Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Anticancer Compounds from Cyanobacteria and their Implications in Apoptosis

Author(s): Amit Gupta, Prashant R. Singh, Ashish P. Singh, Neha Kumari, Jyoti Jaiswal, Niharika Sahu, Sonal Mishra, Jainendra Pathak and Rajeshwar P. Sinha*

Volume 24, Issue 10, 2023

Published on: 08 May, 2023

Page: [805 - 819] Pages: 15

DOI: 10.2174/1389203724666230411091726

Price: $65

Abstract

Cyanobacteria have been recognized as a rich source of bioactive metabolites with potential biotechnological applications in the pharmacological industry. The chemically diverse natural compounds or their analogues cause cytotoxicity. They may kill various cancer cells by inducing apoptosis or changing the activation of cell signaling, particularly involving the protein kinase-C family of enzymes, mitochondrial dysfunctions, and oxidative damage. B cell lymphoma 2 (Bcl-2) is an essential component of apoptosis and is an antiapoptotic molecule. The key apoptotic regulators associated with cancer are members of the Bcl-2 protein family, the key member of which is Bcl-2. The Bcl-2 protein is a promising target for the emergence of new anti-tumor therapies because of its critical role in controlling apoptosis. This review explores the significance of Bcl-2 in the onset of cancer; it may be used as a target for developing high-quality drug therapies to treat various tumors. In addition, a number of computational techniques were used to identify novel hit compounds that may act as inhibitors of the apoptotic protein Bcl-2, including virtual screening, toxicity prediction, and drug-likeness analysis. Twenty-three compounds were assessed as potential hits against Bcl-2, and these compounds were subjected to ADMET property prediction. Dendroamide A and Welwitindolinone A appear to be the most stable and effective drugs against Bcl-2 out of all those evaluated. This article gives an overview of the bioactive compounds produced by cyanobacteria that have anticancer properties and may be exploited to create novel anticancer medications in the future.

Graphical Abstract

[1]
Kumari, N.; Pandey, A.; Gupta, A.; Mishra, S.; Sinha, R.P. Characterization of UV-screening pigment scytonemin from cyanobacteria inhabiting diverse habitats of Varanasi, India. Biologia., 2022, 78(2), 319-330.
[http://dx.doi.org/10.1007/s11756-022-01190-9]
[2]
Mooberry, S.L.; Leal, R.M.; Tinley, T.L.; Luesch, H.; Moore, R.E.; Corbett, T.H. The molecular pharmacology of symplostatin 1: A new antimitotic dolastatin 10 analog. Int. J. Cancer, 2003, 104(4), 512-521.
[http://dx.doi.org/10.1002/ijc.10982] [PMID: 12584751]
[3]
Gutiérrez, M.; Suyama, T.L.; Engene, N.; Wingerd, J.S.; Matainaho, T.; Gerwick, W.H. Apratoxin D, a potent cytotoxic cyclodepsipeptide from papua new guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida. J. Nat. Prod., 2008, 71(6), 1099-1103.
[http://dx.doi.org/10.1021/np800121a] [PMID: 18444683]
[4]
Linington, R.G.; Edwards, D.J.; Shuman, C.F.; McPhail, K.L.; Matainaho, T.; Gerwick, W.H. Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine Cyanobacterium Symploca sp. J. Nat. Prod., 2008, 71(1), 22-27.
[http://dx.doi.org/10.1021/np070280x] [PMID: 18163584]
[5]
Kiyoshima, T.; Yoshida, H.; Wada, H.; Nagata, K.; Fujiwara, H.; Kihara, M.; Hasegawa, K.; Someya, H.; Sakai, H. Chemoresistance to concanamycin A1 in human oral squamous cell carcinoma is attenuated by an HDAC inhibitor partly via suppression of Bcl-2 expression. PLoS One, 2013, 8(11), e80998.
[http://dx.doi.org/10.1371/journal.pone.0080998] [PMID: 24278362]
[6]
Cory, S.; Adams, J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002, 2(9), 647-656.
[http://dx.doi.org/10.1038/nrc883] [PMID: 12209154]
[7]
Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ., 2006, 13(9), 1423-1433.
[http://dx.doi.org/10.1038/sj.cdd.4401950] [PMID: 16676004]
[8]
Cho, H.Y.; Park, H.S.; Lin, Z.; Kim, I.; Joo, K.J.; Cheon, J. BCL6 gene mutations in transitional cell carcinomas. J. Int. Med. Res., 2007, 35(2), 224-230.
[http://dx.doi.org/10.1177/147323000703500206] [PMID: 17542409]
[9]
Yoshino, T.; Shiina, H.; Urakami, S.; Kikuno, N.; Yoneda, T.; Shigeno, K.; Igawa, M. Bcl-2 expression as a predictive marker of hormone-refractory prostate cancer treated with taxane-based chemotherapy. Clin. Cancer Res., 2006, 12(20), 6116-6124.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0147] [PMID: 17062688]
[10]
Perini, G.F.; Ribeiro, G.N.; Pinto Neto, J.V.; Campos, L.T.; Hamerschlak, N. BCL-2 as therapeutic target for hematological malignancies. J. Hematol. Oncol., 2018, 11(1), 65.
[http://dx.doi.org/10.1186/s13045-018-0608-2] [PMID: 29747654]
[11]
Rastogi, R.P.; Richa; Sinha, R.P. Apoptosis: Molecular mechanisms and pathogenicity. EXCLI J., 2009, 8, 155-181.
[12]
Richa, R.; Sinha, R.P. Hydroxymethylation of DNA: An epigenetic marker. EXCLI J., 2014, 13, 592-610.
[PMID: 26417286]
[13]
Soria-Mercado, I.E.; Pereira, A.; Cao, Z.; Murray, T.F.; Gerwick, W.H. Alotamide A, a novel neuropharmacological agent from the marine cyanobacterium Lyngbya bouillonii. Org. Lett., 2009, 11(20), 4704-4707.
[http://dx.doi.org/10.1021/ol901438b] [PMID: 19754100]
[14]
Wall, N.R.; Mohammad, R.M.; Al-Katib, A.M. Bax:Bcl-2 ratio modulation by bryostatin 1 and novel antitubulin agents is important for susceptibility to drug induced apoptosis in the human early pre-B acute lymphoblastic leukemia cell line. Reh. Leuk. Res., 1999, 23(10), 881-888.
[http://dx.doi.org/10.1016/S0145-2126(99)00108-3] [PMID: 10573132]
[15]
Cao, Z.; Gerwick, W.H.; Murray, T.F. Antillatoxin is a sodium channel activator that displays unique efficacy in heterologously expressed rNav1.2, rNav1.4 and rNav1.5 α subunits. BMC Neurosci., 2010, 11(1), 154.
[http://dx.doi.org/10.1186/1471-2202-11-154] [PMID: 21156065]
[16]
Chang, Z.; Flatt, P.; Gerwick, W.H.; Nguyen, V.A.; Willis, C.L.; Sherman, D.H. The barbamide biosynthetic gene cluster: A novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene, 2002, 296(1-2), 235-247.
[http://dx.doi.org/10.1016/S0378-1119(02)00860-0] [PMID: 12383521]
[17]
Teruya, T.; Sasaki, H.; Kitamura, K.; Nakayama, T.; Suenaga, K. Biselyngbyaside, a macrolide glycoside from the marine cyanobacterium Lyngbya sp. Org. Lett., 2009, 11(11), 2421-2424.
[http://dx.doi.org/10.1021/ol900579k] [PMID: 19432458]
[18]
Chen, X.; Smith, G.D.; Waring, P. Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. J. Appl. Phycol., 2003, 15(4), 269-277.
[http://dx.doi.org/10.1023/A:1025134106985]
[19]
Wagner, M.M.; Paul, D.C.; Shih, C.; Jordan, M.A.; Wilson, L.; Williams, D.C. In vitro pharmacology of cryptophycin 52 (LY355703) in human tumor cell lines. Cancer Chemother. Pharmacol., 1999, 43(2), 115-125.
[http://dx.doi.org/10.1007/s002800050871] [PMID: 9923816]
[20]
Ogino, J.; Moore, R.E.; Patterson, G.M.L.; Smith, C.D. Dendroamides, new cyclic hexapeptides from a blue-green alga. Multidrug-resistance reversing activity of dendroamide A. J. Nat. Prod., 1996, 59(6), 581-586.
[http://dx.doi.org/10.1021/np960178s] [PMID: 8786364]
[21]
Mitra, A.; Sept, D. Localization of the antimitotic peptide and depsipeptide binding site on beta-tubulin. Biochemistry, 2004, 43(44), 13955-13962.
[http://dx.doi.org/10.1021/bi0487387] [PMID: 15518544]
[22]
Catassi, A.; Cesario, A.; Arzani, D.; Menichini, P.; Alama, A.; Bruzzo, C.; Imperatori, A.; Rotolo, N.; Granone, P.; Russo, P. Characterization of apoptosis induced by marine natural products in non small cell lung cancer A549 cells. Cell. Mol. Life Sci., 2006, 63(19-20), 2377-2386.
[http://dx.doi.org/10.1007/s00018-006-6264-7] [PMID: 17006627]
[23]
Park, A.; Moore, R.E.; Patterson, G.M.L. Fischerindole L, a new isonitrile from the terrestrial blue-green alga fischerella muscicola. Tetrahedron Lett., 1992, 33(23), 3257-3260.
[http://dx.doi.org/10.1016/S0040-4039(00)92061-6]
[24]
Marquez, B.L.; Watts, K.S.; Yokochi, A.; Roberts, M.A.; Verdier-Pinard, P.; Jimenez, J.I.; Hamel, E.; Scheuer, P.J.; Gerwick, W.H. Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J. Nat. Prod., 2002, 65(6), 866-871.
[http://dx.doi.org/10.1021/np0106283] [PMID: 12088429]
[25]
White, J.D.; Xu, Q.; Lee, C.S.; Valeriote, F.A. Total synthesis andbiological evaluation of (+)-kalkitoxin, a cytotoxic metabolite of the cyanobacterium Lyngbya majuscule electronic supplementary information (ESI) available: 1H NMR spectrum of synthetic (+)-kalkitoxin in C6D6. See http://www.rsc.org/suppdata/ob/b4/b404205k/. Org. Biomol. Chem., 2004, 2(14), 2092-2102.
[http://dx.doi.org/10.1039/b404205k]] [PMID: 15254638]
[26]
Taori, K.; Paul, V.J.; Luesch, H. Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J. Am. Chem. Soc., 2008, 130(6), 1806-1807.
[http://dx.doi.org/10.1021/ja7110064] [PMID: 18205365]
[27]
Zeng, X.; Yin, B.; Hu, Z.; Liao, C.; Liu, J.; Li, S.; Li, Z.; Nicklaus, M.C.; Zhou, G.; Jiang, S. Total synthesis and biological evaluation of largazole and derivatives with promising selectivity for cancers cells. Org. Lett., 2010, 12(6), 1368-1371.
[http://dx.doi.org/10.1021/ol100308a] [PMID: 20184338]
[28]
Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J.; Mooberry, S.L. Isolation, structure determination, and biological activity of Lyngbyabellin A from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod., 2000, 63(5), 611-615.
[http://dx.doi.org/10.1021/np990543q] [PMID: 10843570]
[29]
Horgen, F.D.; Kazmierski, E.B.; Westenburg, H.E.; Yoshida, W.Y.; Scheuer, P.J.; Malevamide, D.; Malevamide, D. Isolation and structure determination of an isodolastatin H analogue from the marine cyanobacterium Symploca hydnoides. J. Nat. Prod., 2002, 65(4), 487-491.
[http://dx.doi.org/10.1021/np010560r] [PMID: 11975485]
[30]
Raj, S.; Kuniyil, A.M.; Sreenikethanam, A.; Gugulothu, P.; Jeyakumar, R.B.; Bajhaiya, A.K. Microalgae as a source of mycosporine-like amino acids (Maas); advances and future prospects. Int. J. Environ. Res. Public Health, 2021, 18(23), 12402.
[http://dx.doi.org/10.3390/ijerph182312402] [PMID: 34886126]
[31]
Yuan, Y.V.; Westcott, N.D.; Hu, C.; Kitts, D.D. Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem., 2009, 112(2), 321-328.
[http://dx.doi.org/10.1016/j.foodchem.2008.05.066]
[32]
Sousa, M.L.; Preto, M.; Vasconcelos, V.; Linder, S.; Urbatzka, R. Antiproliferative effects of the natural oxadiazine nocuolin A are associated with impairment of mitochondrial oxidative phosphorylation. Front. Oncol., 2019, 9, 224.
[http://dx.doi.org/10.3389/fonc.2019.00224] [PMID: 31001482]
[33]
Williams, P.G.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides. J. Nat. Prod., 2002, 65(1), 29-31.
[http://dx.doi.org/10.1021/np0102253] [PMID: 11809060]
[34]
Taniguchi, M.; Nunnery, J.K.; Engene, N.; Esquenazi, E.; Byrum, T.; Dorrestein, P.C.; Gerwick, W.H. Palmyramide A, a cyclic depsipeptide from a Palmyra Atoll collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod., 2010, 73(3), 393-398.
[http://dx.doi.org/10.1021/np900428h] [PMID: 19839606]
[35]
Stevenson, C.S.; Capper, E.A.; Roshak, A.K.; Marquez, B.; Eichman, C.; Jackson, J.R.; Mattern, M.; Gerwick, W.H.; Jacobs, R.S.; Marshall, L.A. The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J. Pharmacol. Exp. Ther., 2002, 303(2), 858-866.
[http://dx.doi.org/10.1124/jpet.102.036350] [PMID: 12388673]
[36]
Mevers, E.; Liu, W.T.; Engene, N.; Mohimani, H.; Byrum, T.; Pevzner, P.A.; Dorrestein, P.C.; Spadafora, C.; Gerwick, W.H. Cytotoxic veraguamides, alkynyl bromide-containing cyclic depsipeptides from the marine cyanobacterium cf. Oscillatoria margaritifera. J. Nat. Prod., 2011, 74(5), 928-936.
[http://dx.doi.org/10.1021/np200077f] [PMID: 21488639]
[37]
Jimenez, J.I.; Huber, U.; Moore, R.E.; Patterson, G.M.L. Oxidized welwitindolinones from terrestrial fischerella spp. J. Nat. Prod., 1999, 62(4), 569-572.
[http://dx.doi.org/10.1021/np980485t] [PMID: 10217710]
[38]
Stratmann, K.; Moore, R.E.; Bonjouklian, R.; Deeter, J.B.; Patterson, G.M.L.; Shaffer, S.; Smith, C.D.; Smitka, T.A. Welwitindolinones, unusual alkaloids from the blue-green algae Hapalosiphon welwitschii and Westiella intricata. Relationship to fischerindoles and hapalinodoles. J. Am. Chem. Soc., 1994, 116(22), 9935-9942.
[http://dx.doi.org/10.1021/ja00101a015]
[39]
Reed, J.C.; Cuddy, M.; Slabiak, T.; Croce, C.M.; Nowell, P.C. Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature, 1988, 336(6196), 259-261.
[http://dx.doi.org/10.1038/336259a0] [PMID: 2848196]
[40]
Hockenbery, D.; Nuñez, G.; Milliman, C.; Schreiber, R.D.; Korsmeyer, S.J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 1990, 348(6299), 334-336.
[http://dx.doi.org/10.1038/348334a0] [PMID: 2250705]
[41]
Vaux, D.L.; Cory, S.; Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 1988, 335(6189), 440-442.
[http://dx.doi.org/10.1038/335440a0] [PMID: 3262202]
[42]
McDonnell, T.J.; Deane, N.; Platt, F.M.; Nunez, G.; Jaeger, U.; McKearn, J.P.; Korsmeyer, S.J. bcl-2-Immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell, 1989, 57(1), 79-88.
[http://dx.doi.org/10.1016/0092-8674(89)90174-8] [PMID: 2649247]
[43]
McDonnell, T.J.; Korsmeyer, S.J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature, 1991, 349(6306), 254-256.
[http://dx.doi.org/10.1038/349254a0] [PMID: 1987477]
[44]
Cleary, M.; Rosenberg, S.A. The bcl-2 gene, follicular lymphoma, and Hodgkin’s disease. J. Natl. Cancer Inst., 1990, 82(10), 808-809.
[http://dx.doi.org/10.1093/jnci/82.10.808] [PMID: 2185366]
[45]
Horning, S.J.; Rosenberg, S.A. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas. N. Engl. J. Med., 1984, 311(23), 1471-1475.
[http://dx.doi.org/10.1056/NEJM198412063112303] [PMID: 6548796]
[46]
Yin, X.M.; Oltvai, Z.N.; Korsmeyer, S.J. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature, 1994, 369(6478), 321-323.
[http://dx.doi.org/10.1038/369321a0] [PMID: 8183370]
[47]
Langenau, D.M.; Jette, C.; Berghmans, S.; Palomero, T.; Kanki, J.P.; Kutok, J.L.; Look, A.T. Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood, 2005, 105(8), 3278-3285.
[http://dx.doi.org/10.1182/blood-2004-08-3073] [PMID: 15618471]
[48]
Nix, P.; Cawkwell, L.; Patmore, H.; Greenman, J.; Stafford, N. Bcl-2 expression predicts radiotherapy failure in laryngeal cancer. Br. J. Cancer, 2005, 92(12), 2185-2189.
[http://dx.doi.org/10.1038/sj.bjc.6602647] [PMID: 15928664]
[49]
Jäckel, M.C.; Dorudian, M.A.; Marx, D.; Brinck, U.; Schauer, A.; Steiner, W. Spontaneous apoptosis in laryngeal squamous cell carcinoma is independent of bcl-2 and bax protein expression. Cancer, 1999, 85(3), 591-599. 10.1002/(SICI)1097-0142(19990201)85:3<591:: AID-CNCR9>3.0.CO;2-F
[PMID: 10091732]
[50]
Hong, J.; Park, S.; Park, J.; Kim, H.S.; Kim, K.H.; Ahn, J.Y.; Rim, M.Y.; Jung, M.; Sym, S.J.; Cho, E.K.; Shin, D.B.; Lee, J.H. Evaluation of prognostic values of clinical and histopathologic characteristics in diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone therapy. Leuk. Lymphoma, 2011, 52(10), 1904-1912.
[http://dx.doi.org/10.3109/10428194.2011.588761] [PMID: 21718130]
[51]
Petros, A.M.; Medek, A.; Nettesheim, D.G.; Kim, D.H.; Yoon, H.S.; Swift, K.; Matayoshi, E.D.; Oltersdorf, T.; Fesik, S.W. Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci., 2001, 98(6), 3012-3017.
[http://dx.doi.org/10.1073/pnas.041619798] [PMID: 11248023]
[52]
Huang, D.C.S.; Adams, J.M.; Cory, S. The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J., 1998, 17(4), 1029-1039.
[http://dx.doi.org/10.1093/emboj/17.4.1029] [PMID: 9463381]
[53]
Hanada, M.; Aimé-Sempé, C.; Sato, T.; Reed, J.C. Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J. Biol. Chem., 1995, 270(20), 11962-11969.
[http://dx.doi.org/10.1074/jbc.270.20.11962] [PMID: 7744846]
[54]
Tsujimoto, Y. Stress-resistance conferred by high level of bcl-2 alpha protein in human B lymphoblastoid cell. Oncogene, 1989, 4(11), 1331-1336.
[PMID: 2554236]
[55]
Cook, S.J.; Stuart, K.; Gilley, R.; Sale, M.J. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J., 2017, 284(24), 4177-4195.
[http://dx.doi.org/10.1111/febs.14122] [PMID: 28548464]
[56]
Tsujimoto, Y. Bcl-2 family of proteins: Life-or-death switch in mitochondria. Biosci. Rep., 2002, 22(1), 47-58.
[http://dx.doi.org/10.1023/A:1016061006256] [PMID: 12418550]
[57]
Hong, J.; Lee, Y.; Park, Y.; Kim, S.G.; Hwang, K.H.; Park, S.H.; Jeong, J.; Kim, K.H.; Ahn, J.Y.; Park, S.; Park, J.; Lee, J.H. Role of FDG-PET/CT in detecting lymphomatous bone marrow involvement in patients with newly diagnosed diffuse large B-cell lymphoma. Ann. Hematol., 2012, 91(5), 687-695.
[http://dx.doi.org/10.1007/s00277-011-1353-6] [PMID: 22008868]
[58]
Deng, X.; Ruvolo, P.; Carr, B.; May, W.S. Jr Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc. Natl. Acad. Sci., 2000, 97(4), 1578-1583.
[http://dx.doi.org/10.1073/pnas.97.4.1578] [PMID: 10677502]
[59]
Mai, H.; May, W.S.; Gao, F.; Jin, Z.; Deng, X. A functional role for nicotine in Bcl2 phosphorylation and suppression of apoptosis. J. Biol. Chem., 2003, 278(3), 1886-1891.
[http://dx.doi.org/10.1074/jbc.M209044200] [PMID: 12421819]
[60]
Hong, J.; Park, S.; Park, J.; Jang, S.J.; Ahn, H.K.; Sym, S.J.; Cho, E.K.; Shin, D.B.; Lee, J.H. CD99 expression and newly diagnosed diffuse large B-cell lymphoma treated with rituximab-CHOP immunochemotherapy. Ann. Hematol., 2012, 91(12), 1897-1906.
[http://dx.doi.org/10.1007/s00277-012-1533-z] [PMID: 22864685]
[61]
Kuwana, T.; Mackey, M.R.; Perkins, G.; Ellisman, M.H.; Latterich, M.; Schneiter, R.; Green, D.R.; Newmeyer, D.D. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell, 2002, 111(3), 331-342.
[http://dx.doi.org/10.1016/S0092-8674(02)01036-X] [PMID: 12419244]
[62]
Czabotar, P.E.; Westphal, D.; Dewson, G.; Ma, S.; Hockings, C.; Fairlie, W.D.; Lee, E.F.; Yao, S.; Robin, A.Y.; Smith, B.J.; Huang, D.C.S.; Kluck, R.M.; Adams, J.M.; Colman, P.M. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell, 2013, 152(3), 519-531.
[http://dx.doi.org/10.1016/j.cell.2012.12.031] [PMID: 23374347]
[63]
Gavathiotis, E.; Suzuki, M.; Davis, M.L.; Pitter, K.; Bird, G.H.; Katz, S.G.; Tu, H.C.; Kim, H.; Cheng, E.H.Y.; Tjandra, N.; Walensky, L.D. BAX activation is initiated at a novel interaction site. Nature, 2008, 455(7216), 1076-1081.
[http://dx.doi.org/10.1038/nature07396] [PMID: 18948948]
[64]
Gavathiotis, E.; Reyna, D.E.; Davis, M.L.; Bird, G.H.; Walensky, L.D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol. Cell, 2010, 40(3), 481-492.
[http://dx.doi.org/10.1016/j.molcel.2010.10.019] [PMID: 21070973]
[65]
Ren, D.; Tu, H.C.; Kim, H.; Wang, G.X.; Bean, G.R.; Takeuchi, O.; Jeffers, J.R.; Zambetti, G.P.; Hsieh, J.J.D.; Cheng, E.H.Y. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science, 2010, 330(6009), 1390-1393.
[http://dx.doi.org/10.1126/science.1190217] [PMID: 21127253]
[66]
Kim, H.; Tu, H.C.; Ren, D.; Takeuchi, O.; Jeffers, J.R.; Zambetti, G.P.; Hsieh, J.J.D.; Cheng, E.H.Y. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell, 2009, 36(3), 487-499.
[http://dx.doi.org/10.1016/j.molcel.2009.09.030] [PMID: 19917256]
[67]
Leshchiner, E.S.; Braun, C.R.; Bird, G.H.; Walensky, L.D. Direct activation of full-length proapoptotic BAK. Proc. Natl. Acad. Sci., 2013, 110(11), E986-E995.
[http://dx.doi.org/10.1073/pnas.1214313110] [PMID: 23404709]
[68]
Sarosiek, K.A.; Chi, X.; Bachman, J.A.; Sims, J.J.; Montero, J.; Patel, L.; Flanagan, A.; Andrews, D.W.; Sorger, P.; Letai, A. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol. Cell, 2013, 51(6), 751-765.
[http://dx.doi.org/10.1016/j.molcel.2013.08.048] [PMID: 24074954]
[69]
Certo, M.; Moore, V.D.G.; Nishino, M.; Wei, G.; Korsmeyer, S.; Armstrong, S.A.; Letai, A. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 2006, 9(5), 351-365.
[http://dx.doi.org/10.1016/j.ccr.2006.03.027] [PMID: 16697956]
[70]
Del Gaizo Moore, V.; Brown, J.R.; Certo, M.; Love, T.M.; Novina, C.D.; Letai, A. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL-2 antagonist ABT-737. J. Clin. Invest., 2007, 117(1), 112-121.
[http://dx.doi.org/10.1172/JCI28281] [PMID: 17200714]
[71]
Lovell, J.F.; Billen, L.P.; Bindner, S.; Shamas-Din, A.; Fradin, C.; Leber, B.; Andrews, D.W. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell, 2008, 135(6), 1074-1084.
[http://dx.doi.org/10.1016/j.cell.2008.11.010] [PMID: 19062087]
[72]
Kuwana, T.; Bouchier-Hayes, L.; Chipuk, J.E.; Bonzon, C.; Sullivan, B.A.; Green, D.R.; Newmeyer, D.D. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell, 2005, 17(4), 525-535.
[http://dx.doi.org/10.1016/j.molcel.2005.02.003] [PMID: 15721256]
[73]
Willis, S.N.; Chen, L.; Dewson, G.; Wei, A.; Naik, E.; Fletcher, J.I.; Adams, J.M.; Huang, D.C.S. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-x L, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev., 2005, 19(11), 1294-1305.
[http://dx.doi.org/10.1101/gad.1304105] [PMID: 15901672]
[74]
Mérino, D.; Giam, M.; Hughes, P.D.; Siggs, O.M.; Heger, K.; O’Reilly, L.A.; Adams, J.M.; Strasser, A.; Lee, E.F.; Fairlie, W.D.; Bouillet, P. The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. J. Cell Biol., 2009, 186(3), 355-362.
[http://dx.doi.org/10.1083/jcb.200905153] [PMID: 19651893]
[75]
Edlich, F.; Banerjee, S.; Suzuki, M.; Cleland, M.M.; Arnoult, D.; Wang, C.; Neutzner, A.; Tjandra, N.; Youle, R.J. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell, 2011, 145(1), 104-116.
[http://dx.doi.org/10.1016/j.cell.2011.02.034] [PMID: 21458670]
[76]
Leber, B.; Lin, J.; Andrews, D.W. Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene, 2010, 29(38), 5221-5230.
[http://dx.doi.org/10.1038/onc.2010.283] [PMID: 20639903]
[77]
Aranovich, A.; Liu, Q.; Collins, T.; Geng, F.; Dixit, S.; Leber, B.; Andrews, D.W. Differences in the mechanisms of proapoptotic BH3 proteins binding to Bcl-XL and Bcl-2 quantified in live MCF-7 cells. Mol. Cell, 2012, 45(6), 754-763.
[http://dx.doi.org/10.1016/j.molcel.2012.01.030] [PMID: 22464442]
[78]
Placzek, W.J.; Wei, J.; Kitada, S.; Zhai, D.; Reed, J.C.; Pellecchia, M. A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis., 2010, 1(5), e40.
[http://dx.doi.org/10.1038/cddis.2010.18] [PMID: 21364647]
[79]
Hong, J.; Kim, A.J.; Park, J.S.; Lee, S.H.; Lee, K.C.; Park, J.; Sym, S.J.; Cho, E.K.; Shin, D.B.; Lee, J.H. Additional rituximab-CHOP (R-CHOP) versus involved-field radiotherapy after a brief course of R-CHOP in limited, non-bulky diffuse large B-cell lymphoma: A retrospective analysis. Korean J. Hematol., 2010, 45(4), 253-259.
[http://dx.doi.org/10.5045/kjh.2010.45.4.253] [PMID: 21253427]
[80]
Hardwick, J.M.; Soane, L. Multiple functions of BCL-2 family proteins. Cold Spring Harb. Perspect. Biol., 2013, 5(2), a008722.
[http://dx.doi.org/10.1101/cshperspect.a008722] [PMID: 23378584]
[81]
Gilormini, M.; Malesys, C.; Armandy, E.; Manas, P.; Guy, J.B.; Magné, N.; Rodriguez-Lafrasse, C.; Ardail, D. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget, 2016, 7(13), 16731-16744.
[http://dx.doi.org/10.18632/oncotarget.7744] [PMID: 26934442]
[82]
Raffo, A.J.; Perlman, H.; Chen, M.W.; Day, M.L.; Streitman, J.S.; Buttyan, R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res., 1995, 55(19), 4438-4445.
[PMID: 7671257]
[83]
Campbell, K.J.; Tait, S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol., 2018, 8(5), 180002.
[http://dx.doi.org/10.1098/rsob.180002] [PMID: 29769323]
[84]
Mishra, R. Glycogen synthase kinase 3 beta: Can it be a target for oral cancer. Mol. Cancer, 2010, 9(1), 144.
[http://dx.doi.org/10.1186/1476-4598-9-144] [PMID: 20537194]
[85]
Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.K.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6), 1799-1805.
[PMID: 8183579]
[86]
Toshiyuki, M.; Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 1995, 80(2), 293-299.
[http://dx.doi.org/10.1016/0092-8674(95)90412-3] [PMID: 7834749]
[87]
Sakuragi, N.; Salah-eldin, A.; Watari, H.; Itoh, T.; Inoue, S.; Moriuchi, T.; Fujimoto, S. Bax, Bcl-2, and p53 expression in endometrial cancer. Gynecol. Oncol., 2002, 86(3), 288-296.
[http://dx.doi.org/10.1006/gyno.2002.6742] [PMID: 12217750]
[88]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[89]
Deng, X.; Gao, F.; Flagg, T.; May, W.S. Jr Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc. Natl. Acad. Sci., 2004, 101(1), 153-158.
[http://dx.doi.org/10.1073/pnas.2533920100] [PMID: 14660795]
[90]
Zhou, M.; Zhang, Q.; Zhao, J.; Liao, M.; Wen, S.; Yang, M. Phosphorylation of Bcl-2 plays an important role in glycochenodeoxycholate-induced survival and chemoresistance in HCC. Oncol. Rep., 2017, 38(3), 1742-1750.
[http://dx.doi.org/10.3892/or.2017.5830] [PMID: 28731137]
[91]
Gautschi, O.; Tschopp, S.; Olie, R.A.; Leech, S.H.; Simões-Wüst, A.P.; Ziegler, A.; Baumann, B.; Odermatt, B.; Hall, J.; Stahel, R.A.; Zangemeister-Wittke, U. Activity of a novel bcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J. Natl. Cancer Inst., 2001, 93(6), 463-471.
[http://dx.doi.org/10.1093/jnci/93.6.463] [PMID: 11259472]
[92]
Jiang, Z.; Zheng, X.; Rich, K.M. Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J. Neurochem., 2003, 84(2), 273-281.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01522.x] [PMID: 12558990]
[93]
Zangemeister-Wittke, U.; Leech, S.H.; Olie, R.A.; Simões-Wüst, A.P.; Gautschi, O.; Luedke, G.H.; Natt, F.; Häner, R.; Martin, P.; Hall, J.; Nalin, C.M.; Stahel, R.A. A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin. Cancer Res., 2000, 6(6), 2547-2555.
[PMID: 10873111]
[94]
Degterev, A.; Lugovskoy, A.; Cardone, M.; Mulley, B.; Wagner, G.; Mitchison, T.; Yuan, J. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat. Cell Biol., 2001, 3(2), 173-182.
[http://dx.doi.org/10.1038/35055085] [PMID: 11175750]
[95]
Tzung, S.P.; Kim, K.M.; Basañez, G.; Giedt, C.D.; Simon, J.; Zimmerberg, J.; Zhang, K.Y.J.; Hockenbery, D.M. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat. Cell Biol., 2001, 3(2), 183-191.
[http://dx.doi.org/10.1038/35055095] [PMID: 11175751]
[96]
Lowe, S.L.; Rubinchik, S.; Honda, T.; McDonnell, T.J.; Dong, J-Y.; Norris, J.S. Prostate-specific expression of Bax delivered by an adenoviral vector induces apoptosis in LNCaP prostate cancer cells. Gene Ther., 2001, 8(18), 1363-1371.
[http://dx.doi.org/10.1038/sj.gt.3301531] [PMID: 11571575]
[97]
Liu, J.; Yang, Y.; Zhu, Q.; Wang, Z.; Hu, G.; Shi, H.; Zhou, X. ELISA-based method for variant-independent detection of total microcystins and nodularins via a multi-immunogen approach. Environ.Sci. Technol., 2021, 55(19), acs.est. 1c03330.
[http://dx.doi.org/10.1021/acs.est.1c03330] [PMID: 34551520]
[98]
Tan, J.; Liu, L.; Li, F.; Chen, Z.; Chen, G.Y.; Fang, F.; Guo, J.; He, M.; Zhou, X. Screening of endocrine disrupting potential of surface waters via an affinity-based biosensor in a rural community in the Yellow River Basin, China. Environ. Sci. Technol., 2022, 56(20), 14350-14360.
[http://dx.doi.org/10.1021/acs.est.2c01323] [PMID: 36129370]
[99]
Yadav, S.; Pandey, S.K.; Singh, V.K.; Goel, Y.; Kumar, A.; Singh, S.M. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies. PLoS One, 2017, 12(5), e0176403.
[http://dx.doi.org/10.1371/journal.pone.0176403] [PMID: 28463978]
[100]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[101]
Srivastava, R. Theoretical studies on the molecular properties, toxicity, and biological efcacy of 21 new chemical entities. ACS Omega, 2021, 6(38), 24891-24901.
[http://dx.doi.org/10.1021/acsomega.1c03736] [PMID: 34604670]
[102]
Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol., 2012, 6(2), 155-176.
[http://dx.doi.org/10.1016/j.molonc.2012.02.004] [PMID: 22440008]
[103]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[104]
Gupta, A.; Sahu, N.; Singh, A.P.; Singh, V.K.; Singh, S.C.; Upadhye, V.J.; Mathew, A.T.; Kumar, R.; Sinha, R.P. Exploration of novel lichen compounds as inhibitors of SARS-CoV-2 Mpro: ligand-based design, molecular dynamics, and ADMET analyses. Appl. Biochem. Biotechnol., 2022, 194(12), 6386-6406.
[http://dx.doi.org/10.1007/s12010-022-04103-3] [PMID: 35921031]
[105]
Ritchie, T.J.; Macdonald, S.J.F.; Peace, S.; Pickett, S.D.; Luscombe, C.N. Increasing small molecule drug developability in sub-optimal chemical space. MedChemComm, 2013, 4(4), 673-680.
[http://dx.doi.org/10.1039/c3md00003f]
[106]
Nandagopal, P.; Steven, A.N.; Chan, L.W.; Rahmat, Z.; Jamaluddin, H.; Mohd Noh, N.I. Bioactive metabolites produced by cyanobacteria for growth adaptation and their pharmacological properties. Biology, 2021, 10(10), 1061.
[http://dx.doi.org/10.3390/biology10101061] [PMID: 34681158]
[107]
Robles-Bañuelos, B.; Durán-Riveroll, L.M.; Rangel-López, E.; Pérez-López, H.I.; González-Maya, L. Marine cyanobacteria as sources of lead anticancer compounds: A review of families of metabolites with cytotoxic, antiproliferative, and antineoplastic effects. Molecules, 2022, 27(15), 4814.
[http://dx.doi.org/10.3390/molecules27154814] [PMID: 35956762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy