Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Oncology

Liquid Biopsy for Early Diagnosis of Hepatocellular Carcinoma: Current State and Future Perspectives

Author(s): Huiqin Jiang, Wenjing Yang, Anli Jin, Hao Wang, Tong Li, Jingrong Xian, Wei Chen, Ling Ding, Beili Wang and Wei Guo*

Volume 3, Issue 6, 2023

Published on: 05 May, 2023

Page: [420 - 443] Pages: 24

DOI: 10.2174/2210298103666230410105139

Price: $65

Abstract

Liquid biopsies in cancer have received considerable attention as new biomarkers and subjects of clinical translational research. Liquid biopsy-derived biomarkers, including circulating tumor cells, cell-free nucleic acids, exosomes, tumor-educated platelets, proteins, and metabolites, have shown enormous potential to improve the sensitivity and specificity in early diagnosis of multiple cancer types, including hepatocellular carcinoma (HCC). Several analytes are already used in HCC clinical trials and are currently under investigation with encouraging preliminary results. This article will review the latest studies on liquid biopsy for early diagnosis and screening of HCC and discuss the current advantages and challenges of liquid biopsies in tumor biomarkers and clinical applications. In the future, the validation of large prospective clinical studies, the development of standardized operating procedures, and the integration of other diagnostic tools will open new avenues for applying liquid biopsy in early cancer detection.

Graphical Abstract

[1]
Golabi, P.; Fazel, S.; Otgonsuren, M.; Sayiner, M.; Locklear, C.T.; Younossi, Z.M. Mortality assessment of patients with hepatocellular carcinoma according to underlying disease and treatment modalities. Medicine, 2017, 96(9), e5904.
[http://dx.doi.org/10.1097/MD.0000000000005904] [PMID: 28248853]
[2]
Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice guidance by the American Association for the study of liver diseases. Hepatology, 2018, 68(2), 723-750.
[http://dx.doi.org/10.1002/hep.29913] [PMID: 29624699]
[3]
Tzartzeva, K.; Obi, J.; Rich, N.E.; Parikh, N.D.; Marrero, J.A.; Yopp, A.; Waljee, A.K.; Singal, A.G. Surveillance imaging and alpha feto-protein for early detection of hepatocellular carcinoma in patients with cirrhosis: A meta-analysis. Gastroenterology, 2018, 154(6), 1706-1718.
[http://dx.doi.org/10.1053/j.gastro.2018.01.064] [PMID: 29425931]
[4]
Attwa, M.H.; El-Etreby, S.A. Guide for diagnosis and treatment of hepatocellular carcinoma. World J. Hepatol., 2015, 7(12), 1632-1651.
[http://dx.doi.org/10.4254/wjh.v7.i12.1632] [PMID: 26140083]
[5]
Wang, W.; Wei, C. Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis., 2020, 7(3), 308-319.
[http://dx.doi.org/10.1016/j.gendis.2020.01.014] [PMID: 32884985]
[6]
Heidrich, I.; Ačkar, L.; Mossahebi, M.P.; Pantel, K. Liquid biopsies: Potential and challenges. Int. J. Cancer, 2021, 148(3), 528-545.
[http://dx.doi.org/10.1002/ijc.33217] [PMID: 32683679]
[7]
Ryu, J.S.; Lim, J.H.; Lee, M.K.; Lee, S.J.; Kim, H.J.; Kim, M.J.; Park, M.H.; Kim, J.S.; Nam, H.S.; Park, N.; Yong, S.J. Feasibility of bronchial washing fluid-based approach to early-stage lung cancer diagnosis. Oncologist, 2019, 24(7), e603-e606.
[http://dx.doi.org/10.1634/theoncologist.2019-0147] [PMID: 31036768]
[8]
Keller, L.; Belloum, Y.; Wikman, H.; Pantel, K. Clinical relevance of blood-based ctDNA analysis: Mutation detection and beyond. Br. J. Cancer, 2021, 124(2), 345-358.
[http://dx.doi.org/10.1038/s41416-020-01047-5] [PMID: 32968207]
[9]
Yan, L.; Chen, Y.; Zhou, J.; Zhao, H.; Zhang, H.; Wang, G. Diagnostic value of circulating cell-free DNA levels for hepatocellular carcinoma. Int. J. Infect. Dis., 2018, 67, 92-97.
[http://dx.doi.org/10.1016/j.ijid.2017.12.002] [PMID: 29229500]
[10]
Jiang, P.; Chan, C.W.M.; Chan, K.C.A.; Cheng, S.H.; Wong, J.; Wong, V.W.S.; Wong, G.L.H.; Chan, S.L.; Mok, T.S.K.; Chan, H.L.Y.; Lai, P.B.S.; Chiu, R.W.K.; Lo, Y.M.D. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl. Acad. Sci., 2015, 112(11), E1317-E1325.
[http://dx.doi.org/10.1073/pnas.1500076112] [PMID: 25646427]
[11]
Zhang, X.; Wang, Z.; Tang, W.; Wang, X.; Liu, R.; Bao, H.; Chen, X.; Wei, Y.; Wu, S.; Bao, H.; Wu, X.; Shao, Y.; Fan, J.; Zhou, J. Ultra-sensitive and affordable assay for early detection of primary liver cancer using plasma cell‐free DNA fragmentomics. Hepatology, 2022, 76(2), 317-329.
[http://dx.doi.org/10.1002/hep.32308] [PMID: 34954829]
[12]
Marchio, A.; Amougou Atsama, M.; Béré, A.; Komas, N.P.; Noah Noah, D.; Atangana, P.J.A.; Camengo-Police, S.M.; Njouom, R.; Bekondi, C.; Pineau, P. Droplet digital PCR detects high rate of TP53 R249S mutants in cell-free DNA of middle African patients with hepatocellular carcinoma. Clin. Exp. Med., 2018, 18(3), 421-431.
[http://dx.doi.org/10.1007/s10238-018-0502-9] [PMID: 29749584]
[13]
Akuta, N.; Kawamura, Y.; Kobayashi, M.; Arase, Y.; Saitoh, S.; Fujiyama, S.; Sezaki, H.; Hosaka, T.; Kobayashi, M.; Suzuki, Y.; Suzuki, F.; Ikeda, K.; Kumada, H. TERT promoter mutation in serum cell-free DNA is a diagnostic marker of primary hepatocellular carcinoma in patients with nonalcoholic fatty liver disease. Oncology, 2021, 99(2), 114-123.
[http://dx.doi.org/10.1159/000510366] [PMID: 32998139]
[14]
Kaseb, A.O.; Sánchez, N.S.; Sen, S.; Kelley, R.K.; Tan, B.; Bocobo, A.G.; Lim, K.H.; Abdel-Wahab, R.; Uemura, M.; Pestana, R.C.; Qiao, W.; Xiao, L.; Morris, J.; Amin, H.M.; Hassan, M.M.; Rashid, A.; Banks, K.C.; Lanman, R.B.; Talasaz, A.; Mills-Shaw, K.R.; George, B.; Haque, A.; Raghav, K.P.S.; Wolff, R.A.; Yao, J.C.; Meric-Bernstam, F.; Ikeda, S.; Kurzrock, R. Molecular profiling of hepatocellular carcinoma using circulating cell-Free DNA. Clin. Cancer Res., 2019, 25(20), 6107-6118.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3341] [PMID: 31363003]
[15]
Guo, W.; Lu, J.; Yan, L.; Sun, D.; Gong, L.; Shi, W. Molecular alterations of circulating cell-free DNA in the pathological progression of hepatocellular carcinoma. J. Oncol., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/3637436] [PMID: 34899905]
[16]
Zheng, B.; Liu, X.L.; Fan, R.; Bai, J.; Wen, H.; Du, L.T.; Jiang, G.Q.; Wang, C.Y.; Fan, X.T.; Ye, Y.N.; Qian, Y.S.; Wang, Y.C.; Liu, G.J.; Deng, G.H.; Shen, F.; Hu, H.P.; Wang, H.; Zhang, Q.Z.; Ru, L.L.; Zhang, J.; Gao, Y.H.; Xia, J.; Yan, H.D.; Liang, M.F.; Yu, Y.L.; Sun, F.M.; Gao, Y.J.; Sun, J.; Zhong, C.X.; Wang, Y.; Kong, F.; Chen, J.M.; Zheng, D.; Yang, Y.; Wang, C.X.; Wu, L.; Hou, J.L.; Liu, J.F.; Wang, H.Y.; Chen, L. The landscape of cell-free HBV integrations and mutations in cirrhosis and hepatocellular carcinoma patients. Clin. Cancer Res., 2021, 27(13), 3772-3783.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0002] [PMID: 33947693]
[17]
Qu, C.; Wang, Y.; Wang, P.; Chen, K.; Wang, M.; Zeng, H.; Lu, J.; Song, Q.; Diplas, B.H.; Tan, D.; Fan, C.; Guo, Q.; Zhu, Z.; Yin, H.; Jiang, L.; Chen, X.; Zhao, H.; He, H.; Wang, Y.; Li, G.; Bi, X.; Zhao, X.; Chen, T.; Tang, H.; Lv, C.; Wang, D.; Chen, W.; Zhou, J.; Zhao, H.; Cai, J.; Wang, X.; Wang, S.; Yan, H.; Zeng, Y.X.; Cavenee, W.K.; Jiao, Y. Detection of early-stage hepatocellular carcinoma in asymptomatic HBsAg-seropositive individuals by liquid biopsy. Proc. Natl. Acad. Sci., 2019, 116(13), 6308-6312.
[http://dx.doi.org/10.1073/pnas.1819799116] [PMID: 30858324]
[18]
Jiang, P.; Sun, K.; Tong, Y.K.; Cheng, S.H.; Cheng, T.H.T.; Heung, M.M.S.; Wong, J.; Wong, V.W.S.; Chan, H.L.Y.; Chan, K.C.A.; Lo, Y.M.D.; Chiu, R.W.K. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma. Proc. Natl. Acad. Sci., 2018, 115(46), E10925-E10933.
[http://dx.doi.org/10.1073/pnas.1814616115] [PMID: 30373822]
[19]
Jin, C.; Liu, X.; Zheng, W.; Su, L.; Liu, Y.; Guo, X.; Gu, X.; Li, H.; Xu, B.; Wang, G.; Yu, J.; Zhang, Q.; Bao, D.; Wan, S.; Xu, F.; Lai, X.; Liu, J.; Xing, J. Characterization of fragment sizes, copy number aberrations and 4‐mer end motifs in cell‐free DNA of hepatocellular carcinoma for enhanced liquid biopsy‐based cancer detection. Mol. Oncol., 2021, 15(9), 2377-2389.
[http://dx.doi.org/10.1002/1878-0261.13041] [PMID: 34133846]
[20]
Tao, K.; Bian, Z.; Zhang, Q.; Guo, X.; Yin, C.; Wang, Y.; Zhou, K.; Wan, S.; Shi, M.; Bao, D.; Yang, C.; Xing, J. Machine learning-based genome-wide interrogation of somatic copy number aberrations in circulating tumor DNA for early detection of hepatocellular carcinoma. EBioMedicine, 2020, 56, 102811.
[http://dx.doi.org/10.1016/j.ebiom.2020.102811] [PMID: 32512514]
[21]
Meng, Z.; Ren, Q.; Zhong, G.; Li, S.; Chen, Y.; Wu, W.; Feng, Y.; Mao, M.; Zhang, F.; Long, G. Noninvasive detection of hepatocellular carcinoma with circulating tumor DNA features and α-fetoprotein. J. Mol. Diagn., 2021, 23(9), 1174-1184.
[http://dx.doi.org/10.1016/j.jmoldx.2021.06.003] [PMID: 34182124]
[22]
Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; Hruban, R.H.; Wolf-gang, C.L.; Goggins, M.G.; Dal Molin, M.; Wang, T.L.; Roden, R.; Klein, A.P.; Ptak, J.; Dobbyn, L.; Schaefer, J.; Silliman, N.; Popoli, M.; Vogelstein, J.T.; Browne, J.D.; Schoen, R.E.; Brand, R.E.; Tie, J.; Gibbs, P.; Wong, H.L.; Mansfield, A.S.; Jen, J.; Hanash, S.M.; Falconi, M.; Allen, P.J.; Zhou, S.; Bettegowda, C.; Diaz, L.A., Jr; Tomasetti, C.; Kinzler, K.W.; Vogelstein, B.; Lennon, A.M.; Papadopoulos, N. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 2018, 359(6378), 926-930.
[http://dx.doi.org/10.1126/science.aar3247] [PMID: 29348365]
[23]
Lennon, A.M.; Buchanan, A.H.; Kinde, I.; Warren, A.; Honushefsky, A.; Cohain, A.T.; Ledbetter, D.H.; Sanfilippo, F.; Sheridan, K.; Rosica, D.; Adonizio, C.S.; Hwang, H.J.; Lahouel, K.; Cohen, J.D.; Douville, C.; Patel, A.A.; Hagmann, L.N.; Rolston, D.D.; Malani, N.; Zhou, S.; Bettegowda, C.; Diehl, D.L.; Urban, B.; Still, C.D.; Kann, L.; Woods, J.I.; Salvati, Z.M.; Vadakara, J.; Leeming, R.; Bhattacharya, P.; Walter, C.; Parker, A.; Lengauer, C.; Klein, A.; Tomasetti, C.; Fishman, E.K.; Hruban, R.H.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science, 2020, 369(6499), eabb9601.
[http://dx.doi.org/10.1126/science.abb9601] [PMID: 32345712]
[24]
Oussalah, A.; Rischer, S.; Bensenane, M.; Conroy, G.; Filhine-Tresarrieu, P.; Debard, R.; Forest-Tramoy, D.; Josse, T.; Reinicke, D.; Garcia, M.; Luc, A.; Baumann, C.; Ayav, A.; Laurent, V.; Hollenbach, M.; Ripoll, C.; Guéant-Rodriguez, R.M.; Namour, F.; Zipprich, A.; Fleischhacker, M.; Bronowicki, J.P.; Guéant, J.L. Plasma mSEPT9: A novel circulating cell-free DNA-based epigenetic biomarker to diagnose hepatocellular carcinoma. EBioMedicine, 2018, 30, 138-147.
[http://dx.doi.org/10.1016/j.ebiom.2018.03.029] [PMID: 29627389]
[25]
Li, B.; Huang, H.; Huang, R.; Zhang, W.; Zhou, G.; Wu, Z.; Lv, C.; Han, X.; Jiang, L.; Li, Y.; Li, B.; Zhang, Z. SEPT9 Gene methylation as a noninvasive marker for hepatocellular carcinoma. Dis. Markers, 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/6289063] [PMID: 33178361]
[26]
Wu, H.C.; Yang, H.I.; Wang, Q.; Chen, C.J.; Santella, R.M. Plasma DNA methylation marker and hepatocellular carcinoma risk prediction model for the general population. Carcinogenesis, 2017, 38(10), 1021-1028.
[http://dx.doi.org/10.1093/carcin/bgx078] [PMID: 28981677]
[27]
Shen, J; Wang, S; Zhang, YJ; Kappil, M; Wu, HC; Kibriya, MG; Wang, Q; Jasmine, F; Ahsan, H; Lee, PH; Yu, MW; Chen, CJ; Santella, RM. Ge-nome-wide DNA methylation profiles in hepatocellular carcinoma. Hepatology., 2012, 55(6), 1799-1808.
[http://dx.doi.org/10.1002/hep.25569.] [PMID: 22234943] [http://dx.doi.org/10.3892/or.2016.4619] [PMID: 26883180]
[28]
Holmila, R.; Sklias, A.; Muller, D.C.; Degli, E.D.; Guilloreau, P.; Mckay, J.; Sangrajrang, S.; Srivatanakul, P.; Hainaut, P.; Merle, P.; Herceg, Z.; Nogueira da Costa, A. Targeted deep sequencing of plasma circulating cell-free DNA reveals Vimentin and Fibulin 1 as potential epigenetic biomarkers for hepatocellular carcinoma. PLoS One, 2017, 12(3), e0174265.
[http://dx.doi.org/10.1371/journal.pone.0174265] [PMID: 28333958]
[29]
Xu, R.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K.; Zheng, L.; Zhang, H.; Caughey, B.A.; Zhao, Q.; Hou, J.; Zhang, R.; Xu, Y.; Cai, H.; Li, G.; Hou, R.; Zhong, Z.; Lin, D.; Fu, X.; Zhu, J.; Duan, Y.; Yu, M.; Ying, B.; Zhang, W.; Wang, J.; Zhang, E.; Zhang, C.; Li, O.; Guo, R.; Carter, H.; Zhu, J.; Hao, X.; Zhang, K. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater., 2017, 16(11), 1155-1161.
[http://dx.doi.org/10.1038/nmat4997] [PMID: 29035356]
[30]
Kisiel, J.B.; Dukek, B.A.; V S R Kanipakam, R.; Ghoz, H.M.; Yab, T.C; Berger, C.K.; Taylor, W.R.; Foote, P.H.; Giama, N.H.; Onyirioha, K.; Abdallah, M.A.; Burger, K.N.; Slettedahl, S.W.; Mahoney, D.W.; Smyrk, T.C.; Lewis, J.T.; Giakoumopoulos, M.; Allawi, H.T.; Lidgard, G.P.; Roberts, L.R.; Ahlquist, D.A. Hepatocellular Carcinoma detection by plasma methylated DNA: Discovery, phase I pilot, and phase II clinical validation. Hepatology, 2019, 69(3), 1180-1192.
[http://dx.doi.org/10.1002/hep.30244] [PMID: 30168613]
[31]
Chalasani, N.P.; Ramasubramanian, T.S.; Bhattacharya, A.; Olson, M.C.; Edwards V, D.K.; Roberts, L.R.; Kisiel, J.B.; Reddy, K.R.; Lidgard, G.P.; Johnson, S.C.; Bruinsma, J.J. A novel blood-based panel of methylated DNA and protein markers for detection of early-stage hepatocellular carcinoma. Clin. Gastroenterol. Hepatol., 2021, 19(12), 2597-2605.e4.
[http://dx.doi.org/10.1016/j.cgh.2020.08.065] [PMID: 32889146]
[32]
Chen, X.; Gole, J.; Gore, A.; He, Q.; Lu, M.; Min, J.; Yuan, Z.; Yang, X.; Jiang, Y.; Zhang, T.; Suo, C.; Li, X.; Cheng, L.; Zhang, Z.; Niu, H.; Li, Z.; Xie, Z.; Shi, H.; Zhang, X.; Fan, M.; Wang, X.; Yang, Y.; Dang, J.; McConnell, C.; Zhang, J.; Wang, J.; Yu, S.; Ye, W.; Gao, Y.; Zhang, K.; Liu, R.; Jin, L. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun., 2020, 11(1), 3475.
[http://dx.doi.org/10.1038/s41467-020-17316-z] [PMID: 32694610]
[33]
Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Swanton, C.; Seiden, M.V.; Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Smith, D.; Richards, D.; Yeatman, T.J.; Cohn, A.L.; Lapham, R.; Clement, J.; Parker, A.S.; Tummala, M.K.; McIntyre, K.; Sekeres, M.A.; Bryce, A.H.; Siegel, R.; Wang, X.; Cosgrove, D.P.; Abu-Rustum, N.R.; Trent, J.; Thiel, D.D.; Becerra, C.; Agrawal, M.; Garbo, L.E.; Giguere, J.K.; Michels, R.M.; Harris, R.P.; Richey, S.L.; McCarthy, T.A.; Waterhouse, D.M.; Couch, F.J.; Wilks, S.T.; Krie, A.K.; Balaraman, R.; Restrepo, A.; Meshad, M.W.; Rieger-Christ, K.; Sullivan, T.; Lee, C.M.; Greenwald, D.R.; Oh, W.; Tsao, C-K.; Fleshner, N.; Kennecke, H.F.; Khalil, M.F.; Spigel, D.R.; Manhas, A.P.; Ulrich, B.K.; Kovoor, P.A.; Stokoe, C.; Courtright, J.G.; Yimer, H.A.; Larson, T.G.; Swanton, C.; Seiden, M.V.; Cummings, S.R.; Absalan, F.; Alexander, G.; Allen, B.; Amini, H.; Aravanis, A.M.; Bagaria, S.; Bazargan, L.; Beausang, J.F.; Berman, J.; Betts, C.; Blocker, A.; Bredno, J.; Calef, R.; Cann, G.; Carter, J.; Chang, C.; Chawla, H.; Chen, X.; Chien, T.C.; Civello, D.; Davydov, K.; Demas, V.; Desai, M.; Dong, Z.; Fayzullina, S.; Fields, A.P.; Filippova, D.; Freese, P.; Fung, E.T.; Gnerre, S.; Gross, S.; Halks-Miller, M.; Hall, M.P.; Hartman, A-R.; Hou, C.; Hubbell, E.; Hunkapiller, N.; Jagadeesh, K.; Jamshidi, A.; Jiang, R.; Jung, B.; Kim, T.H.; Klausner, R.D.; Kurtzman, K.N.; Lee, M.; Lin, W.; Lipson, J.; Liu, H.; Liu, Q.; Lopatin, M.; Maddala, T.; Maher, M.C.; Melton, C.; Mich, A.; Nautiyal, S.; Newman, J.; Newman, J.; Nicula, V.; Nicolaou, C.; Nikolic, O.; Pan, W.; Patel, S.; Prins, S.A.; Rava, R.; Ronaghi, N.; Sakarya, O.; Satya, R.V.; Schellenberger, J.; Scott, E.; Sehnert, A.J.; Shaknovich, R.; Shanmugam, A.; Shashidhar, K.C.; Shen, L.; Shenoy, A.; Shojaee, S.; Singh, P.; Steffen, K.K.; Tang, S.; Toung, J.M.; Valouev, A.; Venn, O.; Williams, R.T.; Wu, T.; Xu, H.H.; Yakym, C.; Yang, X.; Yecies, J.; Yip, A.S.; Youngren, J.; Yue, J.; Zhang, J.; Zhang, L.; Zhang, L.Q.; Zhang, N.; Curtis, C.; Berry, D.A. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol., 2020, 31(6), 745-759.
[http://dx.doi.org/10.1016/j.annonc.2020.02.011] [PMID: 33506766]
[34]
Cai, J.; Chen, L.; Zhang, Z.; Zhang, X.; Lu, X.; Liu, W.; Shi, G.; Ge, Y.; Gao, P.; Yang, Y.; Ke, A.; Xiao, L.; Dong, R.; Zhu, Y.; Yang, X.; Wang, J.; Zhu, T.; Yang, D.; Huang, X.; Sui, C.; Qiu, S.; Shen, F.; Sun, H.; Zhou, W.; Zhou, J.; Nie, J.; Zeng, C.; Stroup, E.K.; Zhang, X.; Chiu, B.C.H.; Lau, W.Y.; He, C.; Wang, H.; Zhang, W.; Fan, J. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut, 2019, 68(12), 2195-2205.
[http://dx.doi.org/10.1136/gutjnl-2019-318882] [PMID: 31358576]
[35]
Cai, Z.; Zhang, J.; He, Y.; Xia, L.; Dong, X.; Chen, G.; Zhou, Y.; Hu, X.; Zhong, S.; Wang, Y.; Chen, H.; Xie, D.; Liu, X.; Liu, J. Liquid biopsy by combining 5-hydroxymethylcytosine signatures of plasma cell-free DNA and protein biomarkers for diagnosis and prognosis of hepatocellular carcinoma. ESMO Open, 2021, 6(1), 100021.
[http://dx.doi.org/10.1016/j.esmoop.2020.100021] [PMID: 33508734]
[36]
Chen, L.; Abou-Alfa, G.K.; Zheng, B.; Liu, J.F.; Bai, J.; Du, L.T.; Qian, Y.S.; Fan, R.; Liu, X.L.; Wu, L.; Hou, J.L.; Wang, H.Y. Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients. Cell Res., 2021, 31(5), 589-592.
[http://dx.doi.org/10.1038/s41422-020-00457-7] [PMID: 33589745]
[37]
Pantel, K.; Speicher, M.R. The biology of circulating tumor cells. Oncogene, 2016, 35(10), 1216-1224.
[http://dx.doi.org/10.1038/onc.2015.192] [PMID: 26050619]
[38]
Praharaj, P.P.; Bhutia, S.K.; Nagrath, S.; Bitting, R.L.; Deep, G. Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochim. Biophys. Acta Rev. Cancer, 2018, 1869(2), 117-127.
[http://dx.doi.org/10.1016/j.bbcan.2017.12.005] [PMID: 29360544]
[39]
Tellez-Gabriel, M.; Cochonneau, D.; Cadé, M.; Jubelin, C.; Heymann, M.F.; Heymann, D. Circulating tumor cell-derived pre-clinical models for personalized medicine. Cancers, 2018, 11(1), 19.
[http://dx.doi.org/10.3390/cancers11010019] [PMID: 30586936]
[40]
Heitzer, E.; Auer, M.; Gasch, C.; Pichler, M.; Ulz, P.; Hoffmann, E.M.; Lax, S.; Waldispuehl-Geigl, J.; Mauermann, O.; Lackner, C.; Höfler, G.; Eisner, F.; Sill, H.; Samonigg, H.; Pantel, K.; Riethdorf, S.; Bauernhofer, T.; Geigl, J.B.; Speicher, M.R. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res., 2013, 73(10), 2965-2975.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4140] [PMID: 23471846]
[41]
Vignot, S.; Frampton, G.M.; Soria, J.C.; Yelensky, R.; Commo, F.; Brambilla, C.; Palmer, G.; Moro-Sibilot, D.; Ross, J.S.; Cronin, M.T.; André, F.; Stephens, P.J.; Lazar, V.; Miller, V.A.; Brambilla, E. Next-generation sequencing reveals high concordance of recurrent somatic alterations between primary tumor and metastases from patients with non-small-cell lung cancer. J. Clin. Oncol., 2013, 31(17), 2167-2172.
[http://dx.doi.org/10.1200/JCO.2012.47.7737] [PMID: 23630207]
[42]
Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[43]
Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2(1), 16018.
[http://dx.doi.org/10.1038/nrdp.2016.18] [PMID: 27158749]
[44]
Guo, W.; Yang, X.R.; Sun, Y.F.; Shen, M.N.; Ma, X.L.; Wu, J.; Zhang, C.Y.; Zhou, Y.; Xu, Y.; Hu, B.; Zhang, X.; Zhou, J.; Fan, J. Clinical significance of EpCAM mRNA-positive circulating tumor cells in hepatocellular carcinoma by an optimized negative enrichment and qRT-PCR-based platform. Clin. Cancer Res., 2014, 20(18), 4794-4805.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0251] [PMID: 25009297]
[45]
de Boer, C.J.; van Krieken, J.H.J.M.; Janssen-van Rhijn, C.M.; Litvinov, S.V. Expression of Ep-CAM in normal, regenerating, metaplastic, and neoplastic liver. J. Pathol., 1999, 188(2), 201-206.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199906)188:2<201::AID-PATH339>3.0.CO;2-8] [PMID: 10398165]
[46]
Kalinich, M.; Bhan, I.; Kwan, T.T.; Miyamoto, D.T.; Javaid, S. LiCausi, J.A.; Milner, J.D.; Hong, X.; Goyal, L.; Sil, S.; Choz, M.; Ho, U.; Kapur, R.; Muzikansky, A.; Zhang, H.; Weitz, D.A.; Sequist, L.V.; Ryan, D.P.; Chung, R.T.; Zhu, A.X.; Isselbacher, K.J.; Ting, D.T.; Toner, M.; Maheswaran, S.; Haber, D.A. An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma. Proc. Natl. Acad. Sci., 2017, 114(5), 1123-1128.
[http://dx.doi.org/10.1073/pnas.1617032114] [PMID: 28096363]
[47]
Court, C.M.; Hou, S.; Winograd, P.; Segel, N.H.; Li, Q.W.; Zhu, Y.; Sadeghi, S.; Finn, R.S.; Ganapathy, E.; Song, M.; French, S.W.; Naini, B.V.; Sho, S.; Kaldas, F.M.; Busuttil, R.W.; Tomlinson, J.S.; Tseng, H.R.; Agopian, V.G. A novel multimarker assay for the phenotypic profiling of circulating tumor cells in hepatocellular carcinoma. Liver Transpl., 2018, 24(7), 946-960.
[http://dx.doi.org/10.1002/lt.25062] [PMID: 29624843]
[48]
Guo, W.; Sun, Y.F.; Shen, M.N.; Ma, X.L.; Wu, J.; Zhang, C.Y.; Zhou, Y.; Xu, Y.; Hu, B.; Zhang, M.; Wang, G.; Chen, W.Q.; Guo, L.; Lu, R.Q.; Zhou, C.H.; Zhang, X.; Shi, Y.H.; Qiu, S.; Pan, B.; Cao, Y.; Zhou, J.; Yang, X.R.; Fan, J. Circulating tumor cells with stem-like phenotypes for diagnosis, prognosis, and therapeutic response evaluation in hepatocellular carcinoma. Clin. Cancer Res., 2018, 24(9), 2203-2213.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1753] [PMID: 29374055]
[49]
Cheng, Y.; Luo, L.; Zhang, J.; Zhou, M.; Tang, Y.; He, G.; Lu, Y.; Wang, Z.; Pan, M. Diagnostic value of different phenotype circulating tumor cells in hepatocellular carcinoma. J. Gastrointest. Surg., 2019, 23(12), 2354-2361.
[http://dx.doi.org/10.1007/s11605-018-04067-y] [PMID: 30805878]
[50]
Winograd, P.; Hou, S.; Court, C.M.; Lee, Y.T.; Chen, P.J.; Zhu, Y.; Sadeghi, S.; Finn, R.S.; Teng, P.C.; Wang, J.J.; Zhang, Z.; Liu, H.; Busuttil, R.W.; Tomlinson, J.S.; Tseng, H.R.; Agopian, V.G. Hepatocellular carcinoma–circulating tumor cells expressing PD‐L1 are prognostic and potentially associated with response to checkpoint inhibitors. Hepatol. Commun., 2020, 4(10), 1527-1540.
[http://dx.doi.org/10.1002/hep4.1577] [PMID: 33024921]
[51]
Hamaoka, M.; Kobayashi, T.; Tanaka, Y.; Mashima, H.; Ohdan, H. Clinical significance of glypican-3-positive circulating tumor cells of hepatocellular carcinoma patients: A prospective study. PLoS One, 2019, 14(5), e0217586.
[http://dx.doi.org/10.1371/journal.pone.0217586] [PMID: 31141571]
[52]
Zhang, J.; Zhang, M.; Ma, H.; Song, X.; He, L.; Ye, X.; Li, X. Overexpression of glypican-3 is a predictor of poor prognosis in hepatocellular carcinoma. Medicine, 2018, 97(24), e11130.
[http://dx.doi.org/10.1097/MD.0000000000011130] [PMID: 29901640]
[53]
Xu, F.; Jin, T.; Zhu, Y.; Dai, C. Immune checkpoint therapy in liver cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 110.
[http://dx.doi.org/10.1186/s13046-018-0777-4] [PMID: 29843754]
[54]
Saviano, A.; Henderson, N.C.; Baumert, T.F. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology. J. Hepatol., 2020, 73(5), 1219-1230.
[http://dx.doi.org/10.1016/j.jhep.2020.06.004] [PMID: 32534107]
[55]
Kim, S.K.; Kim, Y.H.; Park, S.; Cho, S.W. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater., 2021, 132, 37-51.
[http://dx.doi.org/10.1016/j.actbio.2021.03.002] [PMID: 33711526]
[56]
Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[57]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[58]
Kung, J.T.Y.; Colognori, D.; Lee, J.T. Long noncoding RNAs: Past, present, and future. Genetics, 2013, 193(3), 651-669.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[59]
Yoon, J.H.; Abdelmohsen, K.; Gorospe, M. Posttranscriptional gene regulation by long noncoding RNA. J. Mol. Biol., 2013, 425(19), 3723-3730.
[http://dx.doi.org/10.1016/j.jmb.2012.11.024] [PMID: 23178169]
[60]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[61]
Li, X.; Yang, L.; Chen, L.L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell, 2018, 71(3), 428-442.
[http://dx.doi.org/10.1016/j.molcel.2018.06.034] [PMID: 30057200]
[62]
Wang, D.; Li, Z.; Wu, Y. The research progression and clinical significance of circular RNAs in head and neck cancers. BioMed Res. Int., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/2712310] [PMID: 33150169]
[63]
Wu, W.; Zhen, T.; Yu, J.; Yang, Q. Circular RNAs as new regulators in gastric cancer: Diagnosis and cancer therapy. Front. Oncol., 2020, 10, 1526.
[http://dx.doi.org/10.3389/fonc.2020.01526] [PMID: 33072546]
[64]
Pigati, L.; Yaddanapudi, S.C.S.; Iyengar, R.; Kim, D.J.; Hearn, S.A.; Danforth, D.; Hastings, M.L.; Duelli, D.M. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One, 2010, 5(10), e13515.
[http://dx.doi.org/10.1371/journal.pone.0013515] [PMID: 20976003]
[65]
Tomimaru, Y.; Eguchi, H.; Nagano, H.; Wada, H.; Kobayashi, S.; Marubashi, S.; Tanemura, M.; Tomokuni, A.; Takemasa, I.; Umeshita, K.; Kanto, T.; Doki, Y.; Mori, M. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J. Hepatol., 2012, 56(1), 167-175.
[http://dx.doi.org/10.1016/j.jhep.2011.04.026] [PMID: 21749846]
[66]
Shaker, O.G.; Abdelwahed, M.Y.; Ahmed, N.A.; Hassan, E.A.; Ahmed, T.I.; Abousarie, M.A.; Ayoub, S.E. Evaluation of serum long noncoding RNA NEAT and MiR‐129‐5p in hepatocellular carcinoma. IUBMB Life, 2019, 71(10), 1571-1578.
[http://dx.doi.org/10.1002/iub.2096] [PMID: 31190421]
[67]
Jin, Y.; Wong, Y.S.; Goh, B.K.P.; Chan, C.Y.; Cheow, P.C.; Chow, P.K.H.; Lim, T.K.H.; Goh, G.B.B.; Krishnamoorthy, T.L.; Kumar, R.; Ng, T.P.; Chong, S.S.; Tan, H.H.; Chung, A.Y.F.; Ooi, L.L.P.J.; Chang, J.P.E.; Tan, C.K.; Lee, C.G.L. Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Sci. Rep., 2019, 9(1), 10464.
[http://dx.doi.org/10.1038/s41598-019-46872-8] [PMID: 31320713]
[68]
Ali, H.S.; Boshra, M.S.; El Meteini, M.S.; Shafei, A.E.S.; Matboli, M. lncRNA- RP11-156p1.3, novel diagnostic and therapeutic targeting via CRISPR/Cas9 editing in hepatocellular carcinoma. Genomics, 2020, 112(5), 3306-3314.
[http://dx.doi.org/10.1016/j.ygeno.2020.06.020] [PMID: 32544548]
[69]
Han, J.; Li, J.; Qian, Y.; Liu, W.; Liang, J.; Huang, Z.; Wang, S.; Zhao, C. Identification of plasma miR-148a as a noninvasive biomarker for hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol., 2019, 43(5), 585-593.
[http://dx.doi.org/10.1016/j.clinre.2018.12.008] [PMID: 30824368]
[70]
Cao, C.; Wang, C. Clinical significance of serum miR-768-3p in HBV-related hepatocellular carcinoma and its potential mechanism. Clin. Exp. Med., 2020, 20(4), 569-576.
[http://dx.doi.org/10.1007/s10238-020-00646-z] [PMID: 32712720]
[71]
Zeng, Z.; Dong, J.; Li, Y.; Dong, Z.; Liu, Z.; Huang, J.; Wang, Y.; Zhen, Y.; Lu, Y. The expression level and diagnostic value of microRNA-22 in HCC patients. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 683-686.
[http://dx.doi.org/10.1080/21691401.2019.1703723] [PMID: 32088997]
[72]
Wu, J.; Wu, Y.; Luo, Y.; Li, X.; Lin, N.; Yang, X.; Lin, Y.; Chen, M. Circulating miRNA-199a and miRNA-122 levels as potential diagnostic and prognostic biomarkers for hepatocellular carcinoma. Ann. Clin. Lab. Sci., 2020, 50(2), 219-227.
[PMID: 32366560]
[73]
Zhou, G.; Zeng, Y.; Luo, Y.; Guo, S.; Bao, L.; Zhang, Q. Urine miR-93-5p is a promising biomarker for early detection of HBV-related hepatocellular carcinoma. Eur. J. Surg. Oncol., 2022, 48(1), 95-102.
[http://dx.doi.org/10.1016/j.ejso.2021.06.015] [PMID: 34175168]
[74]
Zeng, Z.; Dong, J.; Li, Y.; Dong, Z.; Liu, Z.; Huang, J.; Wang, Y.; Zhen, Y.; Yinying, Lu, The expression level and clinical significance of lncRNA X91348 in hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3067-3071.
[http://dx.doi.org/10.1080/21691401.2019.1640228] [PMID: 31349749]
[75]
Hu, W.; Feng, H.; Xu, X.; Huang, X.; Huang, X.; Chen, W.; Hao, L.; Xia, W. Long noncoding RNA FOXD2‐AS1 aggravates hepatocellular carcinoma tumorigenesis by regulating the miR‐206/MAP3K1 axis. Cancer Med., 2020, 9(15), 5620-5631.
[http://dx.doi.org/10.1002/cam4.3204] [PMID: 32558350]
[76]
Huang, J.; Zheng, Y.; Xiao, X.; Liu, C.; Lin, J.; Zheng, S.; Yang, B.; Ou, Q. A circulating long noncoding RNA panel serves as a diagnostic marker for hepatocellular carcinoma. Dis. Markers, 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/5417598] [PMID: 32733618]
[77]
Han, Y.; Jiang, W.; Wang, Y.; Zhao, M.; Li, Y.; Ren, L. Serum long non-coding RNA SCARNA10 serves as a potential diagnostic biomarker for hepatocellular carcinoma. BMC Cancer, 2022, 22(1), 431.
[http://dx.doi.org/10.1186/s12885-022-09530-3] [PMID: 35443674]
[78]
Zeng, Y.L.; Guo, Z.Y.; Su, H.Z.; Zhong, F.D.; Jiang, K.Q.; Yuan, G.D. Diagnostic and prognostic value of lncRNA cancer susceptibility candidate 9 in hepatocellular carcinoma. World J. Gastroenterol., 2019, 25(48), 6902-6915.
[http://dx.doi.org/10.3748/wjg.v25.i48.6902] [PMID: 31908394]
[79]
Zhang, X.; Xu, Y.; Qian, Z.; Zheng, W.; Wu, Q.; Chen, Y.; Zhu, G.; Liu, Y.; Bian, Z.; Xu, W.; Zhang, Y.; Sun, F.; Pan, Q.; Wang, J.; Du, L.; Yu, Y. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death Dis., 2018, 9(11), 1091.
[http://dx.doi.org/10.1038/s41419-018-1132-6] [PMID: 30361504]
[80]
Zhang, X.; Zhou, H.; Jing, W.; Luo, P.; Qiu, S.; Liu, X.; Zhu, M.; Liang, C.; Yu, M.; Tu, J. The Circular RNA hsa_circ_0001445 regulates the proliferation and migration of hepatocellular carcinoma and may serve as a diagnostic biomarker. Dis. Markers, 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/3073467] [PMID: 29785229]
[81]
Matboli, M.; Shafei, A.E.; Ali, M.A.; Ashry, A.M.; Kamal, K.M.; Agag, M.A. circRNAs (hsa_circ_00156, hsa_circ _000224, and hsa_circ _000520) are novel potential biomarkers in hepatocellular carcinoma. J. Cell. Biochem., 2019, 120(5), 7711-7724.
[PMID: 30426540]
[82]
Li, Z.; Zhou, Y.; Yang, G.; He, S.; Qiu, X.; Zhang, L.; Deng, Q.; Zheng, F. Using circular RNA SMARCA5 as a potential novel biomarker for hepatocellular carcinoma. Clin. Chim. Acta, 2019, 492, 37-44.
[http://dx.doi.org/10.1016/j.cca.2019.02.001] [PMID: 30716279]
[83]
Wang, W.; Li, Y.; Li, X.; Liu, B.; Han, S.; Li, X.; Zhang, B.; Li, J.; Sun, S. Circular RNA circ-FOXP1 induced by SOX9 promotes hepatocellular carcinoma progression via sponging miR-875-3p and miR-421. Biomed. Pharmacother., 2020, 121, 109517.
[http://dx.doi.org/10.1016/j.biopha.2019.109517] [PMID: 31698267]
[84]
Zhu, K.; Zhan, H.; Peng, Y.; Yang, L.; Gao, Q.; Jia, H.; Dai, Z.; Tang, Z.; Fan, J.; Zhou, J. Plasma hsa_circ_0027089 is a diagnostic biomarker for hepatitis B virus-related hepatocellular carcinoma. Carcinogenesis, 2020, 41(3), 296-302.
[http://dx.doi.org/10.1093/carcin/bgz154] [PMID: 31535687]
[85]
Liu, R.; Li, Y.; Wu, A.; Kong, M.; Ding, W.; Hu, Z.; Chen, L.; Cai, W.; Wang, F. Identification of plasma hsa_circ_0005397 and combined with serum AFP, AFP-L3 as potential biomarkers for hepatocellular carcinoma. Front. Pharmacol., 2021, 12, 639963.
[http://dx.doi.org/10.3389/fphar.2021.639963] [PMID: 33679420]
[86]
Song, Y.; Cao, P.; Li, J. Plasma circular RNA hsa_circ_0001821 acts as a novel diagnostic biomarker for malignant tumors. J. Clin. Lab. Anal., 2021, 35(11), e24009.
[http://dx.doi.org/10.1002/jcla.24009] [PMID: 34523755]
[87]
Zhou, J.; Yu, L.; Gao, X.; Hu, J.; Wang, J.; Dai, Z.; Wang, J.F.; Zhang, Z.; Lu, S.; Huang, X.; Wang, Z.; Qiu, S.; Wang, X.; Yang, G.; Sun, H.; Tang, Z.; Wu, Y.; Zhu, H.; Fan, J. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J. Clin. Oncol., 2011, 29(36), 4781-4788.
[http://dx.doi.org/10.1200/JCO.2011.38.2697] [PMID: 22105822]
[88]
Zhang, N.; Hu, Z.; Qiang, Y.; Zhu, X. Circulating miR‐130b‐ and miR‐21‐based diagnostic markers and therapeutic targets for hepatocellular carcinoma. Mol. Genet. Genomic Med., 2019, 7(12), e1012.
[http://dx.doi.org/10.1002/mgg3.1012] [PMID: 31660696]
[89]
Lin, X.J.; Chong, Y.; Guo, Z.W.; Xie, C.; Yang, X.J.; Zhang, Q.; Li, S.P.; Xiong, Y.; Yuan, Y.; Min, J.; Jia, W.H.; Jie, Y.; Chen, M.S.; Chen, M.X.; Fang, J.H.; Zeng, C.; Zhang, Y.; Guo, R.P.; Wu, Y.; Lin, G.; Zheng, L.; Zhuang, S.M. A serum microRNA classifier for early detection of hepatocellular carcinoma: A multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study. Lancet Oncol., 2015, 16(7), 804-815.
[http://dx.doi.org/10.1016/S1470-2045(15)00048-0] [PMID: 26088272]
[90]
Zhu, H.T.; Liu, R.B.; Liang, Y.Y.; Hasan, A.M.E.; Wang, H.Y.; Shao, Q.; Zhang, Z.C.; Wang, J.; He, C.Y.; Wang, F.; Shao, J.Y. Serum microRNA profiles as diagnostic biomarkers for HBV-positive hepatocellular carcinoma. Liver Int., 2017, 37(6), 888-896.
[http://dx.doi.org/10.1111/liv.13356] [PMID: 28061012]
[91]
An, Y.; Gao, S.; Zhao, W.C.; Qiu, B.A.; Xia, N.X.; Zhang, P.J.; Fan, Z.P. Novel serum microRNAs panel on the diagnostic and prognostic implications of hepatocellular carcinoma. World J. Gastroenterol., 2018, 24(24), 2596-2604.
[http://dx.doi.org/10.3748/wjg.v24.i24.2596] [PMID: 29962816]
[92]
Chen, S.; Fu, Z.; Wen, S.; Yang, X.; Yu, C.; Zhou, W.; Lin, Y.; Lv, Y. Expression and diagnostic value of miR-497 and miR-1246 in hepatocellular carcinoma. Front. Genet., 2021, 12, 666306.
[http://dx.doi.org/10.3389/fgene.2021.666306] [PMID: 34163524]
[93]
Yamamoto, Y.; Kondo, S.; Matsuzaki, J.; Esaki, M.; Okusaka, T.; Shimada, K.; Murakami, Y.; Enomoto, M.; Tamori, A.; Kato, K.; Aoki, Y.; Takizawa, S.; Sakamoto, H.; Niida, S.; Takeshita, F.; Ochiya, T. Highly sensitive circulating MicroRNA panel for accurate detection of hepatocellular carcinoma in patients with liver disease. Hepatol. Commun., 2020, 4(2), 284-297.
[http://dx.doi.org/10.1002/hep4.1451] [PMID: 32025611]
[94]
Yao, J.; Hua, X.; Shi, J.; Hu, X.; Lui, K.; He, K.; Mai, J.; Lan, T.; Lu, M. LncRNA THEMIS2‐211, a tumor‐originated circulating exosomal biomarker, promotes the growth and metastasis of hepatocellular carcinoma by functioning as a competing endogenous RNA. FASEB J., 2022, 36(4), e22238.
[http://dx.doi.org/10.1096/fj.202101564R] [PMID: 35224785]
[95]
Wu, C.; Deng, L.; Zhuo, H.; Chen, X.; Tan, Z.; Han, S.; Tang, J.; Qian, X.; Yao, A. Circulating circRNA predicting the occurrence of hepatocellular carcinoma in patients with HBV infection. J. Cell. Mol. Med., 2020, 24(17), 10216-10222.
[http://dx.doi.org/10.1111/jcmm.15635] [PMID: 32692470]
[96]
Sun, X.H.; Wang, Y.T.; Li, G.F.; Zhang, N.; Fan, L. Serum-derived three-circRNA signature as a diagnostic biomarker for hepatocellular carcinoma. Cancer Cell Int., 2020, 20(1), 226.
[http://dx.doi.org/10.1186/s12935-020-01302-y] [PMID: 32536814]
[97]
Yu, J.; Ding, W.; Wang, M.; Guo, X.; Xu, J.; Xu, Q.; Yang, Y.; Sun, S.; Liu, J.; Qin, L.; Liu, H.; Yang, F.; Zhou, W. Plasma circular RNA panel to diagnose hepatitis B virus‐related hepatocellular carcinoma: A large‐scale, multicenter study. Int. J. Cancer, 2020, 146(6), 1754-1763.
[http://dx.doi.org/10.1002/ijc.32647] [PMID: 31456215]
[98]
Habieb, A.; Matboli, M.; El-Tayeb, H.; El-Asmar, F. Potential role of lncRNA-TSIX, miR-548-a-3p, and SOGA1 mRNA in the diagnosis of hepatocellular carcinoma. Mol. Biol. Rep., 2019, 46(4), 4581-4590.
[http://dx.doi.org/10.1007/s11033-019-04810-x] [PMID: 31004302]
[99]
Fouda, M.S.; Omran, M.M.; Tarek, G.; Hady, A.; Abdel Wahab, A.; Abdel Wahab, A. Development of a novel panel based on micro-RNAs (21, 29a, 200 and 335) and alpha-fetoprotein as diagnostic biomarkers for hepatocellular carcinoma associated with hepatitis C infection. Arab J. Gastroenterol., 2021, 22(1), 28-33.
[http://dx.doi.org/10.1016/j.ajg.2020.08.004] [PMID: 33268243]
[100]
Gharib, A.F.; Eed, E.M.; Khalifa, A.S.; Raafat, N.; Shehab-Eldeen, S.; Alwakeel, H.R.; Darwiesh, E.; Essa, A. Value of Serum miRNA-96-5p and miRNA-99a-5p as diagnostic biomarkers for hepatocellular carcinoma. Int. J. Gen. Med., 2022, 15, 2427-2436.
[http://dx.doi.org/10.2147/IJGM.S354842] [PMID: 35264879]
[101]
Kamel, M.M.; Matboli, M.; Sallam, M.; Montasser, I.F.; Saad, A.S.; El-Tawdi, A.H.F. Investigation of long noncoding RNAs expression profile as potential serum biomarkers in patients with hepatocellular carcinoma. Transl. Res., 2016, 168, 134-145.
[http://dx.doi.org/10.1016/j.trsl.2015.10.002] [PMID: 26551349]
[102]
Tian, Z.; Yu, T.; Wei, H.; Ning, N. Clinical value of LHPP‐associated microRNAs combined with protein induced by vitamin K deficiency or antagonist‐II in the diagnosis of alpha‐fetoprotein‐negative hepatocellular carcinoma. J. Clin. Lab. Anal., 2020, 34(2), e23071.
[http://dx.doi.org/10.1002/jcla.23071] [PMID: 31693242]
[103]
Ming, X.L.; Feng, Y.L.; He, D.D.; Luo, C.L.; Rong, J.L.; Zhang, W.W.; Ye, P.; Chai, H.Y.; Liang, C.Z.; Tu, J.C. Role of BCYRN1 in hepatocellular carcinoma pathogenesis by lncRNA–miRNA–mRNA network analysis and its diagnostic and prognostic value. Epigenomics, 2019, 11(10), 1209-1231.
[http://dx.doi.org/10.2217/epi-2018-0218] [PMID: 31339046]
[104]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[105]
Hu, S.; Li, Z.; Shen, D.; Zhu, D.; Huang, K.; Su, T.; Dinh, P.U.; Cores, J.; Cheng, K. Exosome-eluting stents for vascular healing after ischaemic injury. Nat. Biomed. Eng., 2021, 5(10), 1174-1188.
[http://dx.doi.org/10.1038/s41551-021-00705-0] [PMID: 33820981]
[106]
Zhu, Y.; Wang, S.; Xi, X.; Zhang, M.; Liu, X.; Tang, W.; Cai, P.; Xing, S.; Bao, P.; Jin, Y.; Zhao, W.; Chen, Y.; Zhao, H.; Jia, X.; Lu, S.; Lu, Y.; Chen, L.; Yin, J.; Lu, Z.J. Integrative analysis of long extracellular RNAs reveals a detection panel of noncoding RNAs for liver cancer. Theranostics, 2021, 11(1), 181-193.
[http://dx.doi.org/10.7150/thno.48206] [PMID: 33391469]
[107]
Wang, Y.; Zhang, C.; Zhang, P.; Guo, G.; Jiang, T.; Zhao, X.; Jiang, J.; Huang, X.; Tong, H.; Tian, Y. Serum exosomal microRNAs combined with alpha-fetoprotein as diagnostic markers of hepatocellular carcinoma. Cancer Med., 2018, 7(5), 1670-1679.
[http://dx.doi.org/10.1002/cam4.1390] [PMID: 29573235]
[108]
Huang, X.; Sun, L.; Wen, S.; Deng, D.; Wan, F.; He, X.; Tian, L.; Liang, L.; Wei, C.; Gao, K.; Fu, Q.; Li, Y.; Jiang, J.; Zhai, R.; He, M. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci., 2020, 111(9), 3338-3349.
[http://dx.doi.org/10.1111/cas.14516] [PMID: 32506598]
[109]
Lu, Y.; Duan, Y.; Xu, Q.; Zhang, L.; Chen, W.; Qu, Z.; Wu, B.; Liu, W.; Shi, L.; Wu, D.; Yang, Y.; Sun, D.; Chen, X. Circulating exosome‐derived bona fide long non‐coding RNAs predicting the occurrence and metastasis of hepatocellular carcinoma. J. Cell. Mol. Med., 2020, 24(2), 1311-1318.
[http://dx.doi.org/10.1111/jcmm.14783] [PMID: 31811749]
[110]
Xu, H.; Dong, X.; Chen, Y.; Wang, X. Serum exosomal hnRNPH1 mRNA as a novel marker for hepatocellular carcinoma. Clin. Chem. Lab. Med., 2018, 56(3), 479-484.
[http://dx.doi.org/10.1515/cclm-2017-0327] [PMID: 29252188]
[111]
Cho, H.; Eun, J.; Baek, G.; Seo, C.; Ahn, H.; Kim, S.; Cho, S.; Cheong, J. Serum Exosomal MicroRNA, miR-10b-5p, as a potential diagnostic biomarker for early-stage hepatocellular carcinoma. J. Clin. Med., 2020, 9(1), 281.
[http://dx.doi.org/10.3390/jcm9010281] [PMID: 31968558]
[112]
Hao, X.; Xin, R.; Dong, W. Decreased serum exosomal miR-320a expression is an unfavorable prognostic factor in patients with hepatocellular carcinoma. J. Int. Med. Res., 2020, 48(4), 0300060519896144.
[http://dx.doi.org/10.1177/0300060519896144] [PMID: 32339037]
[113]
Sun, N.; Lee, Y.T.; Zhang, R.Y.; Kao, R.; Teng, P.C.; Yang, Y.; Yang, P.; Wang, J.J.; Smalley, M.; Chen, P.J.; Kim, M.; Chou, S.J.; Bao, L.; Wang, J.; Zhang, X.; Qi, D.; Palomique, J.; Nissen, N.; Han, S.H.B.; Sadeghi, S.; Finn, R.S.; Saab, S.; Busuttil, R.W.; Markovic, D.; Elashoff, D.; Yu, H.; Li, H.; Heaney, A.P.; Posadas, E.; You, S.; Yang, J.D.; Pei, R.; Agopian, V.G.; Tseng, H.R.; Zhu, Y. Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat. Commun., 2020, 11(1), 4489.
[http://dx.doi.org/10.1038/s41467-020-18311-0] [PMID: 32895384]
[114]
Tan, C.; Cao, J.; Chen, L.; Xi, X.; Wang, S.; Zhu, Y.; Yang, L.; Ma, L.; Wang, D.; Yin, J.; Zhang, T.; John Lu, Z. Noncoding RNAs serve as diagnosis and prognosis biomarkers for hepatocellular carcinoma. Clin. Chem., 2019, 65(7), 905-915.
[http://dx.doi.org/10.1373/clinchem.2018.301150] [PMID: 30996051]
[115]
Cui, Z.; Li, Y.; Gao, Y.; Kong, L.; Lin, Y.; Chen, Y. Cancer-testis antigen lactate dehydrogenase C4 in hepatocellular carcinoma: A promising biomarker for early diagnosis, efficacy evaluation and prognosis prediction. Aging (Albany NY), 2020, 12(19), 19455-19467.
[http://dx.doi.org/10.18632/aging.103879] [PMID: 33035196]
[116]
Wang, X.; Kwak, K.J.; Yang, Z.; Zhang, A.; Zhang, X.; Sullivan, R.; Lin, D.; Lee, R.L.; Castro, C.; Ghoshal, K.; Schmidt, C.; Lee, L.J. Extracellular mRNA detected by molecular beacons in tethered lipoplex nanoparticles for diagnosis of human hepatocellular carcinoma. PLoS One, 2018, 13(6), e0198552.
[http://dx.doi.org/10.1371/journal.pone.0198552] [PMID: 29879168]
[117]
Sorop, A.; Iacob, R.; Iacob, S.; Constantinescu, D.; Chitoiu, L.; Fertig, T.E.; Dinischiotu, A.; Chivu-Economescu, M.; Bacalbasa, N.; Savu, L.; Gheorghe, L.; Dima, S.; Popescu, I. Plasma small extracellular vesicles derived miR-21-5p and miR-92a-3p as potential biomarkers for hepatocellular carcinoma screening. Front. Genet., 2020, 11, 712.
[http://dx.doi.org/10.3389/fgene.2020.00712] [PMID: 32793278]
[118]
Arbelaiz, A.; Azkargorta, M.; Krawczyk, M.; Santos-Laso, A.; Lapitz, A.; Perugorria, M.J.; Erice, O.; Gonzalez, E.; Jimenez-Agüero, R.; Lacasta, A.; Ibarra, C.; Sanchez-Campos, A.; Jimeno, J.P.; Lammert, F.; Milkiewicz, P.; Marzioni, M.; Macias, R.I.R.; Marin, J.J.G.; Patel, T.; Gores, G.J.; Martinez, I.; Elortza, F.; Falcon-Perez, J.M.; Bujanda, L.; Banales, J.M. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology, 2017, 66(4), 1125-1143.
[http://dx.doi.org/10.1002/hep.29291] [PMID: 28555885]
[119]
Julich-Haertel, H.; Urban, S.K.; Krawczyk, M.; Willms, A.; Jankowski, K.; Patkowski, W.; Kruk, B.; Krasnodębski, M.; Ligocka, J.; Schwab, R.; Richardsen, I.; Schaaf, S.; Klein, A.; Gehlert, S.; Sänger, H.; Casper, M.; Banales, J.M.; Schuppan, D.; Milkiewicz, P.; Lammert, F.; Krawczyk, M.; Lukacs-Kornek, V.; Kornek, M. Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. J. Hepatol., 2017, 67(2), 282-292.
[http://dx.doi.org/10.1016/j.jhep.2017.02.024] [PMID: 28267620]
[120]
Sohn, W.; Kim, J.; Kang, S.H.; Yang, S.R.; Cho, J.Y.; Cho, H.C.; Shim, S.G.; Paik, Y.H. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp. Mol. Med., 2015, 47(9), e184.
[http://dx.doi.org/10.1038/emm.2015.68] [PMID: 26380927]
[121]
Cho, H.J.; Baek, G.O.; Seo, C.W.; Ahn, H.R.; Sung, S.; Son, J.A.; Kim, S.S.; Cho, S.W.; Jang, J.W.; Nam, S.W.; Cheong, J.Y.; Eun, J.W. Exosomal microRNA‐4661‐5p–based serum panel as a potential diagnostic biomarker for early‐stage hepatocellular carcinoma. Cancer Med., 2020, 9(15), 5459-5472.
[http://dx.doi.org/10.1002/cam4.3230] [PMID: 32537885]
[122]
Ghosh, S.; Bhowmik, S.; Majumdar, S.; Goswami, A.; Chakraborty, J.; Gupta, S.; Aggarwal, S.; Ray, S.; Chatterjee, R.; Bhattacharyya, S.; Dutta, M.; Datta, S.; Chowdhury, A.; Dhali, G.K.; Banerjee, S. The exosome encapsulated Micrornas as circulating diagnostic marker for hepatocellular carcinoma with low alpha‐fetoprotein. Int. J. Cancer, 2020, 147(10), 2934-2947.
[http://dx.doi.org/10.1002/ijc.33111] [PMID: 32441313]
[123]
Pu, C.; Huang, H.; Wang, Z.; Zou, W.; Lv, Y.; Zhou, Z.; Zhang, Q.; Qiao, L.; Wu, F.; Shao, S. Extracellular vesicle-associated mir-21 and mir-144 are markedly elevated in serum of patients with hepatocellular carcinoma. Front. Physiol., 2018, 9, 930.
[http://dx.doi.org/10.3389/fphys.2018.00930] [PMID: 30065664]
[124]
Zhang, Y.; Xi, H.; Nie, X.; Zhang, P.; Lan, N.; Lu, Y.; Liu, J.; Yuan, W. Assessment of miR-212 and other biomarkers in the diagnosis and treatment of HBV-infection-related liver diseases. Curr. Drug Metab., 2019, 20(10), 785-798.
[http://dx.doi.org/10.2174/1389200220666191011120434] [PMID: 31608838]
[125]
Wang, T.; Zhu, H.; Xiao, M.; Zhou, S. Serum exosomal long noncoding RNA CRNDE as a prognostic biomarker for hepatocellular carcinoma. J. Clin. Lab. Anal., 2021, 35(11), e23959.
[http://dx.doi.org/10.1002/jcla.23959] [PMID: 34612554]
[126]
Kim, S.S.; Baek, G.O.; Ahn, H.R.; Sung, S.; Seo, C.W.; Cho, H.J.; Nam, S.W.; Cheong, J.Y.; Eun, J.W. Serum small extracellular vesicle‐derived LINC00853 as a novel diagnostic marker for early hepatocellular carcinoma. Mol. Oncol., 2020, 14(10), 2646-2659.
[http://dx.doi.org/10.1002/1878-0261.12745] [PMID: 32525601]
[127]
Xu, H.; Chen, Y.; Dong, X.; Wang, X. Serum Exosomal Long Noncoding RNAs ENSG00000258332.1 and LINC00635 for the diagnosis and prognosis of hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev., 2018, 27(6), 710-716.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0770] [PMID: 29650788]
[128]
Abd El Gwad, A.; Matboli, M.; El-Tawdi, A.; Habib, E.K.; Shehata, H.; Ibrahim, D.; Tash, F. Role of exosomal competing endogenous RNA in patients with hepatocellular carcinoma. J. Cell. Biochem., 2018, 119(10), 8600-8610.
[http://dx.doi.org/10.1002/jcb.27109] [PMID: 30015383]
[129]
Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; Ylstra, B.; Ameziane, N.; Dorsman, J.; Smit, E.F.; Verheul, H.M.; Noske, D.P.; Reijneveld, J.C.; Nilsson, R.J.A.; Tannous, B.A.; Wesseling, P.; Wurdinger, T. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell, 2015, 28(5), 666-676.
[http://dx.doi.org/10.1016/j.ccell.2015.09.018] [PMID: 26525104]
[130]
Li, X.; Liu, L.; Song, X.; Wang, K.; Niu, L.; Xie, L.; Song, X. TEP linc-GTF2H2-1, RP3-466P17.2, and lnc-ST8SIA4-12 as novel biomarkers for lung cancer diagnosis and progression prediction. J. Cancer Res. Clin. Oncol., 2021, 147(6), 1609-1622.
[http://dx.doi.org/10.1007/s00432-020-03502-5] [PMID: 33792796]
[131]
Wang, B.; Zhu, J.; Ma, X.; Wang, H.; Qiu, S.; Pan, B.; Zhou, J.; Fan, J.; Yang, X.; Guo, W.; Cheng, Y. Platelet activation status in the diagnosis and postoperative prognosis of hepatocellular carcinoma. Clin. Chim. Acta, 2019, 495, 191-197.
[http://dx.doi.org/10.1016/j.cca.2019.03.1634] [PMID: 30946815]
[132]
Zhu, B.; Gu, S.; Wu, X.; He, W.; Zhou, H. Bioinformatics analysis of tumor-educated platelet microRNAs in patients with hepatocellular carcinoma. Biosci. Rep., 2021, 41(12), BSR20211420.
[http://dx.doi.org/10.1042/BSR20211420] [PMID: 34806748]
[133]
Asghar, S.; Waqar, W.; Umar, M.; Manzoor, S. Tumor educated platelets, a promising source for early detection of hepatocellular carcinoma: Liquid biopsy an alternative approach to tissue biopsy. Clin. Res. Hepatol. Gastroenterol., 2020, 44(6), 836-844.
[http://dx.doi.org/10.1016/j.clinre.2020.03.023] [PMID: 32312598]
[134]
Waqar, W.; Asghar, S.; Manzoor, S. Platelets’ RNA as biomarker trove for differentiation of early-stage hepatocellular carcinoma from underlying cirrhotic nodules. PLoS One, 2021, 16(9), e0256739.
[http://dx.doi.org/10.1371/journal.pone.0256739] [PMID: 34469466]
[135]
Masuzaki, R.; Karp, S.J.; Omata, M. New serum markers of hepatocellular carcinoma. Semin. Oncol., 2012, 39(4), 434-439.
[http://dx.doi.org/10.1053/j.seminoncol.2012.05.009] [PMID: 22846860]
[136]
Mahalingam, D.; Chelis, L.; Nizamuddin, I.; Lee, S.S.; Kakolyris, S.; Halff, G.; Washburn, K.; Attwood, K.; Fahad, I.; Grigorieva, J.; Asmellash, S.; Meyer, K.; Oliveira, C.; Roder, H.; Roder, J.; Iyer, R. Detection of hepatocellular carcinoma in a high-risk population by a mass spectrometry-based test. Cancers (Basel), 2021, 13(13), 3109.
[http://dx.doi.org/10.3390/cancers13133109] [PMID: 34206321]
[137]
Zhang, S.; Liu, Y.; Chen, J.; Shu, H.; Shen, S.; Li, Y.; Lu, X.; Cao, X.; Dong, L.; Shi, J.; Cao, Y.; Wang, X.; Zhou, J.; Liu, Y.; Chen, L.; Fan, J.; Ding, G.; Gao, Q. Autoantibody signature in hepatocellular carcinoma using seromics. J. Hematol. Oncol., 2020, 13(1), 85.
[http://dx.doi.org/10.1186/s13045-020-00918-x] [PMID: 32616055]
[138]
Han, J.; Han, M.; Xing, H.; Li, Z.; Yuan, D.; Wu, H.; Zhang, H.; Wang, M.; Li, C.; Liang, L.; Song, Y.; Xu, A.; Wu, M.; Shen, F.; Xie, Y.; Yang, T. Tissue and serum metabolomic phenotyping for diagnosis and prognosis of hepatocellular carcinoma. Int. J. Cancer, 2020, 146(6), 1741-1753.
[http://dx.doi.org/10.1002/ijc.32599] [PMID: 31361910]
[139]
Lu, Y.; Li, N.; Gao, L.; Xu, Y.J.; Huang, C.; Yu, K.; Ling, Q.; Cheng, Q.; Chen, S.; Zhu, M.; Fang, J.; Chen, M.; Ong, C.N. Acetylcarnitine is a candidate diagnostic and prognostic biomarker of hepatocellular carcinoma. Cancer Res., 2016, 76(10), 2912-2920.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3199] [PMID: 26976432]
[140]
Kim, D.; Cho, E.; Yu, K.S.; Jang, I.J.; Yoon, J.H.; Park, T.; Cho, J.Y. Comprehensive metabolomic search for biomarkers to differentiate early stage hepatocellular carcinoma from cirrhosis. Cancers, 2019, 11(10), 1497.
[http://dx.doi.org/10.3390/cancers11101497] [PMID: 31590436]
[141]
Zeng, J.; Yin, P.; Tan, Y.; Dong, L.; Hu, C.; Huang, Q.; Lu, X.; Wang, H.; Xu, G. Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry. J. Proteome Res., 2014, 13(7), 3420-3431.
[http://dx.doi.org/10.1021/pr500390y] [PMID: 24853826]
[142]
Ladep, N.G.; Dona, A.C.; Lewis, M.R.; Crossey, M.M.E.; Lemoine, M.; Okeke, E.; Shimakawa, Y.; Duguru, M.; Njai, H.F.; Fye, H.K.S.; Taal, M.; Chetwood, J.; Kasstan, B.; Khan, S.A.; Garside, D.A.; Wijeyesekera, A.; Thillainayagam, A.V.; Banwat, E.; Thursz, M.R.; Nicholson, J.K.; Njie, R.; Holmes, E.; Taylor-Robinson, S.D. Discovery and validation of urinary metabotypes for the diagnosis of hepatocellular carcinoma in West Africans. Hepatology, 2014, 60(4), 1291-1301.
[http://dx.doi.org/10.1002/hep.27264] [PMID: 24923488]
[143]
Banales, J.M.; Iñarrairaegui, M.; Arbelaiz, A.; Milkiewicz, P.; Muntané, J.; Muñoz-Bellvis, L.; La Casta, A.; Gonzalez, L.M.; Arretxe, E.; Alonso, C.; Martínez-Arranz, I.; Lapitz, A.; Santos-Laso, A.; Avila, M.A.; Martínez-Chantar, M.L.; Bujanda, L.; Marin, J.J.G.; Sangro, B.; Macias, R.I.R. Serum Metabolites as Diagnostic Biomarkers for Cholangiocarcinoma, Hepatocellular Carcinoma, and Primary Sclerosing Cholangitis. Hepatology, 2019, 70(2), 547-562.
[http://dx.doi.org/10.1002/hep.30319] [PMID: 30325540]
[144]
Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29(11), 1181-1189.
[http://dx.doi.org/10.1080/004982599238047] [PMID: 10598751]
[145]
Beyoğlu, D.; Idle, J.R. Metabolomic and lipidomic biomarkers for premalignant liver disease diagnosis and therapy. Metabolites, 2020, 10(2), 50.
[http://dx.doi.org/10.3390/metabo10020050] [PMID: 32012846]
[146]
Wishart, D.S.; Lewis, M.J.; Morrissey, J.A.; Flegel, M.D.; Jeroncic, K.; Xiong, Y.; Cheng, D.; Eisner, R.; Gautam, B.; Tzur, D.; Sawhney, S.; Bamforth, F.; Greiner, R.; Li, L. The human cerebrospinal fluid metabolome. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 871(2), 164-173.
[http://dx.doi.org/10.1016/j.jchromb.2008.05.001] [PMID: 18502700]
[147]
Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; Young, N.; Xia, J.; Knox, C.; Dong, E.; Huang, P.; Hollander, Z.; Pedersen, T.L.; Smith, S.R.; Bamforth, F.; Greiner, R.; McManus, B.; Newman, J.W.; Goodfriend, T.; Wishart, D.S. The human serum metabolome. PLoS One, 2011, 6(2), e16957.
[http://dx.doi.org/10.1371/journal.pone.0016957] [PMID: 21359215]
[148]
Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, Z.T.; Poelzer, J.; Huynh, J.; Yallou, F.S.; Psychogios, N.; Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D.S. The human urine metabolome. PLoS One, 2013, 8(9), e73076.
[http://dx.doi.org/10.1371/journal.pone.0073076] [PMID: 24023812]
[149]
Karu, N.; Deng, L.; Slae, M.; Guo, A.C.; Sajed, T.; Huynh, H.; Wine, E.; Wishart, D.S. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal. Chim. Acta, 2018, 1030, 1-24.
[http://dx.doi.org/10.1016/j.aca.2018.05.031] [PMID: 30032758]
[150]
Huang, Q.; Tan, Y.; Yin, P.; Ye, G.; Gao, P.; Lu, X.; Wang, H.; Xu, G. Metabolic characterization of hepatocellular carcinoma using non-targeted tissue metabolomics. Cancer Res., 2013, 73(16), 4992-5002.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0308] [PMID: 23824744]
[151]
Liu, Y.; Hong, Z.; Tan, G.; Dong, X.; Yang, G.; Zhao, L.; Chen, X.; Zhu, Z.; Lou, Z.; Qian, B.; Zhang, G.; Chai, Y. NMR and LC/MS-based global metabolomics to identify serum biomarkers differentiating hepatocellular carcinoma from liver cirrhosis. Int. J. Cancer, 2014, 135(3), 658-668.
[http://dx.doi.org/10.1002/ijc.28706] [PMID: 24382646]
[152]
Fages, A.; Duarte-Salles, T.; Stepien, M.; Ferrari, P.; Fedirko, V.; Pontoizeau, C.; Trichopoulou, A.; Aleksandrova, K.; Tjønneland, A.; Olsen, A.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Severi, G.; Kaaks, R.; Kuhn, T.; Floegel, A.; Boeing, H.; Lagiou, P.; Bamia, C.; Trichopoulos, D.; Palli, D.; Pala, V.; Panico, S.; Tumino, R.; Vineis, P.; Bueno-de-Mesquita, H.B.; Peeters, P.H.; Weiderpass, E.; Agudo, A.; Molina-Montes, E.; Huerta, J.M.; Ardanaz, E.; Dorronsoro, M.; Sjöberg, K.; Ohlsson, B.; Khaw, K.T.; Wareham, N.; Travis, R.C.; Schmidt, J.A.; Cross, A.; Gunter, M.; Riboli, E.; Scalbert, A.; Romieu, I.; Elena-Herrmann, B.; Jenab, M. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Med., 2015, 13(1), 242.
[http://dx.doi.org/10.1186/s12916-015-0462-9] [PMID: 26399231]
[153]
Luo, P.; Yin, P.; Hua, R.; Tan, Y.; Li, Z.; Qiu, G.; Yin, Z.; Xie, X.; Wang, X.; Chen, W.; Zhou, L.; Wang, X.; Li, Y.; Chen, H.; Gao, L.; Lu, X.; Wu, T.; Wang, H.; Niu, J.; Xu, G.A. Large‐scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology, 2018, 67(2), 662-675.
[http://dx.doi.org/10.1002/hep.29561] [PMID: 28960374]
[154]
Han, J.; Qin, W.; Li, Z.; Xu, A.; Xing, H.; Wu, H.; Zhang, H.; Wang, M.; Li, C.; Liang, L.; Quan, B.; Yan, W.; Shen, F.; Wu, M.; Yang, T. Tissue and serum metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Clin. Chim. Acta, 2019, 488, 68-75.
[http://dx.doi.org/10.1016/j.cca.2018.10.039] [PMID: 30389456]
[155]
Zhou, P.C.; Sun, L.Q.; Shao, L.; Yi, L.Z.; Li, N.; Fan, X.G. Establishment of a pattern recognition metabolomics model for the diagnosis of hepatocellular carcinoma. World J. Gastroenterol., 2020, 26(31), 4607-4623.
[http://dx.doi.org/10.3748/wjg.v26.i31.4607] [PMID: 32884220]
[156]
Pan, H.Y.; Wu, Q.Q.; Yin, Q.Q.; Dai, Y.N.; Huang, Y.C.; Zheng, W.; Hui, T.C.; Chen, M.J.; Wang, M.S.; Zhang, J.J.; Huang, H.J.; Tong, Y.X. LC/MS-based global metabolomic identification of serum biomarkers differentiating hepatocellular carcinoma from chronic hepatitis B and liver cirrhosis. ACS Omega, 2021, 6(2), 1160-1170.
[http://dx.doi.org/10.1021/acsomega.0c04259] [PMID: 33490775]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy