Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Emerging Strategies to Combat Methicillin-resistant Staphylococcus aureus (MRSA): Natural Agents with High Potential

Author(s): Jonata M. Ueda, Catarina Milho, Sandrina A. Heleno*, Anton Soria-Lopez, Maria Carpena, Maria J. Alves*, Tânia Pires, Miguel A. Prieto, Jesus Simal-Gandara, Ricardo C. Calhelha, Isabel C.F.R. Ferreira and Lillian Barros

Volume 29, Issue 11, 2023

Published on: 17 April, 2023

Page: [837 - 851] Pages: 15

DOI: 10.2174/1381612829666230410095155

Price: $65

Abstract

Infectious diseases have always been a concern for human health, responsible for numerous pandemics throughout history. Even with the advancement of medicine, new infectious diseases have been discovered over the years, requiring constant effort in medical research to avoid future problems. Like the emergence of new diseases, the increase in resistance of certain bacterial strains also becomes a concern, carried out through the misuse of antibiotics, generating the adaptation of certain microorganisms. Worldwide, the resistance developed by several bacterial strains is growing exponentially, creating awareness and developing novel strategies to control their evolution a mandatory research topic. Methicillin-resistant Staphylococcus aureus (MRSA) is an example of a bacterial strain that causes serious and mortal infections. The fact is that this bacterial strain started to develop resistance against commonly used antibiotics, first to penicillin and against methicillin. Thus, the treatment against infections caused by MRSA is limited and difficult due to its capacity to develop defense mechanisms against the antibiotic's action. Given the urgency to find new alternatives, the scientific community has been developing interesting research regarding the exploitation of natural resources to discover bioactive molecules that are able to inhibit/kill MRSA. In this sense, several natural matrices, namely plants, have shown great potential against MRSA, due to the presence of phenolic compounds, molecules with high antimicrobial capacity due to their chemical structure and arrangement.

[1]
Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci 2018; 115(15): E3463-70.
[http://dx.doi.org/10.1073/pnas.1717295115] [PMID: 29581252]
[2]
Klein EY, Milkowska-Shibata M, Tseng KK, et al. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000-15: An analysis of pharmaceutical sales data. Lancet Infect Dis 2021; 21(1): 107-15.
[http://dx.doi.org/10.1016/S1473-3099(20)30332-7] [PMID: 32717205]
[3]
Hutchings MI, Truman AW, Wilkinson B. Antibiotics: Past, present and future. Curr Opin Microbiol 2019; 51: 72-80.
[http://dx.doi.org/10.1016/j.mib.2019.10.008] [PMID: 31733401]
[4]
Pérez RMD. Bacterial resistance to antimicrobials: Its importance in decision-making in daily practice. Therapeutic Information of the National Health System 1998; 22(3): 57-67.
[5]
Wright G. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv Drug Deliv Rev 2005; 57(10): 1451-70.
[http://dx.doi.org/10.1016/j.addr.2005.04.002] [PMID: 15950313]
[6]
D’Costa VM, King CE, Kalan L, et al. Antibiotic resistance is ancient. Nature 2011; 477(7365): 457-61.
[http://dx.doi.org/10.1038/nature10388] [PMID: 21881561]
[7]
Perron GG, Whyte L, Turnbaugh PJ, et al. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One 2015; 10(3): e0069533.
[http://dx.doi.org/10.1371/journal.pone.0069533] [PMID: 25807523]
[8]
von Wintersdorff CJH, Penders J, van Niekerk JM, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 2016; 7: 173.
[http://dx.doi.org/10.3389/fmicb.2016.00173] [PMID: 26925045]
[9]
Sabath LD, Laverdiere M, Wheeler N, Blazevic D, Wilkinson B. A new type of penicillin resistance of Staphylococcus aureus. Lancet 1977; 309(8009): 443-7.
[http://dx.doi.org/10.1016/S0140-6736(77)91941-9] [PMID: 65561]
[10]
Nakamura A, Nakazawa K, Miyakozawa I, et al. Macrolide esterase-producing Escherichia coli clinically isolated in Japan. J Antibiot 2000; 53(5): 516-24.
[http://dx.doi.org/10.7164/antibiotics.53.516] [PMID: 10908116]
[11]
Barthélémy P, Autissier D, Gerbaud G, Courvalin P. Enzymic hydrolysis of erythomycin by a strain of Escherichia coli. J Antibiot 1984; 37(12): 1692-6.
[http://dx.doi.org/10.7164/antibiotics.37.1692] [PMID: 6396291]
[12]
Wondrack L, Massa M, Yang BV, Sutcliffe J. Clinical strain of Staphylococcus aureus inactivates and causes efflux of macrolides. Antimicrob Agents Chemother 1996; 40(4): 992-8.
[http://dx.doi.org/10.1128/AAC.40.4.992] [PMID: 8849266]
[13]
Fillgrove KL, Pakhomova S, Newcomer ME, Armstrong RN. Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc 2003; 125(51): 15730-1.
[http://dx.doi.org/10.1021/ja039307z] [PMID: 14677948]
[14]
Vetting MW, Hegde SS, Javid-Majd F, Blanchard JS, Roderick SL. Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat Struct Biol 2002; 9(9): 653-8.
[http://dx.doi.org/10.1038/nsb830] [PMID: 12161746]
[15]
Wolf E, Vassilev A, Makino Y, Sali A, Nakatani Y, Burley SK. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell 1998; 94(4): 439-49.
[http://dx.doi.org/10.1016/S0092-8674(00)81585-8] [PMID: 9727487]
[16]
Beaman TW, Sugantino M, Roderick SL. Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa. Biochemistry 1998; 37(19): 6689-96.
[http://dx.doi.org/10.1021/bi980106v] [PMID: 9578552]
[17]
Werner G, Witte W. Characterization of a new enterococcal gene, satG, encoding a putative acetyltransferase conferring resistance to Streptogramin A compounds. Antimicrob Agents Chemother 1999; 43(7): 1813-4.
[http://dx.doi.org/10.1128/AAC.43.7.1813] [PMID: 10438336]
[18]
McKay GA, Thompson PR, Wright GD. Broad spectrum aminoglycoside phosphotransferase type III from Enterococcus: Overexpression, purification, and substrate specificity. Biochemistry 1994; 33(22): 6936-44.
[http://dx.doi.org/10.1021/bi00188a024] [PMID: 8204627]
[19]
Trieu-Cuot P, Courvalin P. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3‘5’'-aminoglycoside phosphotransferase type III. Gene 1983; 23(3): 331-41.
[http://dx.doi.org/10.1016/0378-1119(83)90022-7] [PMID: 6313476]
[20]
Kono M, O’Hara K, Ebisu T. Purification and characterization of macrolide 2′-phosphotransferase type II from a strain of Escherichia coli highly resistant to macrolide antibiotics. FEMS Microbiol Lett 1992; 97(1-2): 89-94.
[http://dx.doi.org/10.1016/0378-1097(92)90369-Y] [PMID: 1330822]
[21]
Sakon J, Liao HH, Kanikula AM, Benning MM, Rayment I, Holden HM. Molecular structure of kanamycin nucleotidyltransferase determined to 3.0-.ANG. resolution. Biochemistry 1993; 32(45): 11977-84.
[http://dx.doi.org/10.1021/bi00096a006] [PMID: 8218273]
[22]
Brisson-Noël A, Courvalin P. Nucleotide sequence of gene linA encoding resistance to lincosamides in Staphylococcus haemolyticus. Gene 1986; 43(3): 247-53.
[http://dx.doi.org/10.1016/0378-1119(86)90213-1] [PMID: 3091456]
[23]
Leclercq R, Brisson-Noël A, Duval J, Courvalin P. Phenotypic expression and genetic heterogeneity of lincosamide inactivation in Staphylococcus spp. Antimicrob Agents Chemother 1987; 31(12): 1887-91.
[http://dx.doi.org/10.1128/AAC.31.12.1887] [PMID: 3439797]
[24]
Bozdogan B, Berrezouga L, Kuo MS, et al. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother 1999; 43(4): 925-9.
[http://dx.doi.org/10.1128/AAC.43.4.925] [PMID: 10103201]
[25]
Quan S, Venter H, Dabbs ER. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother 1997; 41(11): 2456-60.
[http://dx.doi.org/10.1128/AAC.41.11.2456] [PMID: 9371349]
[26]
Cundliffe E. Glycosylation of macrolide antibiotics in extracts of Streptomyces lividans. Antimicrob Agents Chemother 1992; 36(2): 348-52.
[http://dx.doi.org/10.1128/AAC.36.2.348] [PMID: 1605601]
[27]
Jenkins A, Diep BA, Mai TT, et al. Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. MBio 2015; 6(1): e02272-14.
[http://dx.doi.org/10.1128/mBio.02272-14] [PMID: 25691592]
[28]
Rife CL, Pharris RE, Newcomer ME, Armstrong RN. Crystal structure of a genomically encoded fosfomycin resistance protein (FosA) at 1.19 A resolution by MAD phasing off the L-III edge of Tl(+). J Am Chem Soc 2002; 124(37): 11001-3.
[http://dx.doi.org/10.1021/ja026879v] [PMID: 12224946]
[29]
Cao M, Bernat BA, Wang Z, Armstrong RN, Helmann JD. FosB, a cysteine-dependent fosfomycin resistance protein under the control of σ(W), an extracytoplasmic-function σ factor in Bacillus subtilis. J Bacteriol 2001; 183(7): 2380-3.
[http://dx.doi.org/10.1128/JB.183.7.2380-2383.2001] [PMID: 11244082]
[30]
Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 2004; 279(50): 52346-52.
[http://dx.doi.org/10.1074/jbc.M409573200] [PMID: 15452119]
[31]
Lee CK, Minami M, Sakuda S, Nihira T, Yamada Y. Stereospecific reduction of virginiamycin M1 as the virginiamycin resistance pathway in Streptomyces virginiae. Antimicrob Agents Chemother 1996; 40(3): 595-601.
[http://dx.doi.org/10.1128/AAC.40.3.595] [PMID: 8851577]
[32]
Mukhtar TA, Koteva KP, Hughes DW, Wright GD. Vgb from Staphylococcus aureus inactivates streptogramin B antibiotics by an elimination mechanism not hydrolysis. Biochemistry 2001; 40(30): 8877-86.
[http://dx.doi.org/10.1021/bi0106787] [PMID: 11467949]
[33]
Darmon E, Leach DRF. Bacterial genome instability. Microbiol Mol Biol Rev 2014; 78(1): 1-39.
[http://dx.doi.org/10.1128/MMBR.00035-13] [PMID: 24600039]
[34]
Guglielmini J, de la Cruz F, Rocha EPC. Evolution of conjugation and type IV secretion systems. Mol Biol Evol 2013; 30(2): 315-31.
[http://dx.doi.org/10.1093/molbev/mss221] [PMID: 22977114]
[35]
Brown-Jaque M, Calero-Cáceres W, Muniesa M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 2015; 79: 1-7.
[http://dx.doi.org/10.1016/j.plasmid.2015.01.001] [PMID: 25597519]
[36]
Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: Distribution, shared mechanisms and divergent control. Nat Rev Microbiol 2014; 12(3): 181-96.
[http://dx.doi.org/10.1038/nrmicro3199] [PMID: 24509783]
[37]
Baptista PV, McCusker MP, Carvalho A, et al. Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”. Front Microbiol 2018; 9: 1441.
[http://dx.doi.org/10.3389/fmicb.2018.01441] [PMID: 30013539]
[38]
Chellat MF, Raguž L, Riedl R. Targeting antibiotic resistance. Angew Chem Int Ed 2016; 55(23): 6600-26.
[http://dx.doi.org/10.1002/anie.201506818] [PMID: 27000559]
[39]
Silva A, Silva SA, Carpena M, et al. Macroalgae as a source of valuable antimicrobial compounds: Extraction and applications. Antibiotics 2020; 9(10): 642.
[http://dx.doi.org/10.3390/antibiotics9100642] [PMID: 32992802]
[40]
Vanamala K, Tatiparti K, Bhise K, et al. Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov Today 2021; 26(1): 31-43.
[http://dx.doi.org/10.1016/j.drudis.2020.10.011] [PMID: 33091564]
[41]
Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39(6): 1211-33.
[http://dx.doi.org/10.1128/AAC.39.6.1211] [PMID: 7574506]
[42]
Mella MS, Sepúlveda AM, González RG, et al. Aminoglucósidos-aminociclitoles: Características estructurales y nuevos aspectos sobre su resistencia. Rev Chilena Infectol 2004; 21(4): 330-8.
[http://dx.doi.org/10.4067/S0716-10182004000400007]
[43]
Aldeyab M, López-Lozano JM, Gould IM. Global antibiotics use and resistance. In: Babar Z-U-D, Ed. Global Pharmaceutical Policy. 2020; pp. 331-44.
[http://dx.doi.org/10.1007/978-981-15-2724-1_13]
[44]
Klein EY, Tseng KK, Pant S, Laxminarayan R. Tracking global trends in the effectiveness of antibiotic therapy using the Drug Resistance Index. BMJ Glob Health 2019; 4(2): e001315.
[http://dx.doi.org/10.1136/bmjgh-2018-001315] [PMID: 31139449]
[45]
Dougan G, Dowson C, Overington J. Meeting the discovery challenge of drug-resistant infections: progress and focusing resources. Drug Discov Today 2019; 24(2): 452-61.
[http://dx.doi.org/10.1016/j.drudis.2018.11.015] [PMID: 30476550]
[46]
Herraiz-Carboné M, Cotillas S, Lacasa E, et al. Are we correctly targeting the research on disinfection of antibiotic-resistant bacteria (ARB)? J Clean Prod 2021; 320: 128865.
[http://dx.doi.org/10.1016/j.jclepro.2021.128865]
[47]
Hwang IY, Koh E, Kim HR, Yew WS, Chang MW. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria. Drug Resist Updat 2016; 27: 59-71.
[http://dx.doi.org/10.1016/j.drup.2016.06.002] [PMID: 27449598]
[48]
Olaniyi R, Pozzi C, Grimaldi L, Bagnoli F. Staphylococcus aureus-associated skin and soft tissue infections: Anatomical localization, epidemiology, therapy and potential prophylaxis. Curr Top Microbiol Immunol 2016; 409: 199-227.
[http://dx.doi.org/10.1007/82_2016_32] [PMID: 27744506]
[49]
Fernández Guerrero ML, González López JJ, Goyenechea A, Fraile J, de Górgolas M. Endocarditis caused by Staphylococcus aureus: A reappraisal of the epidemiologic, clinical, and pathologic manifestations with analysis of factors determining outcome. Medicine 2009; 88(1): 1-22.
[http://dx.doi.org/10.1097/MD.0b013e318194da65] [PMID: 19352296]
[50]
Holland TL, Arnold C, Fowler VG Jr. Clinical management of Staphylococcus aureus bacteremia: A review. JAMA 2014; 312(13): 1330-41.
[http://dx.doi.org/10.1001/jama.2014.9743] [PMID: 25268440]
[51]
Ragle BE, Karginov VA, Bubeck WJ. Prevention and treatment of Staphylococcus aureus pneumonia with a beta-cyclodextrin derivative. Antimicrob Agents Chemother 2010; 54(1): 298-304.
[http://dx.doi.org/10.1128/AAC.00973-09] [PMID: 19805564]
[52]
Delaney JAC, Schneider-Lindner V, Brassard P, Suissa S. Mortality after infection with methicillin-resistant Staphylococcus aureus (MRSA) diagnosed in the community. BMC Med 2008; 6(1): 2.
[http://dx.doi.org/10.1186/1741-7015-6-2] [PMID: 18234115]
[53]
Tarai B, Das P, Kumar D. Recurrent challenges for clinicians: emergence of methicillin-resistant Staphylococcus aureus, vancomycin resistance, and current treatment options. J Lab Physicians 2013; 5(2): 071-8.
[http://dx.doi.org/10.4103/0974-2727.119843] [PMID: 24701097]
[54]
Skjøt-Arkil H, Mogensen CB, Lassen AT, et al. Detection of meticillin-resistant Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae in Danish emergency departments – evaluation of national screening guidelines. J Hosp Infect 2020; 104(1): 27-32.
[http://dx.doi.org/10.1016/j.jhin.2019.08.024] [PMID: 31494129]
[55]
Liu X, Deng S, Huang J, et al. Dissemination of macrolides, fusidic acid and mupirocin resistance among Staphylococcus aureus clinical isolates. Oncotarget 2017; 8(35): 58086-97.
[http://dx.doi.org/10.18632/oncotarget.19491] [PMID: 28938539]
[56]
Khosravi AD, Jenabi A, Montazeri EA. Distribution of genes encoding resistance to aminoglycoside modifying enzymes in methicillin-resistant Staphylococcus aureus (MRSA) strains. Kaohsiung J Med Sci 2017; 33(12): 587-93.
[http://dx.doi.org/10.1016/j.kjms.2017.08.001] [PMID: 29132547]
[57]
Han LL, McDougal LK, Gorwitz RJ, et al. High frequencies of clindamycin and tetracycline resistance in methicillin-resistant Staphylococcus aureus pulsed-field type USA300 isolates collected at a Boston ambulatory health center. J Clin Microbiol 2007; 45(4): 1350-2.
[http://dx.doi.org/10.1128/JCM.02274-06] [PMID: 17287335]
[58]
Alseqely M, Newton-Foot M, Khalil A, El-Nakeeb M, Whitelaw A, Abouelfetouh A. Association between fluoroquinolone resistance and MRSA genotype in Alexandria, Egypt. Sci Rep 2021; 11(1): 4253.
[http://dx.doi.org/10.1038/s41598-021-83578-2] [PMID: 33608606]
[59]
Chen CJ, Huang YC, Shie SS. Evolution of multi-resistance to vancomycin, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus causing persistent bacteremia. Front Microbiol 2020; 11: 1414.
[http://dx.doi.org/10.3389/fmicb.2020.01414] [PMID: 32774327]
[60]
Fishovitz J, Hermoso JA, Chang M, Mobashery S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life 2014; 66(8): 572-7.
[http://dx.doi.org/10.1002/iub.1289] [PMID: 25044998]
[61]
Liu J, Chen D, Peters BM, et al. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb Pathog 2016; 101: 56-67.
[http://dx.doi.org/10.1016/j.micpath.2016.10.028] [PMID: 27836760]
[62]
Turner AM, Lee JYH, Gorrie CL, Howden BP, Carter GP. Genomic insights into last-line antimicrobial resistance in multidrug-resistant Staphylococcus and vancomycin-resistant Enterococcus. Front Microbiol 2021; 12: 637656.
[http://dx.doi.org/10.3389/fmicb.2021.637656] [PMID: 33796088]
[63]
Jang S. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. J Microbiol 2016; 54(1): 1-8.
[http://dx.doi.org/10.1007/s12275-016-5159-z] [PMID: 26727895]
[64]
Sollid JUE, Furberg AS, Hanssen AM, Johannessen M. Staphylococcus aureus: Determinants of human carriage. Infect Genet Evol 2014; 21: 531-41.
[http://dx.doi.org/10.1016/j.meegid.2013.03.020] [PMID: 23619097]
[65]
Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front Microbiol 2018; 9: 2419.
[http://dx.doi.org/10.3389/fmicb.2018.02419] [PMID: 30349525]
[66]
Fernandes de Oliveira LM, Steindorff M, Darisipudi MN, et al. Discovery of Staphylococcus aureus adhesion inhibitors by automated imaging and their characterization in a mouse model of persistent nasal colonization. Microorganisms 2021; 9(3): 631.
[http://dx.doi.org/10.3390/microorganisms9030631] [PMID: 33803564]
[67]
Liu CM, Price LB, Hungate BA, et al. Staphylococcus aureus and the ecology of the nasal microbiome. Sci Adv 2015; 1(5): e1400216.
[http://dx.doi.org/10.1126/sciadv.1400216] [PMID: 26601194]
[68]
Liu GY. Molecular pathogenesis of Staphylococcus aureus infection. Pediatr Res 2009; 65(5 Part 2): 71R-7R.
[http://dx.doi.org/10.1203/PDR.0b013e31819dc44d] [PMID: 19190527]
[69]
Wann ER, Gurusiddappa S, Höök M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 2000; 275(18): 13863-71.
[http://dx.doi.org/10.1074/jbc.275.18.13863] [PMID: 10788510]
[70]
Patti JM, Bremell T, Krajewska-Pietrasik D, et al. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun 1994; 62(1): 152-61.
[http://dx.doi.org/10.1128/iai.62.1.152-161.1994] [PMID: 8262622]
[71]
Guggenberger C, Wolz C, Morrissey JA, Heesemann J. Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog 2012; 8(1): e1002434.
[http://dx.doi.org/10.1371/journal.ppat.1002434] [PMID: 22253592]
[72]
Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 2015; 13(9): 529-43.
[http://dx.doi.org/10.1038/nrmicro3521] [PMID: 26272408]
[73]
Bubeck Wardenburg J, Bae T, Otto M, DeLeo FR, Schneewind O. Poring over pores: α-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 2007; 13(12): 1405-6.
[http://dx.doi.org/10.1038/nm1207-1405] [PMID: 18064027]
[74]
Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: Staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 2017; 15(7): 435-47.
[http://dx.doi.org/10.1038/nrmicro.2017.27] [PMID: 28420883]
[75]
Wagner C, Iking-Konert C, Hug F, et al. Cellular inflammatory response to persistent localized Staphylococcus aureus infection: phenotypical and functional characterization of polymorphonuclear neutrophils (PMN). Clin Exp Immunol 2005; 143(1): 70-7.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02963.x] [PMID: 16367936]
[76]
Cheng P, Liu T, Zhou WY, et al. Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia. BMC Immunol 2012; 13(1): 38.
[http://dx.doi.org/10.1186/1471-2172-13-38] [PMID: 22776294]
[77]
Pollitt EJG, Szkuta PT, Burns N, Foster SJ. Staphylococcus aureus infection dynamics. PLoS Pathog 2018; 14(6): e1007112.
[http://dx.doi.org/10.1371/journal.ppat.1007112] [PMID: 29902272]
[78]
Holland TL, Baddour LM, Bayer AS, Hoen B, Miro JM, Fowler VG Jr. Infective endocarditis. Nat Rev Dis Primers 2016; 2(1): 16059.
[http://dx.doi.org/10.1038/nrdp.2016.59] [PMID: 27582414]
[79]
Bouchiat C, Moreau K, Devillard S, et al. Staphylococcus aureus infective endocarditis versus bacteremia strains: Subtle genetic differences at stake. Infect Genet Evol 2015; 36: 524-30.
[http://dx.doi.org/10.1016/j.meegid.2015.08.029] [PMID: 26318542]
[80]
Bilevicius E, Dragosavac D, Dragosavac S, Araújo S, Falcão ALE, Terzi RGG. Multiple organ failure in septic patients. Braz J Infect Dis 2001; 5(3): 103-10.
[http://dx.doi.org/10.1590/S1413-86702001000300001] [PMID: 11506772]
[81]
Miwa K, Fukuyama M, Matsuno N, et al. Superantigen-induced multiple organ dysfunction in a toxin-concentration-controlled and sequential parameter-monitored swine sepsis model. Int J Infect Dis 2006; 10(1): 14-24.
[http://dx.doi.org/10.1016/j.ijid.2005.01.006] [PMID: 16263316]
[82]
Wisplinghoff H, Seifert H, Coimbra M, Wenzel RP, Edmond MB. Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infection due to Staphylococcus aureus. Clin Infect Dis 2001; 33(5): 733-6.
[http://dx.doi.org/10.1086/322610] [PMID: 11486296]
[83]
Marques LM, Amorin AT, Rezende IS, et al. Sepsis induced by Staphylococcus aureus: participation of biomarkers in a murine model. Med Sci Monit 2015; 21: 345-55.
[http://dx.doi.org/10.12659/MSM.892528] [PMID: 25630550]
[84]
Goetghebeur M, Landry PA, Han D, Vicente C. Methicillin-resistant Staphylococcus aureus: A public health issue with economic consequences. Can J Infect Dis Med Microbiol 2007; 18(1): 27-34.
[http://dx.doi.org/10.1155/2007/253947] [PMID: 18923684]
[85]
Dickmann P, Keeping S, Döring N, et al. Communicating the risk of MRSA: The role of clinical practice, regulation and other policies in five european countries. Front Public Health 2017; 5: 44.
[http://dx.doi.org/10.3389/fpubh.2017.00044] [PMID: 28367432]
[86]
Conly JM, Johnston BL. The emergence of methicillin-resistant Staphylococcus aureus as a community-acquired pathogen in Canada. Can J Infect Dis 2003; 14(5): 249-51.
[http://dx.doi.org/10.1155/2003/197126] [PMID: 18159464]
[87]
Kennedy AD, Otto M, Braughton KR, et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: Recent clonal expansion and diversification. Proc Natl Acad Sci USA 2008; 105(4): 1327-32.
[http://dx.doi.org/10.1073/pnas.0710217105] [PMID: 18216255]
[88]
Otto M. Community-associated MRSA: What makes them special? Int J Med Microbiol 2013; 303(6-7): 324-30.
[http://dx.doi.org/10.1016/j.ijmm.2013.02.007] [PMID: 23517691]
[89]
Peng H, Liu D, Ma Y, Gao W. Comparison of community- and healthcare-associated methicillin-resistant Staphylococcus aureus isolates at a Chinese tertiary hospital, 2012–2017. Sci Rep 2018; 8(1): 17916.
[http://dx.doi.org/10.1038/s41598-018-36206-5] [PMID: 30559468]
[90]
Molina KC, Morrisette T, Miller MA, Huang V, Fish DN. The emerging role of β-lactams in the treatment of methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother 2020; 64(7): e00468-20.
[http://dx.doi.org/10.1128/AAC.00468-20] [PMID: 32312776]
[91]
Panchal VV, Griffiths C, Mosaei H, et al. Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureus is associated with RNA Polymerase alterations and fine tuning of gene expression. PLoS Pathog 2020; 16(7): e1008672.
[http://dx.doi.org/10.1371/journal.ppat.1008672] [PMID: 32706832]
[92]
Shang W, Rao Y, Zheng Y, et al. β-Lactam antibiotics enhance the pathogenicity of methicillin-resistant Staphylococcus aureus via SarA-Controlled lipoprotein-like cluster expression. MBio 2019; 10(3): e00880-19.
[http://dx.doi.org/10.1128/mBio.00880-19] [PMID: 31186320]
[93]
Avent ML, Rogers BA, Cheng AC, Paterson DL. Current use of aminoglycosides: Indications, pharmacokinetics and monitoring for toxicity. Intern Med J 2011; 41(6): 441-9.
[http://dx.doi.org/10.1111/j.1445-5994.2011.02452.x] [PMID: 21309997]
[94]
Norrby SR. Side effects of cephalosporins. Drugs 1987; 34(S2): 105-20.
[http://dx.doi.org/10.2165/00003495-198700342-00009] [PMID: 3319495]
[95]
Norrby SR. Side-effects of quinolones: Comparisons between quinolones and other antibiotics. Eur J Clin Microbiol Infect Dis 1991; 10(4): 378-83.
[http://dx.doi.org/10.1007/BF01967014] [PMID: 1864300]
[96]
Henson KER, Levine MT, Wong EAH, Levine DP. Glycopeptide antibiotics: Evolving resistance, pharmacology and adverse event profile. Expert Rev Anti Infect Ther 2015; 13(10): 1265-78.
[http://dx.doi.org/10.1586/14787210.2015.1068118] [PMID: 26165756]
[97]
Greenwood D. Miscellaneous antibacterial agents. In: Finch RG, Greenwood D, Norrby SR, Whitley RJ, Eds. Antibiotic and Chemotherapy. (9th ed.), London: W.B. Saunders 2010.
[http://dx.doi.org/10.1016/B978-0-7020-4064-1.00031-2]
[98]
Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ. Macrolides: From toxins to therapeutics. Toxins 2021; 13(5): 347.
[http://dx.doi.org/10.3390/toxins13050347] [PMID: 34065929]
[99]
Zhanel GG, Schroeder C, Vercaigne L, Gin AS, Embil J, Hoban DJ. A critical review of oxazolidinones: An alternative or replacement for glycopeptides and streptogramins? Can J Infect Dis 2001; 12(6): 379-90.
[http://dx.doi.org/10.1155/2001/260651] [PMID: 18159365]
[100]
Parenti F, Lancini G. Rifamycins. In: Finch RG, Greenwood D, Norrby SR, Whitley RJ, Eds. Antibiotic and Chemotherapy. (9th ed.), London: W.B. Saunders 2010.
[http://dx.doi.org/10.1016/B978-0-7020-4064-1.00027-0]
[101]
Kemnic TR, Coleman M. Trimethoprim Sulfamethoxazole. StatPearls Publishing LLC: Online 2021.
[102]
Sánchez AR, Rogers RS III, Sheridan PJ. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity. Int J Dermatol 2004; 43(10): 709-15.
[http://dx.doi.org/10.1111/j.1365-4632.2004.02108.x] [PMID: 15485524]
[103]
Bozcal E, Dagdeviren M. Toxicity of β-lactam antibiotics: Pathophysiology, molecular biology and possible recovery strategies, poisoning. In: Malangu N, Ed. Specific Toxic Agents to Novel Rapid and Simplified Techniques for Analysis. London: Intech Open Limited 2017.
[http://dx.doi.org/10.5772/intechopen.70199]
[104]
Choo EJ, Chambers HF. Treatment of methicillin-resistant Staphylococcus aureus Bacteremia. Infect Chemother 2016; 48(4): 267-73.
[http://dx.doi.org/10.3947/ic.2016.48.4.267] [PMID: 28032484]
[105]
Hort M, Bertsche U, Nozinovic S, et al. The Role of β-Glycosylated wall teichoic acids in the reduction of vancomycin susceptibility in vancomycin-intermediate Staphylococcus aureus. Microbiol Spectr 2021; 9(2): e00528-21.
[http://dx.doi.org/10.1128/Spectrum.00528-21] [PMID: 34668723]
[106]
Wu Q, Sabokroo N, Wang Y, Hashemian M, Karamollahi S, Kouhsari E. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates. Antimicrob Resist Infect Control 2021; 10(1): 101.
[http://dx.doi.org/10.1186/s13756-021-00967-y] [PMID: 34193295]
[107]
Filippone EJ, Kraft WK, Farber JL. The nephrotoxicity of vancomycin. Clin Pharmacol Ther 2017; 102(3): 459-69.
[http://dx.doi.org/10.1002/cpt.726] [PMID: 28474732]
[108]
Joseph WS, Quast T, Cogo A, et al. Daptomycin for methicillin-resistant Staphylococcus aureus diabetic foot infections. J Am Podiatr Med Assoc 2014; 104(2): 159-68.
[http://dx.doi.org/10.7547/0003-0538-104.2.159] [PMID: 24725036]
[109]
Zhou YF, Li L, Tao MT, et al. Linezolid and rifampicin combination to combat cfr-positive multidrug-resistant MRSA in murine models of bacteremia and skin and skin structure infection. Front Microbiol 2020; 10: 3080.
[http://dx.doi.org/10.3389/fmicb.2019.03080] [PMID: 31993042]
[110]
Wei X, Zhao M, Xiao X. Optimization of dosing regimens of vancomycin, teicoplanin, linezolid and daptomycin against methicillin-resistant Staphylococcus aureus in neutropenic patients with cancer by Monte Carlo simulations. J Chemother 2021; 33(8): 547-53.
[http://dx.doi.org/10.1080/1120009X.2021.1931758] [PMID: 34080519]
[111]
Ríos JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol 2005; 100(1-2): 80-4.
[http://dx.doi.org/10.1016/j.jep.2005.04.025] [PMID: 15964727]
[112]
Lucera A, Costa C, Conte A, Del Nobile MA. Food applications of natural antimicrobial compounds. Front Microbiol 2012; 3(287): 287.
[http://dx.doi.org/10.3389/fmicb.2012.00287] [PMID: 23060862]
[113]
Hintz T, Matthews KK, Di R. The use of plant antimicrobial compounds for food preservation. BioMed Res Int 2015; 2015(246264): 1-12.
[http://dx.doi.org/10.1155/2015/246264] [PMID: 26539472]
[114]
Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12(4): 564-82.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[115]
Aqil F, Ahmad I, Owais M. Evaluation of anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and synergy of some bioactive plant extracts. Biotechnol J 2006; 1(10): 1093-102.
[http://dx.doi.org/10.1002/biot.200600130] [PMID: 17004300]
[116]
Aliyu AB, Musa AM, Abdullahi MS, Oyewale AO, Gwarzo US. Activity of plant extracts used in northern Nigerian traditional medicine against methicillin-resistant Staphylococcus aureus (MRSA). Niger J Pharm Sci 2008; 7(1): 1-8.
[117]
Zuo GY, Zhang XJ, Yang CX, Han J, Wang GC, Bian ZQ. Evaluation of traditional Chinese medicinal plants for anti-MRSA activity with reference to the treatment record of infectious diseases. Molecules 2012; 17(3): 2955-67.
[http://dx.doi.org/10.3390/molecules17032955] [PMID: 22406900]
[118]
Yi Xin L, Hui Min T, Liyana NMZP, Pulingam T, Nelson AJ, Parumasivam T. Antibacterial potential of Malaysian ethnomedicinal plants against methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Saudi J Biol Sci 2021; 28(10): 5884-9.
[http://dx.doi.org/10.1016/j.sjbs.2021.06.036] [PMID: 34588904]
[119]
Salehi B, Konovalov DA, Fru P, et al. Areca catechu-From farm to food and biomedical applications. Phytother Res 2020; 34(9): 2140-58.
[http://dx.doi.org/10.1002/ptr.6665] [PMID: 32159263]
[120]
Svobodova B, Barros L, Calhelha RC, et al. Bioactive properties and phenolic profile of Momordica charantia L. medicinal plant growing wild in Trinidad and Tobago. Ind Crops Prod 2017; 95: 365-73.
[http://dx.doi.org/10.1016/j.indcrop.2016.10.046]
[121]
Ziani BEC, Heleno SA, Bachari K, et al. Phenolic compounds characterization by LC-DAD- ESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. Food Res Int 2019; 116: 312-9.
[http://dx.doi.org/10.1016/j.foodres.2018.08.041] [PMID: 30716951]
[122]
Ziani BEC, Barros L, Boumehira AZ, et al. Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. Food Funct 2018; 9(1): 149-59.
[http://dx.doi.org/10.1039/C7FO01315A] [PMID: 29152635]
[123]
Buzgaia N, Awin T, Elabbar F, et al. Antibacterial activity of Arbutus pavarii pamp against methicillin-resistant Staphylococcus aureus (MRSA) and UHPLC-MS/MS profile of the bioactive fraction. Plants 2020; 9(11): 1539.
[http://dx.doi.org/10.3390/plants9111539] [PMID: 33187073]
[124]
Chew YL, Mahadi AM, Wong KM, Goh JK. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity. BMC Complement Altern Med 2018; 18(1): 70.
[http://dx.doi.org/10.1186/s12906-018-2137-5] [PMID: 29463252]
[125]
Chakraborty S, Afaq N, Singh N, Majumdar S. Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus. J Integr Med 2018; 16(5): 350-7.
[http://dx.doi.org/10.1016/j.joim.2018.07.005] [PMID: 30120078]
[126]
Prabakaran M, Kim SH, Sasireka A, Chandrasekaran M, Chung IM. Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Biosci 2018; 26: 23-9.
[http://dx.doi.org/10.1016/j.fbio.2018.09.003]
[127]
van Vuuren S, Viljoen A. Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med 2011; 77(11): 1168-82.
[http://dx.doi.org/10.1055/s-0030-1250736] [PMID: 21283954]
[128]
Mickymaray S. Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics 2019; 8(4): 257.
[http://dx.doi.org/10.3390/antibiotics8040257] [PMID: 31835403]
[129]
Bocquet L, Sahpaz S, Bonneau N, et al. Phenolic compounds from Humulus lupulus as natural antimicrobial products: New weapons in the fight against methicillin resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei strains. Molecules 2019; 24(6): 1024.
[http://dx.doi.org/10.3390/molecules24061024] [PMID: 30875854]
[130]
Silva S, Costa EM, Horta B, Calhau C, Morais RM, Pintado MM. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties. Biofouling 2016; 32(8): 853-60.
[http://dx.doi.org/10.1080/08927014.2016.1208183] [PMID: 27434592]
[131]
Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008; 15(8): 639-52.
[http://dx.doi.org/10.1016/j.phymed.2008.06.008] [PMID: 18599280]
[132]
Adnan SNA, Ibrahim N, Yaacob WA. Disruption of methicillin-resistant Staphylococcus aureus protein synthesis by tannins. Germs 2017; 7(4): 186-92.
[http://dx.doi.org/10.18683/germs.2017.1125] [PMID: 29264356]
[133]
Taylor PW. Interactions of tea-derived catechin gallates with bacterial pathogens. Molecules 2020; 25(8): 1986.
[http://dx.doi.org/10.3390/molecules25081986] [PMID: 32340372]
[134]
Sinsinwar S, Vadivel V. Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress. Appl Microbiol Biotechnol 2020; 104(19): 8279-97.
[http://dx.doi.org/10.1007/s00253-020-10853-z] [PMID: 32857200]
[135]
Yamada H, Ohashi K, Atsumi T, et al. Effects of tea catechin inhalation on methicillin-resistant Staphylococcus aureus in elderly patients in a hospital ward. J Hosp Infect 2003; 53(3): 229-31.
[http://dx.doi.org/10.1053/jhin.2002.1327] [PMID: 12623326]
[136]
Tintino SR, Morais-Tintino CD, Campina FF, et al. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps. EXCLI J 2016; 15: 315-22.
[http://dx.doi.org/ 10.17179/excli2016-277] [PMID: 27298617]
[137]
Pierpaoli E, Orlando F, Cirioni O, Simonetti O, Giacometti A, Provinciali M. Supplementation with tocotrienols from Bixa orellana improves the in vivo efficacy of daptomycin against methicillin-resistant Staphylococcus aureus in a mouse model of infected wound. Phytomedicine 2017; 36: 50-3.
[http://dx.doi.org/10.1016/j.phymed.2017.09.011] [PMID: 29157827]
[138]
Li J, Liu D, Tian X, et al. Novel antibacterial modalities against methicillin resistant Staphylococcus aureus derived from plants. Crit Rev Food Sci Nutr 2019; 59(sup1): S153-61.
[http://dx.doi.org/10.1080/10408398.2018.1541865] [PMID: 30501508]
[139]
Chen D, Sun Z, Liu Y, et al. Eleucanainones A and B: Two dimeric structures from the bulbs of Eleutherine americana with anti-MRSA Activity. Org Lett 2020; 22(9): 3449-53.
[http://dx.doi.org/10.1021/acs.orglett.0c00903] [PMID: 32293190]
[140]
Kalli S, Araya-Cloutier C, Hageman J, Vincken JP. Insights into the molecular properties underlying antibacterial activity of prenylated (iso)flavonoids against MRSA. Sci Rep 2021; 11(1): 14180.
[http://dx.doi.org/10.1038/s41598-021-92964-9] [PMID: 34244528]
[141]
Johari SA, Kiong LS, Mohtar M, et al. Efflux inhibitory activity of flavonoids from Chromolaena odorata against selected methicillin-resistant Staphylococcus aureus (MRSA) isolates. Afr J Microbiol Res 2012; 6(27): 5631-5.
[http://dx.doi.org/10.5897/AJMR12.126]
[142]
Alhadrami HA, Hamed AA, Hassan HM, Belbahri L, Rateb ME, Sayed AM. Flavonoids as potential anti-mrsa agents through modulation of PBP2a: A computational and experimental study. Antibiotics 2020; 9(9): 562.
[http://dx.doi.org/10.3390/antibiotics9090562] [PMID: 32878266]
[143]
Hirai I, Okuno M, Katsuma R, Arita N, Tachibana M, Yamamoto Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int J Food Sci Technol 2010; 45(6): 1250-4.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02267.x]
[144]
Jing S, Kong X, Wang L, et al. Quercetin reduces the virulence of S. aureus by targeting ClpP to protect mice from MRSA-induced lethal pneumonia. Microbiol Spectr 2022; 10(2): e02340-21.
[http://dx.doi.org/10.1128/spectrum.02340-21] [PMID: 35319277]
[145]
Farha AK, Yang QQ, Kim G, et al. Tannins as an alternative to antibiotics. Food Biosci 2020; 38: 100751.
[http://dx.doi.org/10.1016/j.fbio.2020.100751]
[146]
Liu M, Yang K, Wang J, et al. Young astringent persimmon tannin inhibits methicillin-resistant Staphylococcus aureus isolated from pork. Lebensm Wiss Technol 2019; 100: 48-55.
[http://dx.doi.org/10.1016/j.lwt.2018.10.047]
[147]
Nolan VC, Harrison J, Cox JAG. Dissecting the antimicrobial composition of honey. Antibiotics 2019; 8(4): 251.
[http://dx.doi.org/10.3390/antibiotics8040251] [PMID: 31817375]
[148]
Brudzynski K, Lannigan R. Mechanism of honey bacteriostatic action against MRSA and VRE involves hydroxyl radicals generated from honey’s hydrogen peroxide. Front Microbiol 2012; 3: 36.
[http://dx.doi.org/10.3389/fmicb.2012.00036] [PMID: 22347223]
[149]
Jenkins R, Burton N, Cooper R. Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. J Antimicrob Chemother 2014; 69(3): 603-15.
[http://dx.doi.org/10.1093/jac/dkt430] [PMID: 24176984]
[150]
Blaser G, Santos K, Bode U, Vetter H, Simon A. Effect of medical honey on wounds colonised or infected with MRSA. J Wound Care 2007; 16(8): 325-8.
[http://dx.doi.org/10.12968/jowc.2007.16.8.27851] [PMID: 17927079]
[151]
Bassolé IHN, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules 2012; 17(4): 3989-4006.
[http://dx.doi.org/10.3390/molecules17043989] [PMID: 22469594]
[152]
Chao S, Young G, Oberg C, Nakaoka K. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flavour Fragrance J 2008; 23(6): 444-9.
[http://dx.doi.org/10.1002/ffj.1904]
[153]
Abushaheen MA, Muzaheed , Fatani AJ, et al. Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon 2020; 66(6): 100971.
[http://dx.doi.org/10.1016/j.disamonth.2020.100971] [PMID: 32201008]
[154]
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9(1): 522-54.
[http://dx.doi.org/10.1080/21505594.2017.1313372] [PMID: 28362216]
[155]
Behl T, Kumar K, Brisc C, et al. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother 2021; 133: 110959.
[http://dx.doi.org/10.1016/j.biopha.2020.110959] [PMID: 33197758]
[156]
Lillehoj H, Liu Y, Calsamiglia S, et al. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res 2018; 49(1): 76.
[http://dx.doi.org/10.1186/s13567-018-0562-6] [PMID: 30060764]
[157]
Wang Y, Shen YH, Jin HZ, et al. Ainsliatrimers A and B, the first two guaianolide trimers from Ainsliaea fulvioides. Org Lett 2008; 10(24): 5517-20.
[http://dx.doi.org/10.1021/ol802249z] [PMID: 19007177]
[158]
Hamann HJ, Abutaleb NS, Pal R, Seleem MN, Ramachandran PV. β,γ-Diaryl α-methylene-γ-butyrolactones as potent antibacterials against methicillin-resistant Staphylococcus aureus. Bioorg Chem 2020; 104: 104183.
[http://dx.doi.org/10.1016/j.bioorg.2020.104183] [PMID: 32971415]
[159]
Meah MS, Lertcanawanichakul M, Pedpradab P, et al. Synergistic effect on anti‐methicillin‐resistant Staphylococcus aureus among combinations of α‐mangostin‐rich extract, lawsone methyl ether and ampicillin. Lett Appl Microbiol 2020; 71(5): 510-9.
[http://dx.doi.org/10.1111/lam.13369] [PMID: 32770753]
[160]
Choi JG, Lee MW, Choi SE, et al. Antibacterial activity of bark of Alnus pendula against methicillin-resistant Staphylococcus aureus. Eur Rev Med Pharmacol Sci 2012; 16(7): 853-9.
[PMID: 22953631]
[161]
Al-Majmaie S, Nahar L, Rahman MM, et al. Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) grown in Iraq, and in silico studies on two of most active compounds, chalepensin and 6-hydroxy-rutin 3′,7-dimethyl ether. Molecules 2021; 26(4): 1114.
[http://dx.doi.org/10.3390/molecules26041114] [PMID: 33669881]
[162]
Zuo GY, Zhang XJ, Han J, Li YQ, Wang GC. In vitro synergism of magnolol and honokiol in combination with antibacterial agents against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). BMC Complement Altern Med 2015; 15(1): 425.
[http://dx.doi.org/10.1186/s12906-015-0938-3] [PMID: 26627468]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy