Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Cyclodextrin - Essential Oil Complexes Studied by Thermal Gravimetry Analysis - Differential Scanning Calorimetry

Author(s): Gaurav R. Gupta, Vasim R. Shaikh and Kesharsingh J. Patil*

Volume 13, Issue 2, 2023

Published on: 19 May, 2023

Page: [177 - 188] Pages: 12

DOI: 10.2174/1877946813666230412080339

Price: $65

Abstract

Background: The structural features allow cyclodextrins to form solid inclusion complexes (host–guest complexes) with wide variety of solid, liquid, and gaseous compounds as a guest. It is the utmost an astounding property of the cyclodextrins, and is commonly termed as molecular recognition. The process of formation of an inclusion complex of the cyclodextrins has been associated with the substitution of the water inside the hydrophobic cavity and the non–covalent bonding interactions of the guest in the hydrophobic host cavity.

Objective: To study the thermal gravimetry analysis behaviour for α–cyclodextrin–clove oil, α–cyclodextrin–neem oil and β–cyclodextrin–clove oil adducts using TGA–DSC.

To compute specific heat capacity at constant pressure, as a function of temperature for the studied systems.

Methods: The thermal gravimetry analysis and differential scanning calorimetry techniques are used.

Results: It is observed that the calculated Cp values from DSC curves are of low magnitude for α–CD–neem oil adduct as compared to that of individual constituents over the temperature range studied. An interesting pattern for the Cp values is found to emerge in case of α– CD–clove oil and β–CD–clove oil adducts wherein the calculated Cp values are higher in magnitude than for pure clove oil but are lower than that of the pure cyclodextrins.

Conclusion: Using thermal methods, the attempt to understand the possibilities of molecular complex formation between cyclodextrins and medicinally important neem oil and clove oil is described. The crystals of inclusion compounds for clove oil and neem oil with α–CD and β–CD are synthesized. The results of TGA–DSC for the crystals are presented and analysed.

Other: The results of neem oil–adducts have been explained in terms of binding of part of tri–glyceride linkages by 2–3 cyclodextrin molecules as neem oil is tri–glyceride and the adduct is having lower stability.

« Previous
Graphical Abstract

[1]
Terdale, S.S.; Dagade, D.H.; Patil, K.J. Thermodynamic studies of drug-α-cyclodextrin interactions in water at 298.15 K: Promazine hydrochloride/chlorpromazine hydrochloride + α-cyclodextrin + H2O systems. J. Phys. Chem. B, 2007, 111(48), 13645-13652.
[http://dx.doi.org/10.1021/jp0754381] [PMID: 17988113]
[2]
Terdale, S.S.; Dagade, D.H.; Patil, K.J. Activity and activity coefficient studies of aqueous binary and ternary solutions of 4-nitrophenol, sodium salt of 4-nitrophenol, hydroquinone and α-cyclodextrin at 298.15 K. J. Mol. Liq., 2008, 139(1-3), 61-71.
[http://dx.doi.org/10.1016/j.molliq.2007.11.001]
[3]
Terdale, S.; Dagade, D.; Patil, K. Activity coefficient studies in ternary aqueous solutions at 298.15 K: H2O + α-cyclodextrin + potassium acetate and H2O + 18-crown-6 + hydroquinone systems. J. Chem. Eng. Data, 2009, 54(2), 294-300.
[http://dx.doi.org/10.1021/je800307g]
[4]
Shaikh, V.R.; Terdale, S.S.; Hundiwale, D.G.; Patil, K.J. Thermodynamic studies of drug–α-cyclodextrin interactions in water at 298.15K: Procaine hydrochloride/lidocaine hydrochloride/tetracaine hydrochloride/ranitidine hydrochloride+α-cyclodextrin+H2O systems. J. Chem. Thermodyn., 2014, 68, 161-168.
[http://dx.doi.org/10.1016/j.jct.2013.09.003]
[5]
Ikkala, O.; ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science, 2002, 295(5564), 2407-2409.
[http://dx.doi.org/10.1126/science.1067794] [PMID: 11923526]
[6]
Malik, S. Essential Oil Research Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Springer: Switzerland, 2019.
[http://dx.doi.org/10.1007/978-3-030-16546-8]
[7]
Nuñez, L.; D’ Aquino, M. Microbicide activity of clove essential oil (Eugenia caryophyllata). Braz. J. Microbiol., 2012, 43(4), 1255-1260.
[http://dx.doi.org/10.1590/S1517-83822012000400003] [PMID: 24031950]
[8]
Khalil, A.A.; Rahman, U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Advances, 2017, 7(52), 32669-32681.
[http://dx.doi.org/10.1039/C7RA04803C]
[9]
Jirovetz, L.; Buchbauer, G.; Stoilova, I.; Stoyanova, A.; Krastanov, A.; Schmidt, E. Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem., 2006, 54(17), 6303-6307.
[http://dx.doi.org/10.1021/jf060608c] [PMID: 16910723]
[10]
Peter, K.V. Handbook of Herbs and Spices; Wood head Publishing Limited ad CRC Press: USA, 2007.
[11]
Preedy, V.R. Essential Oils in Food Preservation, Flavor and Safety; Elsevier: UK, 2016.
[12]
Gupta, S.S.; Mitra, C.R. The component acids and glycerides of refined neem (Melia Indica) oil. J. Sci. Food Agric., 1953, 4(1), 44-48.
[http://dx.doi.org/10.1002/jsfa.2740040108]
[13]
Gupta, V.K.; Ahlawat, S.P.; Kumar, R.V.; Datta, A. Effect of season and year on azadirachtin A and oil content in neem (Azadirachta indica A. Juss) seeds and relationship of azadirachtin A and oil content with rainfall, temperature and humidity. Curr. Sci., 2010, 99, 953.
[14]
Gupta, G.; Shaikh, V.; Patil, K. Synchronous thermogravimetry and differential scanning calorimetry estimates of urea inclusion complexes using TGA/DSC. Curr. Phys. Chem., 2019, 8(3), 175-185.
[http://dx.doi.org/10.2174/1877946808666181031113024]
[15]
Chen, G.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev., 2011, 40(5), 2254-2266.
[http://dx.doi.org/10.1039/c0cs00153h] [PMID: 21344115]
[16]
Nimse, S.B.; Kim, T. Biological applications of functionalized calixarenes. Chem. Soc. Rev., 2013, 42(1), 366-386.
[http://dx.doi.org/10.1039/C2CS35233H] [PMID: 23032718]
[17]
Gupta, G.R.; Patil, P.D.; Shaikh, V.R.; Kolhapurkar, R.R.; Dagade, D.H.; Patil, K.J. Analytical estimation of water contents, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin. Curr. Sci., 2018, 114(12), 2525.
[http://dx.doi.org/10.18520/cs/v114/i12/2525-2529]
[18]
Amiri, S.; Amiri, S. Cyclodextrins, Properties and Industrial Applications; John Wiley and Sons Ltd.: Hoboken, USA, 2017.
[http://dx.doi.org/10.1002/9781119247609]
[19]
Semsarzadeh, M.A.; Amiri, S. Preparation and characterization of inclusion complexes of poly(dimethylsiloxane)s with γ-cyclodextrin without utilizing sonic energy. Silicon, 2012, 4(3), 151-156.
[http://dx.doi.org/10.1007/s12633-012-9116-0]
[20]
Buchwald, P. Complexation thermodynamics of cyclodextrins in the framework of a molecular size-based model for nonassociative organic liquids that includes a modified hydration-shell hydrogen-bond model for water. J. Phys. Chem. B, 2002, 106(27), 6864-6870.
[http://dx.doi.org/10.1021/jp025711t]
[21]
Liu, L.; Guo, Q.X. The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem., 2002, 42(1/2), 1-14.
[http://dx.doi.org/10.1023/A:1014520830813]
[22]
Rekharsky, M.V.; Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev., 1998, 98(5), 1875-1918.
[http://dx.doi.org/10.1021/cr970015o] [PMID: 11848952]
[23]
Loftsson, T. Cyclodextrins and the biopharmaceutics classification system of drugs. J. Incl. Phenom. Macrocycl. Chem., 2002, 44(1/4), 63-67.
[http://dx.doi.org/10.1023/A:1023088423667]
[24]
Privalov, P.L. Microcalorimetry of Macromolecules: The Physical Basis of Biological Structures; John Wiley and Sons, Inc.: Hoboken, New Jersey, 2012.
[http://dx.doi.org/10.1002/9781118337509]
[25]
Franks, F. Biochemical Thermodynamics; Jones, M.N., Ed.; Elsevier: New York, 1979.
[26]
Franks, F. Solvation interactions of proteins in solution. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1977, 278(959), 89-96.
[http://dx.doi.org/10.1098/rstb.1977.0032] [PMID: 17877]
[27]
Shirsath, N.B.; Gupta, G.R.; Gite, V.V.; Meshram, J.S. Studies of thermally assisted interactions of polysulphide polymer with ionic liquids. Bull. Mater. Sci., 2018, 41(63)
[http://dx.doi.org/10.1007/s12034-018-1562-x]
[28]
Tomar, P.A.; Yadav, S.M.; Gupta, G.R. The thermal gravimetric studies for polymer samples of polyvinyl chloride (PVC) and polyvinyl alcohol (PVA) obtained by treatment with ionic liquid [bmim]. Br. Polym. Bull., 2014, 71(6), 1349-1358.
[http://dx.doi.org/10.1007/s00289-014-1126-1]
[29]
Gupta, G.R.; Nevare, M.R.; Patil, A.M.; Gite, V.V. Unprecedented exploration of ionic liquids as additives which astonishes the thermal stability of PVC formulations. Bull. Mater. Sci., 2019, 42, 203.
[http://dx.doi.org/10.1007/s12034-019-1866-5]
[30]
Patil, K.S.; Gupta, G.R. Thermal investigations of multiwall carbon nanotubes. Inter. J. Management. Tech. and Eng., 2019, 9, 1530.
[31]
Ficke, L.E.; Rodríguez, H.; Brennecke, J.F. Heat capacities and excess enthalpies of 1-ethyl-3-methylimidazolium-based ionic liquids and water. J. Chem. Eng. Data, 2008, 53(9), 2112-2119.
[http://dx.doi.org/10.1021/je800248w]
[32]
Diedrichs, A.; Gmehling, J. Measurement of heat capacities of ionic liquids by differential scanning calorimetry. Fluid Phase Equilib., 2006, 244(1), 68-77.
[http://dx.doi.org/10.1016/j.fluid.2006.03.015]
[33]
Gardas, R.L.; Coutinho, J.A.P. A group contribution method for heat capacity estimation of ionic liquids. Ind. Eng. Chem. Res., 2008, 47(15), 5751-5757.
[http://dx.doi.org/10.1021/ie800330v]
[34]
Veitch, G.E.; Beckmann, E.; Burke, B.J.; Boyer, A.; Maslen, S.L.; Ley, S.V. Synthesis of azadirachtin: A long but successful journey. Angew. Chem. Int. Ed., 2007, 46(40), 7629-7632.
[http://dx.doi.org/10.1002/anie.200703027] [PMID: 17665403]
[35]
Veitch, G.E.; Boyer, A.; Ley, S.V. The azadirachtin story. Angew. Chem. Int. Ed., 2008, 47(49), 9402-9429.
[http://dx.doi.org/10.1002/anie.200802675] [PMID: 19031481]
[36]
Sethi, A. Systematic Lab Experiments in Organic Chemistry; New Age International Publisher: New Delhi, 2011.
[37]
Patil, K.S.; Zope, P.H.; Patil, U.T.; Patil, P.D.; Dubey, R.S.; Gupta, G.R. Synthesis and characterization of nanostructure of polyanilines. Bull. Mater. Sci., 2019.
[38]
Gupta, G.; Shaikh, V.; Kalas, S.; Patil, K. Specific heat capacity estimations for biologically and medicinally important compounds: Lidocaine hydrochloride, clove oil and β−piperine using DSC technique. Curr. Phys. Chem., 2021, 11(1), 27-34.
[http://dx.doi.org/10.2174/1573412916999200430092644]
[39]
Tomar, P.A.; Yadav, S.M.; Jahagirdar, A.A.; Gupta, G.R. Exploring the catalytic potentials of supported molten salts toward transesterification of waste cooking oil for the production of biodiesel. Catalysis Green Chem. Eng., 2019, 2(2), 133-141.
[http://dx.doi.org/10.1615/CatalGreenChemEng.2020031663]
[40]
Ramsingh Girase, T.; Patil, K.J.; Kapdi, A.R.; Gupta, G.R. Palladium acetate/[CPy][Br]: An efficient catalytic system towards the synthesis of biologically relevant stilbene derivatives via Heck cross‐coupling reaction. ChemistrySelect, 2020, 5(14), 4251-4262.
[http://dx.doi.org/10.1002/slct.201904837]
[41]
Briggner, L.E.; Wadsö, I. Heat capacities of maltose, maltotriose, maltotetrose and α-, β-, and γ-cyclodextrin in the solid state and in dilute aqueous solution. J. Chem. Thermodyn., 1990, 22(11), 1067-1074.
[http://dx.doi.org/10.1016/0021-9614(90)90156-K]
[42]
Olvera, Á.; Pérez-Casas, S.; Costas, M. Heat capacity contributions to the formation of inclusion complexes. J. Phys. Chem. B, 2007, 111(39), 11497-11505.
[http://dx.doi.org/10.1021/jp072098a] [PMID: 17850130]
[43]
Shimada, K.A.; Kawano, K.I.; Ishii, J.U.; Nakamura, T.A. Structure of inclusion complexes of cyclodextrins with triglyceride at vegetable oil/water interface. J. Food Sci., 1992, 57(3), 655-656.
[http://dx.doi.org/10.1111/j.1365-2621.1992.tb08063.x]
[44]
Schlenk, H.; Sand, D.M. The association of α- and β-cyclodextrins with organic acids1. J. Am. Chem. Soc., 1961, 83(10), 2312-2320.
[http://dx.doi.org/10.1021/ja01471a022]
[45]
Inoue, Y.; Liu, Y.; Tong, L.H.; Shen, B.J.; Jin, D.S.; Jin, D.S. Calorimetric titration of inclusion complexation with modified. beta.-cyclodextrins. Enthalpy-entropy compensation in host-guest complexation: From ionophore to cyclodextrin and cyclophane. J. Am. Chem. Soc., 1993, 115(23), 10637-10644.
[http://dx.doi.org/10.1021/ja00076a023]
[46]
Illapakurthy, A.; Wyandt, C.; Stodghill, S. Isothermal titration calorimetry method for determination of cyclodextrin complexation thermodynamics between artemisinin and naproxen under varying environmental conditions. Eur. J. Pharm. Biopharm., 2005, 59(2), 325-332.
[http://dx.doi.org/10.1016/j.ejpb.2004.08.006] [PMID: 15661505]
[47]
Wszelaka-Rylik, M.; Gierycz, P. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with tropane alkaloids. J. Therm. Anal. Calorim., 2015, 121(3), 1359-1364.
[http://dx.doi.org/10.1007/s10973-015-4658-1]
[48]
Falconer, R.J.; Schuur, B.; Mittermaier, A.K. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J. Mol. Recognit., 2021, 34(10), e2901.
[http://dx.doi.org/10.1002/jmr.2901] [PMID: 33975380]
[49]
Saenger, W. Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl., 1980, 19(5), 344-362.
[http://dx.doi.org/10.1002/anie.198003441]
[50]
Welliver, M. Update for nurse anesthetists-part 3-cyclodextrin introduction to anesthesia practice: Form, function, and application. AANA J., 2007, 75(4), 289-296.
[PMID: 17711159]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy