Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Micro and Nano Robotics-assisted Targeted Drug Delivery, Surgery and Radiotherapy for Cancer Treatment

Author(s): Smriti Ojha, Raj Bhusan Singh*, Amrita Shukla, Hina Chadha and Sudhanshu Mishra*

Volume 20, Issue 1, 2024

Published on: 10 May, 2023

Page: [18 - 25] Pages: 8

DOI: 10.2174/1573394719666230410102010

Price: $65

Abstract

Cancer refers to the progressive abnormal cell growth with the potential to invade or spread to other parts of the body. Many cancer therapies continue to be based on systemic chemotherapy along with radiation therapy. Numerous nanomedicine strategies have been developed to address the untargeted nature of these therapies and the serious side effects they can cause. As targeted therapeutic delivery is still difficult, engineered robots and microrobots are getting more and more attention and applicability. Microrobots can more effectively reach malignancies because of their unique features and functions, like their motility, which allows them to penetrate malignant tissues. Modern cancer treatment techniques built on information technology can boost patient compliance and improve patient survival. The delicate tissue can be overly damaged by radiation and surgery, and most chemotherapy medications are unable to penetrate the blood-brain barrier and reach the tumor. Cancer prevention, its early detection, quick diagnosis, and prompt treatment are very crucial. Robotic technology is employed in a variety of medical settings, and its applications in surgery have evolved that have an impact on the field of cancer treatment as well. A key improvement in cancer therapy with the aid of robotics would be the ability to target and deliver medications directly to the tumor.

Graphical Abstract

[1]
Minervini A, Vittori G, Antonelli A, et al. Open versus robotic-assisted partial nephrectomy: A multicenter comparison study of perioperative results and complications. World J Urol 2014; 32(1): 287-93.
[http://dx.doi.org/10.1007/s00345-013-1136-x]
[2]
Andres FRO. Upper and lower extremity exoskeletons. Handbook of Biomechatronics. 2018; pp. 283-317.
[http://dx.doi.org/10.1016/B978-0-12-812539-7.00011-8]
[3]
Ashrafian H, Clancy O, Grover V, Darzi A. The evolution of robotic surgery: Surgical and anaesthetic aspects. Br J Anaesth 2017; 119 (Suppl. 1): i72-84.
[http://dx.doi.org/10.1093/bja/aex383] [PMID: 29161400]
[4]
Baumann M, Krause M, Overgaard J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer 2016; 16(4): 234-49.
[http://dx.doi.org/10.1038/nrc.2016.18] [PMID: 27009394]
[5]
Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int 2001; 87(4): 408-10.
[http://dx.doi.org/10.1046/j.1464-410x.2001.00115.x] [PMID: 11251539]
[6]
Brahmi B, Saad M, Rahman M H, Ochoa-Luna C, Rasedul I. Development and control of an upper extremity exoskeleton robot for rehabilitation.In: Wearable Robotics:. Systems and Applications. 2020; pp. 23-42.
[http://dx.doi.org/10.1016/B978-0-12-814659-0.00002-3]
[7]
Cecil J, Powell D, Vasquez D. Assembly and manipulation of micro devices-A state of the art survey. Robot Comput-Integr Manuf 2007; 23(5): 580-8.
[http://dx.doi.org/10.1016/j.rcim.2006.05.010]
[8]
Chatzipirpiridis G, Ergeneman O, Pokki J, et al. Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv Healthc Mater 2015; 4(2): 208-8.
[http://dx.doi.org/10.1002/ADHM.201570011] [PMID: 24986087]
[9]
Chatzipirpiridis G, Ergeneman O, Pokki J, et al. Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv Healthc Mater 2014; 4(2): 209-14.
[http://dx.doi.org/10.1002/adhm.201400256] [PMID: 24986087]
[10]
Chen Y, Zhao H, Mao J, Chirarattananon P, Helbling EF, Hyun N. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019; 575(7782): 324-9.
[http://dx.doi.org/10.1038/s41586-019-1737-7]
[11]
Debela DT, Muzazu SGY, Heraro KD, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med 2021; 9.
[http://dx.doi.org/10.1177/20503121211034366] [PMID: 34408877]
[12]
Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 2016; 11(11): 941-7.
[http://dx.doi.org/10.1038/nnano.2016.137] [PMID: 27525475]
[13]
Zhang Y, Zhang Y, Han Y, Gong X. Micro/nanorobots for medical diagnosis and disease treatment. Micromachines 2022; 13(5): 648.
[http://dx.doi.org/10.3390/mi13050648] [PMID: 35630115]
[14]
Fichtinger G, Kazanzides P, Okamura AM, Hager GD, Whitcomb LL, Taylor R H. Surgical and interventional robotics: Part II: Surgical CAD-CAM systems. IEEE Robot Autom Mag 2008; 15(3): 94-102.
[http://dx.doi.org/10.1109/MRA.2008.927971]
[15]
Gerlach S, Schlaefer A. Robotic systems in radiotherapy and radiosurgery. Curr Robotics Reports 2022; 3: 9-19.
[http://dx.doi.org/10.1007/s43154-021-00072-3]
[16]
Guckenberger M, Wilbert J, Richter A, Baier K, Flentje M. Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2011; 79(3): 901-8.
[http://dx.doi.org/10.1016/j.ijrobp.2010.04.050] [PMID: 20708850]
[17]
Haidenberger A, Heidorn SC, Kremer N, Muacevic A, Fürweger C. Robotic radiosurgery for adrenal gland metastases. Cureus 2017; 9(3): e1120.
[http://dx.doi.org/10.7759/cureus.1120] [PMID: 28451479]
[18]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[19]
Kim S, Laschi C, Trimmer B. Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol 2013; 31(5): 287-94.
[http://dx.doi.org/10.1016/j.tibtech.2013.03.002] [PMID: 23582470]
[20]
Kubo HD, Hill BC. Respiration gated radiotherapy treatment: A technical study. Phys Med Biol 1996; 41(1): 83-91.
[http://dx.doi.org/10.1088/0031-9155/41/1/007] [PMID: 8685260]
[21]
Lanfranco AR, Castellanos AE, Desai JP, Meyers WC. Robotic surgery. Ann Surg 2004; 239(1): 14-21.
[http://dx.doi.org/10.1097/01.sla.0000103020.19595.7d] [PMID: 14685095]
[22]
Lee H, Lee D, Jeon S. A two-dimensional manipulation method for a magnetic microrobot with a large region of interest using a triad of electromagnetic coils. Micromachines 2022; 13(3): 416.
[http://dx.doi.org/10.3390/mi13030416] [PMID: 35334708]
[23]
Leong TG, Randall CL, Benson BR, Bassik N, Stern GM, Gracias DH. Tetherless thermobiochemically actuated microgrippers. Proc Natl Acad Sci USA 2009; 106(3): 703-8.
[http://dx.doi.org/10.1073/pnas.0807698106] [PMID: 19139411]
[24]
Li H, Liu J, Gu H. Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot. J Cell Mol Med 2019; 23(3): 2248-50.
[http://dx.doi.org/10.1111/jcmm.14127] [PMID: 30592140]
[25]
Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot 2017; 2(4): eaam6431.
[http://dx.doi.org/10.1126/scirobotics.aam6431] [PMID: 31552379]
[26]
Liu X, Wiersma RD. Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems. PLoS One 2019; 14(1): e0210385.
[http://dx.doi.org/10.1371/journal.pone.0210385] [PMID: 30633766]
[27]
Luo M, Feng Y, Wang T, Guan J. Micro/nanorobots at work in active drug delivery. Adv Funct Mater 2018; 28(25): 1706100.
[http://dx.doi.org/10.1002/adfm.201706100]
[28]
Madden JD. Mobile robots: Motor challenges and materials solutions. Science 2007; 318(5853): 1094-7.
[http://dx.doi.org/10.1126/science.1146351] [PMID: 18006737]
[29]
Medina-Sánchez M, Xu H, Schmidt OG. Micro- and nano-motors: The new generation of drug carriers. Ther Deliv 2018; 9(4): 303-16.
[http://dx.doi.org/10.4155/tde-2017-0113] [PMID: 29540126]
[30]
Meet the microrobots primed to take down cancer. Drug Discovery News Available From:. https://www.drugdiscoverynews.com/meet-the-microrobots-primed-to-take-down-cancer-15293
[31]
Microrobots cross the blood-brain barrier, opening up anti-cancer R&D opportunities. Available From:. https://www.fiercepharma.com/drug-delivery/microrobots-cross-blood-brain-barrier-opening-up-anticancer-r-d-opportunities
[32]
Novara G, Catto JWF, Wilson T, et al. Systematic review and cumulative analysis of perioperative outcomes and complications after robot-assisted radical cystectomy. Eur Urol 2015; 67(3): 376-401.
[http://dx.doi.org/10.1016/j.eururo.2014.12.007] [PMID: 25560798]
[33]
Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol 2018; 9(MAR): 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[34]
Pircalabioru GG, Bleotu C, Curutiu C, Mihaescu G, Chifiriuc M-C. Nanodrug delivery systems in cancer. Biomed Appl Nanopart 2019; pp. 31-62.
[http://dx.doi.org/10.1016/B978-0-12-816506-5.00015-2]
[35]
Robotics in healthcare. The future of robots in medicine Intel Available from: https://www.intel.in/content/www/in/en/healthcare-it/robotics-in-healthcare.html
[36]
Rommasi F. Bacterial-based methods for cancer treatment: What we know and where we are. Oncol Ther 2021; 10(1): 23-54.
[http://dx.doi.org/10.1007/s40487-021-00177-x]
[37]
Runciman M, Darzi A, Mylonas GP. Soft robotics in minimally invasive surgery. Soft Robot 2019; 6(4): 423-43.
[http://dx.doi.org/10.1089/soro.2018.0136] [PMID: 30920355]
[38]
Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat Commun 2020; 11(1): 5618.
[http://dx.doi.org/10.1038/s41467-020-19322-7] [PMID: 33154372]
[39]
Shah J, Vyas A, Vyas D. The history of robotics in surgical specialties. Am J Robot Surg 2014; 1(1): 12-20.
[http://dx.doi.org/10.1166/ajrs.2014.1006] [PMID: 26677459]
[40]
Siciliano B, Khatib O. Springer handbook of robotics. 2016; pp. 1-2227.
[http://dx.doi.org/10.1007/978-3-319-32552-1]
[41]
Singh A, Ansari M, Mahajan M, et al. Sperm cell driven microrobots-Emerging opportunities and challenges for biologically inspired robotic design. Micromachines 2020; 11(4): 448.
[http://dx.doi.org/10.3390/mi11040448] [PMID: 32340402]
[42]
Singh AV, Dad Ansari MH, Dayan CB, et al. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials 2019; 219: 119394.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119394] [PMID: 31382208]
[43]
Singh AV, Hosseinidoust Z, Park BW, Yasa O, Sitti M. Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano 2017; 11(10): 9759-69.
[http://dx.doi.org/10.1021/acsnano.7b02082] [PMID: 28858477]
[44]
Singh AV, Rahman A, Sudhir Kumar NVG, et al. Bio-inspired approaches to design smart fabrics. Mater Des 2012; 36: 829-39.
[http://dx.doi.org/10.1016/j.matdes.2011.01.061]
[45]
Sirlantzis K, Larsen LB, Kanumuru LK, Oprea P. Robotics. In: Handbook of electronic assistive technology. 2018; pp. 311-45.
[http://dx.doi.org/10.1016/B978-0-12-812487-1.00011-9]
[46]
Straight from science fiction, bacteria-based 'microrobots' could become a future cancer treatment. Fierce Biotech Available From:. https://www.fiercebiotech.com/biotech/straight-science-fiction-bacteria-based-microrobots-could-become-future-cancer-treatment
[47]
Swiecicki JM, Sliusarenko O, Weibel DB. From swimming to swarming: Escherichia coli cell motility in two-dimensions. Integr Biol 2013; 5(12): 1490-4.
[http://dx.doi.org/10.1039/c3ib40130h] [PMID: 24145500]
[48]
Tan WS, Khetrapal P, Tan WP, Rodney S, Chau M, Kelly JD. Robotic-assisted radical cystectomy with extracorporeal urinary diversion does not show a benefit over open radical cystectomy: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2016; 11(11): e0166221.
[http://dx.doi.org/10.1371/journal.pone.0166221] [PMID: 27820855]
[49]
Thaly R, Shah K, Patel VR. Applications of robots in urology. J Robot Surg 2007; 1(1): 3-17.
[http://dx.doi.org/10.1007/s11701-006-0003-9] [PMID: 25484933]
[50]
van der Loos HFM, Reinkensmeyer DJ, Guglielmelli E. Rehabilitation and health care robotics. Springer Handbook of Robotics 2016; pp. 1687-728.
[51]
Wang L. Early diagnosis of breast cancer. Sensors 2017; 17(7): 1572.
[http://dx.doi.org/10.3390/s17071572]
[52]
Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 2012; 335(6075): 1458-62.
[http://dx.doi.org/10.1126/science.1216210] [PMID: 22442475]
[53]
Wang Y, Shao J, Ma X, Du Q, Gong H, Zhang X. Robotic and open partial nephrectomy for complex renal tumors: A matched-pair comparison with a long-term follow-up. World J Urol 2017; 35(1): 73-80.
[http://dx.doi.org/10.1007/s00345-016-1849-8] [PMID: 27194142]
[54]
Wilson T, Torrey R. Open versus robotic-assisted radical prostatectomy: which is better? Curr Opin Urol 2011; 21(3): 200-5.
[http://dx.doi.org/10.1097/MOU.0b013e32834493b3] [PMID: 21427586]
[55]
Yu Z, Vanstalle M, La Tessa C, Jiang GL, Durante M. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery. J Radiat Res 2012; 53(4): 620-7.
[http://dx.doi.org/10.1093/jrr/rrs007] [PMID: 22843629]
[56]
Yuh B, Wilson T, Bochner B, et al. Systematic review and cumulative analysis of oncologic and functional outcomes after robot-assisted radical cystectomy. Eur Urol 2015; 67(3): 402-22.
[http://dx.doi.org/10.1016/j.eururo.2014.12.008] [PMID: 25560797]
[57]
Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ. Artificial bacterial flagella: Fabrication and magnetic control. Appl Phys Lett 2009; 94(6): 064107.
[http://dx.doi.org/10.1063/1.3079655]
[58]
Zhang P, Li L, Lin L, Shi J, Wang Lv. In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. Light Sci Appl 2019; 8: 36.
[http://dx.doi.org/10.1038/s41377-019-0147-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy