Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Hybrid Organic Polymer/Inorganic Nano-materials for Biomedical Applications: Where we are and Where to go?

Author(s): Alessio Massironi*

Volume 20, Issue 2, 2024

Published on: 26 May, 2023

Page: [188 - 205] Pages: 18

DOI: 10.2174/1573413719666230410113733

Price: $65

Abstract

Hybrid functional materials, composed of inorganic and organic components, are considered versatile platforms whose applications in electronics, optics, mechanics, energy storage, informatics, catalysis, sensors, and medicine field have represented a breakthrough for human well-being. Among hybrid materials, micro/nanostructured hybrid colloidal systems have been widely investigated due to the dramatic enhancement of activity provided by the large surface area exposed at the interfaces with respect to the bulk counterpart. Recently, a growing interest has been in the exploration of novel environmental-friendly and versatile procedures that allow the formulation of hybrid nanostructures through safety procedures and mild experimental conditions. This review aims to provide an introduction to hybrid organic-inorganic materials for biomedical applications in particular nanostructured ones, describing the commonly exploited materials for their fabrication and techniques, advantages, and drawbacks.

Graphical Abstract

[1]
Kickelbick, G. Hybrid materials – past, present and future. Hybrid Mater., 2014, 1(1), 39-51.
[http://dx.doi.org/10.2478/hyma-2014-0001]
[2]
Alemán, J.V.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R.F.T. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem., 2007, 79(10), 1801-1829.
[http://dx.doi.org/10.1351/pac200779101801]
[3]
José-Yacamán, M.; Rendón, L.; Arenas, J.; Serra Puche, M.C. Maya blue paint: An ancient nanostructured material. Science, 1996, 273(5272), 223-225.
[http://dx.doi.org/10.1126/science.273.5272.223]
[4]
Gómez-Romero, P.; Chojak, M.; Cuentas-Gallegos, K.; Asensio, J.A.; Kulesza, P.J.; Casañ-Pastor, N.; Lira-Cantú, M. Hybrid organic–inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem. Commun., 2003, 5(2), 149-153.
[http://dx.doi.org/10.1016/S1388-2481(03)00010-9]
[5]
Munch, E.; Launey, M.E.; Alsem, D.H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Tough, bio-inspired hybrid materials. Science, 2008, 322(5907), 1516-1520.
[http://dx.doi.org/10.1126/science.1164865]
[6]
Nanko, M. Definitions and categories of hybrid materials. AZojomo, 2009, 6, 1-8.
[7]
Judeinstein, P.; Sanchez, C. Hybrid organic–inorganic materials: A land of multidisciplinarity. J. Mater. Chem., 1996, 6(4), 511-525.
[http://dx.doi.org/10.1039/JM9960600511]
[8]
Hood, M.A.; Mari, M.; Muñoz-Espí, R. Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials, 2014, 7(5), 4057-4087.
[http://dx.doi.org/10.3390/ma7054057]
[9]
Kalia, S.; Haldorai, Y. Organic-inorganic hybrid nanomaterials. Adv. Polym. Sci., 2014, 267, 387.
[10]
Lohse, S.E.; Murphy, C.J. Applications of colloidal inorganic nanoparticles: From medicine to energy. J. Am. Chem. Soc., 2012, 134(38), 15607-15620.
[http://dx.doi.org/10.1021/ja307589n] [PMID: 22934680]
[11]
Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res., 2012, 14(9), 1109.
[http://dx.doi.org/10.1007/s11051-012-1109-9]
[12]
Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. In: Renewable Sustain. Energ. Rev; , 2018; 81, pp. 536-551.
[http://dx.doi.org/10.1016/j.rser.2017.08.020]
[13]
Wahid, F.; Zhong, C.; Wang, H.S.; Hu, X.H.; Chu, L.Q. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers, 2017, 9(12), 636.
[http://dx.doi.org/10.3390/polym9120636] [PMID: 30965938]
[14]
Osmond, M.J.; McCall, M.J. Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology, 2010, 4(1), 15-41.
[http://dx.doi.org/10.3109/17435390903502028]
[15]
Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol., 2013, 87(7), 1181-1200.
[http://dx.doi.org/10.1007/s00204-013-1079-4]
[16]
Ikram, M.; Javed, B.; Raja, N.I.; Mashwani, Z.R. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomedic, 2021, 16, 249-268.
[http://dx.doi.org/10.2147/IJN.S295053] [PMID: 33469285]
[17]
Nayak, V.; Singh, K.R.B.; Singh, A.K.; Singh, R.P. Potentialities of selenium nanoparticles in biomedical science. New J. Chem., 2021, 45(6), 2849-2878.
[http://dx.doi.org/10.1039/D0NJ05884J]
[18]
Sani-e-Zahra, M.S.; Iqbal, M.S.; Abbas, K.; Qadir, M.I. Synthesis, characterization and evaluation of biological properties of selenium nanoparticles from Solanum lycopersicum. Arab. J. Chem., 2022, 15(7), 103901.
[http://dx.doi.org/10.1016/j.arabjc.2022.103901]
[19]
Rahman, I.A.; Padavettan, V. Synthesis of Silica nanoparticles by Sol-Gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocompositesa review. J. Nanomater., 2012, 8-8.
[http://dx.doi.org/10.1155/2012/132424]
[20]
Müllner, M.; Lunkenbein, T.; Breu, J.; Caruso, F.; Müller, A.H.E. Template-directed synthesis of silica nanowires and nanotubes from cylindrical core-shell polymer brushes. Chem. Mater., 2012, 24(10), 1802-1810.
[http://dx.doi.org/10.1021/cm300312g]
[21]
Vo, N.T.K.; Bufalino, M.R.; Hartlen, K.D.; Kitaev, V.; Lee, L.E.J. Cytotoxicity evaluation of silica nanoparticles using fish cell lines in vitro Cell. Dev. Biol. Anim., 2014, 50(5), 427-438.
[http://dx.doi.org/10.1007/s11626-013-9720-3] [PMID: 24357037]
[22]
Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7(1), 144.
[http://dx.doi.org/10.1186/1556-276X-7-144] [PMID: 22348683]
[23]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[24]
Chua, T.; Eise, N.T.; Simpson, J.S.; Ventura, S. Pharmacological characterization and chemical fractionation of a liposterolic extract of saw palmetto (Serenoa repens): Effects on rat prostate contractility. J. Ethnopharmacol., 2014, 152(2), 283-291.
[http://dx.doi.org/10.1016/j.jep.2013.12.030] [PMID: 24463033]
[25]
Li, Y.; Zhou, S.; Song, H.; Yu, T.; Zheng, X.; Chu, Q. CaCO3 nanoparticles incorporated with KAE to enable amplified calcium overload cancer therapy. Biomaterials, 2021, 277, 121080.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121080] [PMID: 34488120]
[26]
Maleki Dizaj, S.; Sharifi, S.; Ahmadian, E.; Eftekhari, A.; Adibkia, K.; Lotfipour, F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin. Drug Deliv., 2019, 16(4), 331-345.
[http://dx.doi.org/10.1080/17425247.2019.1587408] [PMID: 30807242]
[27]
Tang, Z.; Qiu, Z.; Zhong, H.; Mao, H.; Shan, K.; Kang, Y. Novel Acrylamide/2-Acrylamide-2-3 Methylpropanesulfonic Acid/Styrene/Maleic Anhydride polymer-based caco3 nanoparticles to improve the filtration of water-based drilling fluids at high temperature. Gels, 2022, 8(5), 322.
[http://dx.doi.org/10.3390/gels8050322]
[28]
Chemmalar, S.; Intan-Shameha, A.R.; Abdullah, C.A.C.; Ab Razak, N.A.; Yusof, L.M.; Ajat, M.; Gowthaman, N.S.K.; Bakar, M.Z.A. Synthesis and characterization of gefitinib and paclitaxel mono and dual drug-loaded blood cockle shells (Anadara granosa)-derived aragonite CaCO3 nanoparticles. Nanomaterials, 2021, 11(8), 1988.
[http://dx.doi.org/10.3390/nano11081988] [PMID: 34443820]
[29]
Xing, J.; Cai, Y.; Wang, Y.; Zheng, H.; Liu, Y. Synthesis of polymer assembled mesoporous CaCo3 nanoparticles for molecular targeting and ph-responsive controlled drug release. Adv. Polym. Technol, 2020, 2020.
[30]
Epple, M.; Ganesan, K.; Heumann, R.; Klesing, J.; Kovtun, A.; Neumann, S.; Sokolova, V. Application of calcium phosphatenanoparticles in biomedicine. J. Mater. Chem., 2010, 20(1), 18-23.
[http://dx.doi.org/10.1039/B910885H]
[31]
Khalifehzadeh, R.; Arami, H. Biodegradable calcium phosphate nanoparticles for cancer therapy.In: Advances in Colloid and Interface Science; Elsevier B.V; , 2020, 279, p. 102157.
[http://dx.doi.org/10.1016/j.cis.2020.102157]
[32]
Alves Cardoso, D.; Jansen, J.A.; Leeuwenburgh, S.C. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J. Biomed. Mater, 2012, 100(8), 2316-2326.
[http://dx.doi.org/10.1002/jbm.b.32794]
[33]
Zu, H.; Gao, D. Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J., 2021, 23(4), 78.
[http://dx.doi.org/10.1208/s12248-021-00608-7] [PMID: 34076797]
[34]
Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 2006, 35(3), 209-217.
[http://dx.doi.org/10.1039/B514191E] [PMID: 16505915]
[35]
Hutter, E.; Fendler, J.H. Exploitation of localized surface plasmon resonance. Adv. Mater., 2004, 16(19), 1685-1706.
[http://dx.doi.org/10.1002/adma.200400271]
[36]
El-Brolossy, T.A.; Abdallah, T.; Mohamed, M.B.; Abdallah, S.; Easawi, K.; Negm, S.; Talaat, H. Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique. Eur. Phys. J. Spec. Top., 2008, 153(1), 361-364.
[http://dx.doi.org/10.1140/epjst/e2008-00462-0]
[37]
Qazi, U.Y.; Javaid, R. A review on metal nanostructures: Preparation methods and their potential applications. Adv. Nanopart., 2016, 5(1), 27-43.
[http://dx.doi.org/10.4236/anp.2016.51004]
[38]
Pareek, V.; Bhargava, A.; Gupta, R.; Jain, N.; Panwar, J. Synthesis and applications of noble metal nanoparticles: A review. Adv. Sci. Eng. Med., 2017, 9(7), 527-544.
[http://dx.doi.org/10.1166/asem.2017.2027]
[39]
Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. Sci., 2016, 28(4), 273-279.
[http://dx.doi.org/10.1016/j.jksus.2016.05.004]
[40]
Shateri-Khalilabad, M.; Yazdanshenas, M.E.; Etemadifar, A. Fabricating multifunctional silver nanoparticles-coated cotton fabric. Arab. J. Chem., 2017, 10, S2355-S2362.
[http://dx.doi.org/10.1016/j.arabjc.2013.08.013]
[41]
Sriram, M.I.; Kanth, S.B.M.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomedicine, 2010, 5(1), 753-762.
[PMID: 21042421]
[42]
Gajbhiye, S.; Sakharwade, S. Silver nanoparticles in cosmetics. J. Cosmet. Dermatolog. Sci. Appl., 2016, 06(01), 48-53.
[43]
Deng, L.; Kang, X.; Liu, Y.; Feng, F.; Zhang, H. Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chem., 2017, 231, 70-77.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.027] [PMID: 28450025]
[44]
Fan, L.; Zhang, H.; Gao, M.; Zhang, M.; Liu, P.; Liu, X. Cellulose nanocrystals/silver nanoparticles: in-situ preparation and application in PVA films. Holzforschung, 2020, 74(5), 523-528.
[http://dx.doi.org/10.1515/hf-2018-0251]
[45]
Lee, S.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[46]
Ventola, C.L. The antibiotic resistance crisis: Part 2: Management strategies and new agents. P&T, 2015, 40(5), 344-352.
[PMID: 25987823]
[47]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[48]
Sanyasi, S.; Rakesh, K.M.; Satish, K. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci. Rep., 2016, 6, 24929.
[49]
Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol., 2012, 112(5), 841-852.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05253.x] [PMID: 22324439]
[50]
Otari, S.V.; Patil, R.M.; Nadaf, N.H.; Ghosh, S.J.; Pawar, S.H. Green synthesis of silver nanoparticles by microorganism using organic pollutant: Its antimicrobial and catalytic application. Environ. Sci. Pollut. Res. Int., 2014, 21(2), 1503-1513.
[http://dx.doi.org/10.1007/s11356-013-1764-0] [PMID: 23925656]
[51]
Sharma, V.K.; Siskova, K.M.; Zboril, R.; Gardea-Torresdey, J.L. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv. Colloid Interface Sci., 2014, 204, 15-34.
[http://dx.doi.org/10.1016/j.cis.2013.12.002] [PMID: 24406050]
[52]
MacCuspie, R.I. Colloidal stability of silver nanoparticles in biologically relevant conditions. J. Nanopart. Res., 2011, 13(7), 2893-2908.
[http://dx.doi.org/10.1007/s11051-010-0178-x]
[53]
Bélteky, P.; Rónavári, A.; Igaz, N.; Szerencsés, B.; Tóth, I.Y.; Pfeiffer, I.; Kiricsi, M.; Kónya, Z. Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. Int. J. Nanomedicine, 2019, 14, 667-687.
[http://dx.doi.org/10.2147/IJN.S185965] [PMID: 30705586]
[54]
Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2012, 2(1), 32.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[55]
Polte, J. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm, 2015, 17(36), 6809-6830.
[http://dx.doi.org/10.1039/C5CE01014D]
[56]
Song, K.C.; Lee, S.M.; Park, T.S.; Lee, B.S. Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J. Chem. Eng., 2009, 26(1), 153-155.
[http://dx.doi.org/10.1007/s11814-009-0024-y]
[57]
Rajan, R.; Chandran, K.; Harper, S.L.; Il Yun, S.; Kalaichelvan, P.T. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. In: Industrial Crops and Products356-373.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.015]
[58]
Massironi, A.; Andrea, M.; Lucia, G. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydr. Polym., 2019, 203, 310-321.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.066]
[59]
Antony, J.J.; Sithika, M.A.A.; Joseph, T.A.; Suriyakalaa, U.; Sankarganesh, A.; Siva, D.; Kalaiselvi, S.; Achiraman, S. in vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Colloids Surf. B Biointerfaces, 2013, 108, 185-190.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.041] [PMID: 23537836]
[60]
Travan, A.; Pelillo, C.; Donati, I.; Marsich, E.; Benincasa, M.; Scarpa, T.; Semeraro, S.; Turco, G.; Gennaro, R.; Paoletti, S. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules, 2009, 10(6), 1429-1435.
[http://dx.doi.org/10.1021/bm900039x] [PMID: 19405545]
[61]
Sperling, L.H.; Hu, R. Interpenetrating polymer networks.Polymer Blends Handbook; Springer Netherlands, 2014, pp. 677-724.
[http://dx.doi.org/10.1007/978-94-007-6064-6_8]
[62]
Owens, D.E.; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 307(1), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010]
[63]
Papini, E.; Tavano, R.; Mancin, F. Opsonins and dysopsonins of nanoparticles: Facts, concepts, and methodological guidelines. Front. Immunol., 2020, 11, 567365.
[http://dx.doi.org/10.3389/fimmu.2020.567365]
[64]
Manson, J.; Kumar, D.; Meenan, B.J.; Dixon, D. Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull., 2011, 44(2), 99-105.
[http://dx.doi.org/10.1007/s13404-011-0015-8]
[65]
Pasut, G.; Veronese, F.M. PEG conjugates in clinical development or use as anticancer agents: An overview. Adv. Drug Deliv. Rev., 2009, 61(13), 1177-1188.
[http://dx.doi.org/10.1016/j.addr.2009.02.010] [PMID: 19671438]
[66]
Hong, R.; Fischer, N.O.; Emrick, T.; Rotello, V.M. Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater., 2005, 17(18), 4617-4621.
[http://dx.doi.org/10.1021/cm0507819]
[67]
Alkilany, A.M.; Abulateefeh, S.R.; Murphy, C.J. Facile functionalization of gold nanoparticles with plga polymer brushes and efficient encapsulation into PLGA nanoparticles: Toward spatially precise bioimaging of polymeric nanoparticles. Part. Part. Syst. Charact., 2019, 36(2), 1800414.
[68]
Hines, D.J.; Kaplan, D.L. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(3), 257-276.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013006475] [PMID: 23614648]
[69]
Pavan, S.R.; Prabhu, A. Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: A review. J. Mater. Sci., 2022, 57, 16192-16227.
[http://dx.doi.org/10.1007/s10853-022-07649-z]
[70]
Alkahtani, S.; Saud, A.; Gadah, A. Poly lactic-co-glycolic acid-(plga-) loaded nanoformulation of cisplatin as a therapeutic approach for breast cancers. Oxid. Med. Cell. Longev., 2021, 2021, 5834418.
[71]
Alkilany, A.M.; Rachid, O.; Alkawareek, M.Y.; Billa, N.; Daou, A.; Murphy, C.J. PLGA-Gold nanocomposite: Preparation and biomedical applications. Pharm., 2022, 14(3), 660.
[http://dx.doi.org/10.3390/pharmaceutics14030660]
[72]
Khan, M.A.; Singh, D.; Ahmad, A.; Siddique, H.R. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur. J. Pharm. Sci., 164, 105892.
[http://dx.doi.org/10.1016/j.ejps.2021.105892]
[73]
Preda, N.; Enculescu, M.; Zgura, I.; Socol, M.; Florica, C.; Evanghelidis, A.; Matei, E.; Enculescu, I. Zinc oxide and polysaccharides: Promising candidates for functional nanomaterials. Springer Series in Materials Science, 2014, 205, 109-136.
[http://dx.doi.org/10.1007/978-3-662-44479-5_5]
[74]
Ahmed, T.A.; Aljaeid, B.M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther., 2016, 10, 483-507.
[http://dx.doi.org/10.2147/DDDT.S99651]
[75]
Parry, J.; Hao, Z.; Luther, M.; Su, L.; Zhou, K.; Yu, L.L. Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. J. Am. Oil Chem. Soc., 2006, 83(10), 847-854.
[http://dx.doi.org/10.1007/s11746-006-5036-8]
[76]
Pasanphan, W.; Buettner, G.R.; Chirachanchai, S. Chitosan gallate as a novel potential polysaccharide antioxidant: an EPR study. Carbohydr. Res., 2010, 345(1), 132-140.
[http://dx.doi.org/10.1016/j.carres.2009.09.038] [PMID: 19889400]
[77]
Abakumov, M.A.; Semkina, A.S.; Skorikov, A.S.; Vishnevskiy, D.A.; Ivanova, A.V.; Mironova, E.; Davydova, G.A.; Majouga, A.G.; Chekhonin, V.P. Toxicity of iron oxide nanoparticles: Size and coating effects. J. Biochem. Mol. Toxicol., 2018, 32(12), e22225.
[http://dx.doi.org/10.1002/jbt.22225] [PMID: 30290022]
[78]
Kojima, C.; Nakajima, Y.; Kawano, T.; Takatsuka, K. Preparation of a visible light-responsive gold nanoparticle-containing collagen gel microarray for in situ cell separation. Res. Chem. Intermed., 2021, 47(1), 51-60.
[http://dx.doi.org/10.1007/s11164-020-04336-z]
[79]
Unser, S.; Holcomb, S.; Cary, R.; Sagle, L. Collagen-gold nanoparticle conjugates for versatile biosensing. Sensors, 2017, 17(2), 378.
[http://dx.doi.org/10.3390/s17020378]
[80]
Massironi, A.; Morelli, A.; Puppi, D.; Chiellini, F. Renewable polysaccharides micro/nanostructures for food and cosmetic applications. Molecules, 2020, 25(21), 4886.
[http://dx.doi.org/10.3390/molecules25214886] [PMID: 33105769]
[81]
Farooq, M.; Ihsan, J.; M K; Mohamed, R.; Khan, M.A.; Rehman, T.U.; Ullah, H.; Ghani, M.; Saeed, S.; Siddiq, M. Highly biocompatible formulations based on Arabic gum Nano composite hydrogels: Fabrication, characterization, and biological investigation. Int. J. Biol. Macromol. 2022, 209(Pt A), 59, 69.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.162] [PMID: 35364204]
[82]
Sabouri, Z.; Akbari, A.; Hosseini, H.A.; Khatami, M.; Darroudi, M. Green-based bio-synthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chem. Lett. Rev., 2021, 14(2), 404-414.
[http://dx.doi.org/10.1080/17518253.2021.1923824]
[83]
Angelova, N.; Hunkeler, D. Rationalizing the design of polymeric biomaterials. Trends Biotechnol., 1999, 17(10), 409-421.
[http://dx.doi.org/10.1016/S0167-7799(99)01356-6] [PMID: 10481173]
[84]
Kumar, D.; Singh, K.; Verma, V.; Bhatti, H.S. Synthesis and characterization of carbon quantum dots from orange juice. J. Bionanosci., 2014, 8(4), 274-279.
[http://dx.doi.org/10.1166/jbns.2014.1236]
[85]
Zhao, W.; Brook, M.A.; Li, Y. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem, 2008, 9(15), 2363-2371.
[http://dx.doi.org/10.1002/cbic.200800282] [PMID: 18821551]
[86]
Berrington De, G.A. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med., 2009, 169(22), 2071-2077.
[http://dx.doi.org/10.1001/archinternmed.2009.440] [PMID: 20008689]
[87]
Lee, J.; Morita, M.; Takemura, K.; Park, E.Y. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens. Bioelectron., 2018, 102, 425-431.
[http://dx.doi.org/10.1016/j.bios.2017.11.052] [PMID: 29175218]
[88]
Chou, R.; Fu, R.; Carrino, J.A.; Deyo, R.A. Imaging strategies for low-back pain: systematic review and meta-analysis. Lancet, 2009, 373(9662), 463-472.
[http://dx.doi.org/10.1016/S0140-6736(09)60172-0] [PMID: 19200918]
[89]
Shubayev, V.I.; Pisanic, T.R., II; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev., 2009, 61(6), 467-477.
[http://dx.doi.org/10.1016/j.addr.2009.03.007] [PMID: 19389434]
[90]
Cotin, G.; Piant, S.; Mertz, D.; Felder-Flesch, D.; Begin-Colin, S. Iron oxide nanoparticles for biomedical applications: synthesis, functionalization, and application. Iron Oxide Nanoparticles for Biomedical Applications; Elsevier: Amsterdam, 2018, pp. 43-88.
[http://dx.doi.org/10.1016/B978-0-08-101925-2.00002-4]
[91]
Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; Coussens, L.M.; Daldrup-Link, H.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol., 2016, 11(11), 986-994.
[http://dx.doi.org/10.1038/nnano.2016.168] [PMID: 27668795]
[92]
Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev., 2012, 112(11), 5818-5878.
[http://dx.doi.org/10.1021/cr300068p] [PMID: 23043508]
[93]
Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev., 1999, 99(9), 2293-2352.
[http://dx.doi.org/10.1021/cr980440x] [PMID: 11749483]
[94]
Clough, T.J.; Jiang, L.; Wong, K.L.; Long, N.J. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat. Commun., 2019, 10(1), 1420.
[http://dx.doi.org/10.1038/s41467-019-09342-3] [PMID: 30926784]
[95]
Narmani, A.; Farhood, B.; Haghi-Aminjan, H.; Mortezazadeh, T.; Aliasgharzadeh, A.; Mohseni, M.; Najafi, M.; Abbasi, H. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. J. Drug Deliv. Sci. Technol., 2018, 44, 457-466.
[http://dx.doi.org/10.1016/j.jddst.2018.01.011]
[96]
Mariano, R.N.; Alberti, D.; Cutrin, J.C.; Geninatti Crich, S.; Aime, S. Design of PLGA based nanoparticles for imaging guided applications. Mol. Pharm., 2014, 11(11), 4100-4106.
[http://dx.doi.org/10.1021/mp5002747] [PMID: 25225751]
[97]
Hajfathalian, M.; Amirshaghaghi, A.; Naha, P.C.; Chhour, P.; Hsu, J.C.; Douglas, K.; Dong, Y.; Sehgal, C.M.; Tsourkas, A.; Neretina, S.; Cormode, D.P. Wulff in a cage gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Nanoscale, 2018, 10(39), 18749-18757.
[http://dx.doi.org/10.1039/C8NR05203D] [PMID: 30276391]
[98]
Nijhawan, G.; Nijhawan, S.S.; Sethi, M. Hyperthermia Treatments.Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications; Woodhead Publishing, 2018, pp. 241-263.
[99]
Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 2008, 41(12), 1578-1586.
[http://dx.doi.org/10.1021/ar7002804] [PMID: 18447366]
[100]
Aioub, M.; Austin, L.A.; El-Sayed, M.A. Gold nanoparticles for cancer diagnostics, spectroscopic imaging, drug delivery, and plasmonic photothermal therapy.Inorganic Frameworks as Smart Nanomedicines; William Andrew, 2018, pp. 41-91.
[http://dx.doi.org/10.1016/B978-0-12-813661-4.00002-X]
[101]
Stuchinskaya, T.; Moreno, M.; Cook, M.J.; Edwards, D.R.; Russell, D.A. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem. Photobiol. Sci., 2011, 10(5), 822-831.
[http://dx.doi.org/10.1039/c1pp05014a] [PMID: 21455532]
[102]
Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted application of silica nanoparticles. A review. Silicon, 2020, 12(6), 1337-1354.
[http://dx.doi.org/10.1007/s12633-019-00229-y]
[103]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[104]
Shapiro, E.M. Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking. Magn. Reson. Med., 2015, 73(1), 376-389.
[http://dx.doi.org/10.1002/mrm.25263] [PMID: 24753150]
[105]
Furlan, M.; Kluge, J.; Mazzotti, M.; Lattuada, M. Preparation of biocompatible magnetite–PLGA composite nanoparticles using supercritical fluid extraction of emulsions. J. Supercrit. Fluids, 2010, 54(3), 348-356.
[http://dx.doi.org/10.1016/j.supflu.2010.05.010]
[106]
Varache, M.; Bezverkhyy, I.; Weber, G.; Saviot, L.; Chassagnon, R.; Baras, F.; Bouyer, F. Loading of cisplatin into mesoporous silica nanoparticles: effect of surface functionalization. Langmuir, 2019, 35(27), 8984-8995.
[http://dx.doi.org/10.1021/acs.langmuir.9b00954] [PMID: 31244247]
[107]
Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci., 2016, 6(3), 399-408.
[http://dx.doi.org/10.1007/s13204-015-0449-z]
[108]
Vu, T.; Claret, F.X. Trastuzumab: Updated mechanisms of action and resistance in breast cancer. Front. Oncol., 2012, 2, 62.
[http://dx.doi.org/10.3389/fonc.2012.00062] [PMID: 22720269]
[109]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[110]
Popova, V.; Poletaeva, Y.; Pyshnaya, I.; Pyshnyi, D.; Dmitrienko, E. Designing pH-dependent systems based on nanoscale calcium carbonate for the delivery of an antitumor drug. Nanomaterials, 2021, 11(11), 2794.
[http://dx.doi.org/10.3390/nano11112794] [PMID: 34835558]
[111]
Zhao, P.; Li, M.; Wang, Y.; Chen, Y.; He, C.; Zhang, X.; Yang, T.; Lu, Y.; You, J.; Lee, R.J.; Xiang, G. Enhancing anti-tumor efficiency in hepatocellular carcinoma through the autophagy inhibition by miR-375/sorafenib in lipid-coated calcium carbonate nanoparticles. Acta Biomater., 2018, 72, 248-255.
[http://dx.doi.org/10.1016/j.actbio.2018.03.022] [PMID: 29555460]
[112]
Luo, D.; Saltzman, W.M. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat. Biotechnol., 2000, 18(8), 893-895.
[http://dx.doi.org/10.1038/78523] [PMID: 10932162]
[113]
Sokolova, V.; Epple, M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem. Int. Ed., 2008, 47(8), 1382-1395.
[http://dx.doi.org/10.1002/anie.200703039] [PMID: 18098258]
[114]
Babu, A.; Muralidharan, R.; Amreddy, N.; Mehta, M.; Munshi, A.; Ramesh, R. Nanoparticles for siRNA-based gene silencing in tumor therapy. IEEE Trans. Nanobiosci., 2016, 15(8), 849-863.
[http://dx.doi.org/10.1109/TNB.2016.2621730] [PMID: 28092499]
[115]
Ramasamy, T.; Munusamy, S.; Ruttala, H.B.; Kim, J.O. Smart nanocarriers for the delivery of nucleic acid-based therapeutics: A comprehensive review. J. Biotechnol., 2021, 16(2), 1900408.
[http://dx.doi.org/10.1002/biot.201900408]
[116]
Jahangiri-Manesh, A.; Mousazadeh, M.; Taji, S.; Bahmani, A.; Zarepour, A.; Zarrabi, A.; Sharifi, E.; Azimzadeh, M. Gold nanorods for drug and gene delivery: An overview of recent advancements. Pharmaceutics, 2022, 14(3), 664.
[http://dx.doi.org/10.3390/pharmaceutics14030664] [PMID: 35336038]
[117]
Hosseini, S.; Epple, M. Suppositories with bioactive calcium phosphate nanoparticles for intestinal transfection and gene silencing. Nano Select, 2021, 2(3), 561-572.
[http://dx.doi.org/10.1002/nano.202000150]
[118]
Bloise, N.; Massironi, A.; Della Pina, C.; Alongi, J.; Siciliani, S.; Manfredi, A.; Biggiogera, M.; Rossi, M.; Ferruti, P.; Ranucci, E.; Visai, L. Extra-small gold nanospheres decorated with a thiol functionalized biodegradable and biocompatible linear polyamidoamine as nanovectors of anticancer molecules. Front. Bioeng. Biotechnol., 2020, 8, 132.
[http://dx.doi.org/10.3389/fbioe.2020.00132] [PMID: 32195232]
[119]
Hajipour, M.J.; Fromm, K.M.; Akbar Ashkarran, A.; Jimenez de Aberasturi, D.; Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30(10), 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[120]
El-Naggar, M.E.; Shaheen, T.I.; Zaghloul, S.; El-Rafie, M.H.; Hebeish, A. Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics. Ind. Eng. Chem. Res., 2016, 55(10), 2661-2668.
[http://dx.doi.org/10.1021/acs.iecr.5b04315]
[121]
Barillo, D.J.; Marx, D.E. Silver in medicine: A brief history BC 335 to present. Burns, 2014, 40(S1), S3-S8.
[http://dx.doi.org/10.1016/j.burns.2014.09.009] [PMID: 25418435]
[122]
Olejnik, I.N.A.; Goscianska, J. Significance of hyaluronic acid in cosmetic industry and aesthetic medicine science technique. Sci. Tech., 2012, 66(2), 129-135.
[123]
Durán, N.; Nakazato, G.; Seabra, A.B. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl. Microbiol. Biotechnol., 2016, 100(15), 6555-6570.
[http://dx.doi.org/10.1007/s00253-016-7657-7] [PMID: 27289481]
[124]
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874.
[http://dx.doi.org/10.3390/molecules20058856] [PMID: 25993417]
[125]
Niska, K.; Knap, N.; Kędzia, A.; Jaskiewicz, M.; Kamysz, W.; Inkielewicz-Stepniak, I. Capping agent-dependent toxicity and antimicrobial activity of silver nanoparticles: An in vitro study concerns about potential application in dental practice. Int. J. Med. Sci., 2016, 13(10), 772-782.
[http://dx.doi.org/10.7150/ijms.16011] [PMID: 27766027]
[126]
Cassano, D.; David, J.; Luin, S.; Voliani, V. Passion fruit-like nanoarchitectures: A general synthesis route. Sci. Rep., 2017, 7(1), 43795.
[127]
Kim, I.Y.; Joachim, E.; Choi, H.; Kim, K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine, 2015, 11(6), 1407-1416.
[http://dx.doi.org/10.1016/j.nano.2015.03.004] [PMID: 25819884]
[128]
Hadipour, M.S.P.; Mohammadpour, R.; Ghandehari, H. RETRACTED: in vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J. Control. Release, 2019, 311-312, 1-15.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.028] [PMID: 31465825]
[129]
Báez, D.F.; Gallardo-Toledo, E.; Oyarzún, M.P.; Araya, E.; Kogan, M.J. The influence of size and chemical composition of silver and gold nanoparticles on in vivo toxicity with potential applications to central nervous system diseases. Int. J. Nanomedicine, 2021, 16, 2187-2201.
[http://dx.doi.org/10.2147/IJN.S260375] [PMID: 33758506]
[130]
Henson, J.C.; Brickell, A.; Kim, J.W.; Jensen, H.; Mehta, J.L.; Jensen, M. PEGylated gold nanoparticle toxicity in cardiomyocytes: Assessment of size, concentration, and time dependency. IEEE Trans. Nanobiosci., 2022, 21(3), 387-394.
[http://dx.doi.org/10.1109/TNB.2022.3154438] [PMID: 35201990]
[131]
Eaton, P.; Quaresma, P.; Soares, C.; Neves, C.; de Almeida, M.P.; Pereira, E.; West, P. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy, 2017, 182, 179-190.
[http://dx.doi.org/10.1016/j.ultramic.2017.07.001] [PMID: 28692935]
[132]
Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol., 2011, 6(9), 534.
[http://dx.doi.org/10.1038/nnano.2011.145] [PMID: 21873991]
[133]
Hoo, C.M.; Starostin, N.; West, P.; Mecartney, M.L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanopart. Res., 2008, 10(1), 89-96.
[http://dx.doi.org/10.1007/s11051-008-9435-7]
[134]
Paradise, J. Regulating nanomedicine at the food and drug administration. AMA J. Ethics, 2019, 21(4), E347-E355.
[http://dx.doi.org/10.1001/amajethics.2019.347] [PMID: 31012422]
[135]
Choi, Y.H.; Han, H.K. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig., 2018, 48(1), 43-60.
[http://dx.doi.org/10.1007/s40005-017-0370-4] [PMID: 30546919]
[136]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[137]
Abdellatif, A.A.H.; Alsowinea, A.F. Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnol. Rev., 2021, 2(1), 1941-1977.
[http://dx.doi.org/10.1515/ntrev-2021-0115]
[138]
DeDiego, M.L.; Portilla, Y.; Daviu, N.; López-García, D.; Villamayor, L.; Mulens-Arias, V.; Ovejero, J.G.; Gallo-Cordova, Á.; Veintemillas-Verdaguer, S.; Morales, M.P.; Barber, D.F. Iron oxide and iron oxyhydroxide nanoparticles impair SARS-CoV-2 infection of cultured cells. J. Nanobiotechnology, 2022, 20(1), 352.
[http://dx.doi.org/10.1186/s12951-022-01542-2] [PMID: 35907835]
[139]
Tuli, H.S.; Joshi, R.; Kaur, G.; Garg, V.K.; Sak, K.; Varol, M.; Kaur, J.; Alharbi, S.A.; Alahmadi, T.A.; Aggarwal, D.; Dhama, K.; Jaswal, V.S.; Mittal, S.; Sethi, G. Metal nanoparticles in cancer: From synthesis and metabolism to cellular interactions. J. Nanostructure Chem., 2022, 1-28.
[http://dx.doi.org/10.1007/s40097-022-00504-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy