L.; Zhou, B.; Chen, T. A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomaterials, 2016, 103, 183-196.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.053] [PMID: 27388944]
[118]
Davidson, A.; Diamond, B. Autoimmune Diseases. N. Engl. J. Med., 2001, 345(5), 340-350.
[http://dx.doi.org/10.1056/NEJM200108023450506] [PMID: 11484692]
[119]
Rosenblum, M.D.; Remedios, K.A.; Abbas, A.K. Mechanisms of human autoimmunity. J. Clin. Invest., 2015, 125(6), 2228-2233.
[http://dx.doi.org/10.1172/JCI78088] [PMID: 25893595]
[120]
Miller, S.D.; Turley, D.M.; Podojil, J.R. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat. Rev. Immunol., 2007, 7(9), 665-677.
[http://dx.doi.org/10.1038/nri2153] [PMID: 17690713]
[121]
Wilchek, M.; Bayer, E.A. The avidin-biotin complex in bioanalytical applications. Anal. Biochem., 1988, 171(1), 1-32.
[http://dx.doi.org/10.1016/0003-2697(88)90120-0] [PMID: 3044183]
[122]
Wilchek, M.; Bayer, E.A. Applications of avidin-biotin technology: Literature survey. Methods Enzymol., 1990, 184, 14-45.
[http://dx.doi.org/10.1016/0076-6879(90)84257-H] [PMID: 2201873]
[123]
Wilćhek, M.; Bayer, E.A. Avidin-biotin mediated immunoassays: Overview. Methods Enzymol., 1990, 184, 467-469.
[http://dx.doi.org/10.1016/0076-6879(90)84308-4] [PMID: 2201881]
[124]
Wilchek, M.; Bayer, E.A. Introduction to avidin-biotin technology. Methods Enzymol., 1990, 184, 5-13.
[http://dx.doi.org/10.1016/0076-6879(90)84256-G] [PMID: 2201884]
[125]
Wilchek, M.; Bayer, E.A.; Livnah, O. Essentials of biorecognition: The (strept)avidin–biotin system as a model for protein–protein and protein–ligand interaction. Immunol. Lett., 2006, 103(1), 27-32.
[http://dx.doi.org/10.1016/j.imlet.2005.10.022] [PMID: 16325268]
[126]
Laverman, P.; Zalipsky, S.; Oyen, W.J.; Dams, E.T.; Storm, G.; Mullah, N.; Corstens, F.H.; Boerman, O.C. Improved imaging of infections by avidin-induced clearance of 99mTc-biotin-PEG liposomes. J. Nucl. Med., 2000, 41(5), 912-918.
[PMID: 10809208]
[127]
Hytönen, V.P.; Laitinen, O.H.; Grapputo, A.; Kettunen, A.; Savolainen, J.; Kalkkinen, N.; Marttila, A.T.; Nordlund, H.R.; Nyholm, T.K.M.; Paganelli, G.; Kulomaa, M.S. Characterization of poultry egg-white avidins and their potential as a tool in pretargeting cancer treatment. Biochem. J., 2003, 372(1), 219-225.
[http://dx.doi.org/10.1042/bj20021531] [PMID: 12558501]
[128]
Mamede, M.; Saga, T.; Kobayashi, H.; Ishimori, T.; Higashi, T.; Sato, N.; Brechbiel, M.W.; Konishi, J. Radiolabeling of avidin with very high specific activity for internal radiation therapy of intraperitoneally disseminated tumors. Clin. Cancer Res., 2003, 9(10 Pt 1), 3756-3762.
[PMID: 14506168]
[129]
Chinol, M.; De Cobelli, O.; Trifirò, G.; Scardino, E.; Bartolomei, M.; Verweij, F.; Papi, S.; Matei, D.V.; Paganelli, G. Localization of avidin in superficial bladder cancer: a potentially new approach for radionuclide therapy. Eur. Urol., 2003, 44(5), 556-559.
[http://dx.doi.org/10.1016/S0302-2838(03)00369-5] [PMID: 14572754]
[130]
Goldenberg, D.M.; Sharkey, R.M.; Paganelli, G.; Barbet, J.; Chatal, J.F. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J. Clin. Oncol., 2006, 24(5), 823-834.
[http://dx.doi.org/10.1200/JCO.2005.03.8471] [PMID: 16380412]
[131]
Stabler, C.L.; Li, Y.; Stewart, J.M.; Keselowsky, B.G. Engineering immunomodulatory biomaterials for type 1 diabetes. Nat. Rev. Mater., 2019, 4(6), 429-450.
[http://dx.doi.org/10.1038/s41578-019-0112-5] [PMID: 32617176]
[132]
DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet, 2018, 391(10138), 2449-2462.
[http://dx.doi.org/10.1016/S0140-6736(18)31320-5] [PMID: 29916386]
[133]
Serr, I.; Fürst, R.W.; Achenbach, P.; Scherm, M.G.; Gökmen, F.; Haupt, F.; Sedlmeier, E.M.; Knopff, A.; Shultz, L.; Willis, R.A.; Ziegler, A.G.; Daniel, C. Type 1 diabetes vaccine candidates promote human Foxp3+Treg induction in humanized mice. Nat. Commun., 2016, 7(1), 10991.
[http://dx.doi.org/10.1038/ncomms10991] [PMID: 26975663]
[134]
Li, Y.; Gao, S.; Shi, S.; Xiao, D.; Peng, S.; Gao, Y.; Zhu, Y.; Lin, Y. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: From innate to adaptive immunity. Nano-Micro Lett., 2021, 13(1), 86.
[http://dx.doi.org/10.1007/s40820-021-00614-6] [PMID: 34138319]
[135]
Fox, R.I. Sjögren’s syndrome. Lancet, 2005, 366(9482), 321-331.
[http://dx.doi.org/10.1016/S0140-6736(05)66990-5] [PMID: 16039337]
[136]
Katsifis, G.E.; Moutsopoulos, N.M.; Wahl, S.M. T lymphocytes in Sjögren’s syndrome: Contributors to and regulators of pathophysiology. Clin. Rev. Allergy Immunol., 2007, 32(3), 252-264.
[http://dx.doi.org/10.1007/s12016-007-8011-8] [PMID: 17992592]
[137]
Sandhya, P.; Kurien, B.; Danda, D.; Scofield, R. Update on pathogenesis of sjogren’s syndrome. Curr. Rheumatol. Rev., 2017, 13(1), 5-22.
[http://dx.doi.org/10.2174/1573397112666160714164149] [PMID: 27412602]
[138]
Saccucci, M.; Di Carlo, G.; Bossù, M.; Giovarruscio, F.; Salucci, A.; Polimeni, A. Autoimmune diseases and their manifestations on oral cavity: Diagnosis and clinical management. J. Immunol. Res., 2018, 2018, 1-6.
[http://dx.doi.org/10.1155/2018/6061825] [PMID: 29977929]
[139]
Psianou, K.; Panagoulias, I.; Papanastasiou, A.D.; de Lastic, A.L.; Rodi, M.; Spantidea, P.I.; Degn, S.E.; Georgiou, P.; Mouzaki, A. Clinical and immunological parameters of Sjögren’s syndrome. Autoimmun. Rev., 2018, 17(10), 1053-1064.
[http://dx.doi.org/10.1016/j.autrev.2018.05.005] [PMID: 30103041]
[140]
Guisado-Vasco, P.; Silva, M.; Duarte-Millán, M.A.; Sambataro, G.; Bertolazzi, C.; Pavone, M.; Martín-Garrido, I.; Martín-Segarra, O.; Luque-Pinilla, J.M.; Santilli, D.; Sambataro, D.; Torrisi, S.E.; Vancheri, A.; Gutiérrez, M.; Mejia, M.; Palmucci, S.; Mozzani, F.; Rojas-Serrano, J.; Vanchieri, C.; Sverzellati, N.; Ariani, A. Quantitative assessment of interstitial lung disease in Sjögren’s syndrome. PLoS One, 2019, 14(11), e0224772.
[http://dx.doi.org/10.1371/journal.pone.0224772] [PMID: 31703067]
[141]
Saraux, A.; Pers, J.O.; Devauchelle-Pensec, V. Treatment of primary Sjögren syndrome. Nat. Rev. Rheumatol., 2016, 12(8), 456-471.
[http://dx.doi.org/10.1038/nrrheum.2016.100] [PMID: 27411907]
[142]
Shields, C.W., IV; Wang, L.L.W.; Evans, M.A.; Mitragotri, S. Materials for immunotherapy. Adv. Mater., 2020, 32(13), 1901633.
[http://dx.doi.org/10.1002/adma.201901633] [PMID: 31250498]
[143]
Eppler, H.B.; Jewell, C.M. Biomaterials as tools to decode immunity. Adv. Mater., 2020, 32(13), 1903367.
[http://dx.doi.org/10.1002/adma.201903367] [PMID: 31782844]
[144]
Violatto, M.B.; Casarin, E.; Talamini, L.; Russo, L.; Baldan, S.; Tondello, C.; Messmer, M.; Hintermann, E.; Rossi, A.; Passoni, A.; Bagnati, R.; Biffi, S.; Toffanin, C.; Gimondi, S.; Fumagalli, S.; De Simoni, M.G.; Barisani, D.; Salmona, M.; Christen, U.; Invernizzi, P.; Bigini, P.; Morpurgo, M. Dexamethasone conjugation to biodegradable avidin-nucleic-acid-nano-assemblies promotes selective liver targeting and improves therapeutic efficacy in an autoimmune hepatitis murine model. ACS Nano, 2019, 13(4), 4410-4423.
[http://dx.doi.org/10.1021/acsnano.8b09655] [PMID: 30883091]
[145]
Buda, A.; Facchin, S.; Dassie, E.; Casarin, E.; Jepson, M.A.; Neumann, H.; Hatem, G.; Realdon, S.; D’Incà, R.; Sturniolo, G.C.; Morpurgo, M. Detection of a fluorescent-labeled avidin-nucleic acid nanoassembly by confocal laser endomicroscopy in the microvasculature of chronically inflamed intestinal mucosa. Int. J. Nanomedicine, 2015, 10, 399-408.
[PMID: 25609952]
[146]
Sirong, S.; Yang, C.; Taoran, T.; Songhang, L.; Shiyu, L.; Yuxin, Z.; Xiaoru, S.; Tao, Z.; Yunfeng, L.; Xiaoxiao, C. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res., 2020, 8(1), 6.
[http://dx.doi.org/10.1038/s41413-019-0077-4] [PMID: 32047705]
[147]
Zhang, M.; Zhu, J.; Qin, X.; Zhou, M.; Zhang, X.; Gao, Y.; Zhang, T.; Xiao, D.; Cui, W.; Cai, X. Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury. ACS Appl. Mater. Interfaces, 2019, 11(34), 30631-30639.
[http://dx.doi.org/10.1021/acsami.9b10645] [PMID: 31382735]
[148]
Boutaud, O.; Moore, K.P.; Reeder, B.J.; Harry, D.; Howie, A.J.; Wang, S.; Carney, C.K.; Masterson, T.S.; Amin, T.; Wright, D.W.; Wilson, M.T.; Oates, J.A.; Roberts, L.J., II Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2699-2704.
[http://dx.doi.org/10.1073/pnas.0910174107] [PMID: 20133658]
[149]
Arumugam, T.V.; Shiels, I.A.; Strachan, A.J.; Abbenante, G.; Fairlie, D.P.; Taylor, S.M. A small molecule C5a receptor antagonist protects kidneys from ischemia/reperfusion injury in rats. Kidney Int., 2003, 63(1), 134-142.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00737.x] [PMID: 12472776]
[150]
Shi, S.; Tian, T.; Li, Y.; Xiao, D.; Zhang, T.; Gong, P.; Lin, Y. Tetrahedral framework nucleic acid inhibits chondrocyte apoptosis and oxidative stress through activation of autophagy. ACS Appl. Mater. Interfaces, 2020, 12(51), 56782-56791.
[http://dx.doi.org/10.1021/acsami.0c17307] [PMID: 33289541]
[151]
Feagan, B.G.; Yan, S.; Bala, M.; Bao, W.; Lichtenstein, G.R. The effects of infliximab maintenance therapy on health-related quality of life. Am. J. Gastroenterol., 2003, 98(10), 2232-2238.
[http://dx.doi.org/10.1111/j.1572-0241.2003.07674.x] [PMID: 14572573]
[152]
Lichtenstein, G.R.; Yan, S.; Bala, M.; Hanauer, S. Remission in patients with Crohn’s disease is associated with improvement in employment and quality of life and a decrease in hospitalizations and surgeries. Am. J. Gastroenterol., 2004, 99(1), 91-96.
[http://dx.doi.org/10.1046/j.1572-0241.2003.04010.x] [PMID: 14687148]
[153]
Hanauer, S.B.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; Rutgeerts, P. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet, 2002, 359(9317), 1541-1549.
[http://dx.doi.org/10.1016/S0140-6736(02)08512-4] [PMID: 12047962]
[154]
Sands, B.; Blank, M.; Patel, K.; Vandeventer, S. Long-term treatment of rectovaginal fistulas in Crohn’s disease: Response to infliximab in the ACCENT II Study. Clin. Gastroenterol. Hepatol., 2004, 2(10), 912-920.
[http://dx.doi.org/10.1016/S1542-3565(04)00414-8] [PMID: 15476155]
[155]
Helbling, D.; Breitbach, T.H.; Krause, M. Disseminated cytomegalovirus infection in Crohn’s disease following anti-tumour necrosis factor therapy. Eur. J. Gastroenterol. Hepatol., 2002, 14(12), 1393-1395.
[http://dx.doi.org/10.1097/00042737-200212000-00018] [PMID: 12468964]
[156]
Rosa, F.G.D.; Shaz, D.; Campagna, A.C.; Dellaripa, P.F.; Khettry, U.; Craven, D.E. Invasive pulmonary aspergillosis soon after therapy with infliximab, a tumor necrosis factor-alpha-neutralizing antibody: A possible healthcare-associated case? Infect. Control Hosp. Epidemiol., 2003, 24(7), 477-482.
[http://dx.doi.org/10.1086/502250] [PMID: 12887234]
[157]
Sarzi-Puttini, P.; Ardizzone, S.; Manzionna, G.; Atzeni, F.; Colombo, E.; Antivalle, M.; Carrabba, M.; Bianchi-Porro, G. Infliximab-induced lupus in Crohn’s disease: A case report. Dig. Liver Dis., 2003, 35(11), 814-817.
[http://dx.doi.org/10.1016/S1590-8658(03)00448-1] [PMID: 14674674]
[158]
Kiesslich, R.; Duckworth, C.A.; Moussata, D.; Gloeckner, A.; Lim, L.G.; Goetz, M.; Pritchard, D.M.; Galle, P.R.; Neurath, M.F.; Watson, A.J.M. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut, 2012, 61(8), 1146-1153.
[http://dx.doi.org/10.1136/gutjnl-2011-300695] [PMID: 22115910]
[159]
Dalbeth, N.; Merriman, T.R.; Stamp, L.K. Gout. Lancet, 2016, 388(10055), 2039-2052.
[http://dx.doi.org/10.1016/S0140-6736(16)00346-9] [PMID: 27112094]
[160]
Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary prevalence of gout and hyperuricemia in the united states and decadal trends: The national health and nutrition examination survey, 2007–2016. Arthritis Rheumatol., 2019, 71(6), 991-999.
[http://dx.doi.org/10.1002/art.40807] [PMID: 30618180]
[161]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[162]
Martin, W.J.; Walton, M.; Harper, J. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis Rheum., 2009, 60(1), 281-289.
[http://dx.doi.org/10.1002/art.24185] [PMID: 19116939]
[163]
Cronstein, B.N.; Sunkureddi, P. Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis. J. Clin. Rheumatol., 2013, 19(1), 19-29.
[http://dx.doi.org/10.1097/RHU.0b013e31827d8790] [PMID: 23319019]
[164]
Dalbeth, N.; Choi, H.K.; Joosten, L.A.B.; Khanna, P.P.; Matsuo, H.; Perez-Ruiz, F.; Stamp, L.K. Gout. Nat. Rev. Dis. Primers, 2019, 5(1), 69.
[http://dx.doi.org/10.1038/s41572-019-0115-y] [PMID: 31558729]
[165]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[166]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L.K.S.; Patel, D.K.; Srivastava, V.; Singh, D.; Gupta, S.K.; Tripathi, A.; Chaturvedi, R.K.; Gupta, K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano, 2014, 8(1), 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[167]
Hunter, D.J.; Felson, D.T.; Osteoarthritis, BMJ 2006, 332(7542), 639-642.
[http://dx.doi.org/10.1136/bmj.332.7542.639] [PMID: 16543327]
[168]
Shen, S.C.; Lee, W.R.; Lin, H.Y.; Huang, H.C.; Ko, C.H.; Yang, L.L.; Chen, Y.C. In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production. Eur. J. Pharmacol., 2002, 446(1-3), 187-194.
[http://dx.doi.org/10.1016/S0014-2999(02)01792-2] [PMID: 12098601]
[169]
Owen, S.G.; Francis, H.W.; Roberts, M.S. Disappearance kinetics of solutes from synovial fluid after intra- articular injection. Br. J. Clin. Pharmacol., 1994, 38(4), 349-355.
[http://dx.doi.org/10.1111/j.1365-2125.1994.tb04365.x] [PMID: 7833225]
[170]
Horisawa, E.; Kubota, K.; Tuboi, I.; Sato, K.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res., 2002, 19(2), 132-139.
[http://dx.doi.org/10.1023/A:1014260513728] [PMID: 11883639]
[171]
Graziani, F.; Tsakos, G. Patient-based outcomes and quality of life. Periodontol. 2000, 2020, 83(1), 277-294.
[http://dx.doi.org/10.1111/prd.12305] [PMID: 32385874]
[172]
Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet, 2005, 366(9499), 1809-1820.
[http://dx.doi.org/10.1016/S0140-6736(05)67728-8] [PMID: 16298220]
[173]
Li, X.; Kolltveit, K.M.; Tronstad, L.; Olsen, I. Systemic diseases caused by oral infection. Clin. Microbiol. Rev., 2000, 13(4), 547-558.
[http://dx.doi.org/10.1128/CMR.13.4.547] [PMID: 11023956]
[174]
Hickey, N.A.; Shalamanova, L.; Whitehead, K.A.; Dempsey-Hibbert, N.; van der Gast, C.; Taylor, R.L. Exploring the putative interactions between chronic kidney disease and chronic periodontitis. Crit. Rev. Microbiol., 2020, 46(1), 61-77.
[http://dx.doi.org/10.1080/1040841X.2020.1724872] [PMID: 32046541]
[175]
Chen, F.M.; Jin, Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng. Part B Rev., 2010, 16(2), 219-255.
[http://dx.doi.org/10.1089/ten.teb.2009.0562] [PMID: 19860551]
[176]
Bottino, M.C.; Thomas, V.; Schmidt, G.; Vohra, Y.K.; Chu, T.M.G.; Kowolik, M.J.; Janowski, G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dent. Mater., 2012, 28(7), 703-721.
[http://dx.doi.org/10.1016/j.dental.2012.04.022] [PMID: 22592164]
[177]
Hu, C.; Tkebuchava, T.; Hu, D. Managing acute myocardial infarction in China. Eur. Heart J., 2019, 40(15), 1179-1181.
[http://dx.doi.org/10.1093/eurheartj/ehz182] [PMID: 30982072]
[178]
Yellon, D.M.; Hausenloy, D.J. Myocardial reperfusion injury. N. Engl. J. Med., 2007, 357(11), 1121-1135.
[http://dx.doi.org/10.1056/NEJMra071667] [PMID: 17855673]
[179]
Heusch, G.; Boengler, K.; Schulz, R. Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res. Cardiol., 2010, 105(2), 151-154.
[http://dx.doi.org/10.1007/s00395-009-0080-9] [PMID: 20066536]
[180]
Heusch, G.; Gersh, B.J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur. Heart J., 2017, 38(11), 774-784.
[PMID: 27354052]
[181]
Yang, Y.; Duan, W.; Jin, Z.; Yi, W.; Yan, J.; Zhang, S.; Wang, N.; Liang, Z.; Li, Y.; Chen, W.; Yi, D.; Yu, S. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J. Pineal Res., 2013, 55(3), 275-286.
[http://dx.doi.org/10.1111/jpi.12070] [PMID: 23796350]
[182]
Zhai, M.; Li, B.; Duan, W.; Jing, L.; Zhang, B.; Zhang, M.; Yu, L.; Liu, Z.; Yu, B.; Ren, K.; Gao, E.; Yang, Y.; Liang, H.; Jin, Z.; Yu, S. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J. Pineal Res., 2017, 63(2), e12419.
[http://dx.doi.org/10.1111/jpi.12419] [PMID: 28500761]
[183]
Ma, W.; Zhan, Y.; Zhang, Y.; Mao, C.; Xie, X.; Lin, Y. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct. Target. Ther., 2021, 6(1), 351.
[http://dx.doi.org/10.1038/s41392-021-00727-9] [PMID: 34620843]
[184]
Sun, Y.; Liu, Y.; Zhang, B.; Shi, S.; Zhang, T.; Zhao, D.; Tian, T.; Li, Q.; Lin, Y. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioact. Mater., 2021, 6(8), 2281-2290.
[http://dx.doi.org/10.1016/j.bioactmat.2020.12.027] [PMID: 33553815]
[185]
Birkholz, O.; Burns, J.R.; Richter, C.P.; Psathaki, O.E.; Howorka, S.; Piehler, J. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat. Commun., 2018, 9(1), 1521.
[http://dx.doi.org/10.1038/s41467-018-02905-w] [PMID: 29670084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy