Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Peptide Amphiphiles for Pharmaceutical Applications

Author(s): Mayra Alejandra Fuertes-Llanos, Maria José Gómara, Isabel Haro and Elena Sánchez-López*

Volume 31, Issue 11, 2024

Published on: 23 May, 2023

Page: [1332 - 1347] Pages: 16

DOI: 10.2174/0929867330666230408203820

Price: $65

Abstract

During the last few decades, several efforts have been made towards developing biocompatible materials. Among them, peptide amphiphiles (PAs) constitute a novel nanotechnological strategy used in the field of biomedicine since they can provide tissue- specific binding and localization. PAs possess several regions combining hydrophobic and hydrophilic areas that are able to self-assemble in aqueous media, forming different tertiary nanostructures able to interact with cellular membranes. Moreover, these molecules can be tuned by incorporating collagen, lipids, or fluorescent markers. In addition, they can also be used as carriers in order to encapsulate active compounds for drug delivery showing promising features in this area. In this review, the self-assembled structures of PAs as well as their pharmacological applications have been summarized. Furthermore, their use as drug delivery systems has been highlighted and the latest advances in this field have been reviewed.

[1]
Kassam, H.A.; Bahnson, E.M.; Cartaya, A.; Jiang, W.; Avram, M.J.; Tsihlis, N.D.; Stupp, S.I.; Kibbe, M.R. Pharmacokinetics and biodistribution of a collagen-targeted peptide amphiphile for cardiovascular applications. Pharmacol. Res. Perspect., 2020, 8(6), e00672.
[http://dx.doi.org/10.1002/prp2.672] [PMID: 33090704]
[2]
Chung, E.J.; Mlinar, L.B.; Sugimoto, M.J.; Nord, K.; Roman, B.B.; Tirrell, M. in vivo biodistribution and clearance of peptide amphiphile micelles. Nanomedicine, 2015, 11(2), 479-487.
[http://dx.doi.org/10.1016/j.nano.2014.08.006] [PMID: 25194999]
[3]
Zhao, X.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H.; Hauser, C.A.E.; Zhang, S.; Lu, J.R. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev., 2010, 39(9), 3480-3498.
[http://dx.doi.org/10.1039/b915923c] [PMID: 20498896]
[4]
Meng, Q.; Kou, Y.; Ma, X.; Liang, Y.; Guo, L.; Ni, C.; Liu, K. Tunable self-assembled peptide amphiphile nanostructures. Langmuir, 2012, 28(11), 5017-5022.
[http://dx.doi.org/10.1021/la3003355] [PMID: 22352406]
[5]
Xing, H.; Chin, S.M.; Udumula, V.R.; Krishnaiah, M.; Rodrigues de Almeida, N.; Huck-Iriart, C.; Picco, A.S.; Lee, S.R.; Zaldivar, G.; Jackson, K.A.; Tagliazucchi, M.; Stupp, S.I.; Conda-Sheridan, M. Control of peptide amphiphile supramolecular nanostructures by isosteric replacements. Biomacromolecules, 2021, 22(8), 3274-3283.
[http://dx.doi.org/10.1021/acs.biomac.1c00379] [PMID: 34291897]
[6]
Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J., 2017, 474(12), 1935-1963.
[http://dx.doi.org/10.1042/BCJ20160822] [PMID: 28546457]
[7]
Hiraoka, K.; Rankin-Turner, S.; Ninomiya, S. Positive and negative cluster ions of amino acids formed by electrospray droplet impact/secondary ion mass spectrometry (EDI/SIMS). Int. J. Mass Spectrom., 2022, 480, 116895.
[http://dx.doi.org/10.1016/j.ijms.2022.116895]
[8]
Wang, S.; Li, Y.; Xu, H.; Sun, Y.; Xu, S. Design, structure of amphiphilic peptide and its application from single molecule to nanoparticle. Results in Engineering, 2022, 16(November), 100747.
[http://dx.doi.org/10.1016/j.rineng.2022.100747]
[9]
Chen, H.; Chen, X.; Chen, X.; Lin, S.; Cheng, J.; You, L.; Xiong, C.; Cai, X.; Wang, S. New perspectives on fabrication of peptide-based nanomaterials in food industry: A review. Trends Food Sci. Technol., 2022, 129, 49-60.
[http://dx.doi.org/10.1016/j.tifs.2022.09.004]
[10]
Chen, C.; Chen, Y.; Yang, C.; Zeng, P.; Xu, H.; Pan, F.; Lu, J.R. High selective performance of designed antibacterial and anticancer peptide amphiphiles. ACS Appl. Mater. Interfaces, 2015, 7(31), 17346-17355.
[http://dx.doi.org/10.1021/acsami.5b04547] [PMID: 26204061]
[11]
Zhang, Q.; Liu, Y.; Xie, T.; Shang-guan, Y.; Tian, M.; Zhang, Q. Sulfate ion-triggered self-assembly transitions of amphiphilic short peptides by force balance adjustment. Colloids Surfaces A Physicochem Eng Asp, 2022, 637, 128252.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128252]
[12]
Zhao, C.; Chen, H.; Wang, F.; Zhang, X. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf. B Biointerfaces, 2021, 208(August), 112040.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112040] [PMID: 34425532]
[13]
Hendricks, M.P.; Sato, K.; Palmer, L.C.; Stupp, S.I. Supramolecular assembly of peptide amphiphiles. Acc. Chem. Res., 2017, 50(10), 2440-2448.
[http://dx.doi.org/10.1021/acs.accounts.7b00297] [PMID: 28876055]
[14]
Schweizer, F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol., 2009, 625(1-3), 190-194.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.043] [PMID: 19835863]
[15]
Czupiel, P.P.; Delplace, V.; Shoichet, M.S. Cationic block amphiphiles show anti-mitochondrial activity in multi-drug resistant breast cancer cells. J. Control. Release, 2019, 305(305), 210-219.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.045] [PMID: 31071370]
[16]
Peters, D.; Kastantin, M.; Kotamraju, V.R.; Karmali, P.P.; Gujraty, K.; Tirrell, M.; Ruoslahti, E. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl. Acad. Sci., 2009, 106(24), 9815-9819.
[http://dx.doi.org/10.1073/pnas.0903369106] [PMID: 19487682]
[17]
Tarvirdipour, S.; Huang, X.; Mihali, V.; Schoenenberger, C.A.; Palivan, C.G. Peptide-based nanoassemblies in gene therapy and diagnosis: Paving the way for clinical application. Molecules, 2020, 25(15), 3482.
[http://dx.doi.org/10.3390/molecules25153482] [PMID: 32751865]
[18]
Characterization, P; Protocols, A. Peptide characterization and application protocols. In: Methods in Molecular Biology; Gregg, B.F. Humana Press: Totowa, NJ, 2007; p. 342.
[19]
Zhang, R.; Leeper, C.N.; Wang, X.; White, T.A.; Ulery, B.D. Immunomodulatory vasoactive intestinal peptide amphiphile micelles. Biomater. Sci., 2018, 6(7), 1717-1722.
[http://dx.doi.org/10.1039/C8BM00466H] [PMID: 29896593]
[20]
Wang, C.; Guo, Y.; Wang, Y.; Xu, H.; Zhang, X. Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions. Chem. Commun., 2009, (36), 5380-5382.
[http://dx.doi.org/10.1039/b912502g] [PMID: 19724791]
[21]
Kang, Y.; Wang, C.; Liu, K.; Wang, Z.; Zhang, X. Enzyme-responsive polymeric supra-amphiphiles formed by the complexation of chitosan and ATP. Langmuir, 2012, 28(41), 14562-14566.
[http://dx.doi.org/10.1021/la303271f] [PMID: 23025557]
[22]
Xu, X.; Li, Y.; Li, H.; Liu, R.; Sheng, M.; He, B.; Gu, Z. Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery. Small, 2014, 10(6), 1133-1140.
[http://dx.doi.org/10.1002/smll.201301885] [PMID: 24155260]
[23]
Eskandari, S.; Guerin, T.; Toth, I.; Stephenson, R.J. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv. Drug Deliv. Rev., 2017, 110-111, 169-187.
[http://dx.doi.org/10.1016/j.addr.2016.06.013] [PMID: 27356149]
[24]
Sakurai, Y.; Inada, A.; Hitotsumatsu, M.; Oshima, T. Development of amphiphilic metal-binding short peptides that change the dispersibility of paclitaxel upon complexation with intermediate metal(II) ions. J. Drug Deliv. Sci. Technol., 2020, 59(April), 101882.
[http://dx.doi.org/10.1016/j.jddst.2020.101882]
[25]
Zhang, J.; Zhao, Y.; Han, S.; Chen, C.; Xu, H. Self-assembly of surfactant-like peptides and their applications. Sci. China Chem., 2014, 57(12), 1634-1645.
[http://dx.doi.org/10.1007/s11426-014-5234-4]
[26]
Li, J.; Wang, J.; Zhao, Y.; Zhou, P.; Carter, J.; Li, Z.; Waigh, T.A.; Lu, J.R.; Xu, H. Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord. Chem. Rev., 2020, 421, 213418.
[http://dx.doi.org/10.1016/j.ccr.2020.213418]
[27]
Tang, C; Qiu, F; Zhao, X Molecular design and applications of self-assembling surfactant-like peptides. J Nanomater, 2013, 469261
[http://dx.doi.org/10.1155/2013/469261]
[28]
Sun, Y.; Qian, Z.; Guo, C.; Wei, G. Amphiphilic peptides A 6 K and V 6 K display distinct oligomeric structures and self-assembly dynamics: A combined all-atom and coarse-grained simulation study. Biomacromolecules, 2015, 16(9), 2940-2949.
[http://dx.doi.org/10.1021/acs.biomac.5b00850] [PMID: 26301845]
[29]
von Maltzahn, G.; Vauthey, S.; Santoso, S.; Zhang, S. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir, 2003, 19(10), 4332-4337.
[http://dx.doi.org/10.1021/la026526+]
[30]
Zhang, P.; Wang, F.; Wang, Y.; Li, S.; Wen, S.; Wen, S. Self-assembling behavior of ph-responsive peptide A6K without end-capping. Molecules, 2020, 25(9), 2017.
[http://dx.doi.org/10.3390/molecules25092017] [PMID: 32357459]
[31]
Mello, L.R.; Aguiar, R.B.; Yamada, R.Y.; Moraes, J.Z.; Hamley, I.W.; Alves, W.A.; Reza, M.; Ruokolainen, J.; Silva, E.R. Amphipathic design dictates self-assembly, cytotoxicity and cell uptake of arginine-rich surfactant-like peptides. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(12), 2495-2507.
[http://dx.doi.org/10.1039/C9TB02219H] [PMID: 32108843]
[32]
Peng, F.; Chen, Y.; Liu, J.; Xing, Z.; Fan, J.; Zhang, W.; Qiu, F. Facile design of gemini surfactant-like peptide for hydrophobic drug delivery and antimicrobial activity. J. Colloid Interface Sci., 2021, 591, 314-325.
[http://dx.doi.org/10.1016/j.jcis.2021.02.019] [PMID: 33621783]
[33]
da Silva, E.R.; Alves, W.A.; Castelletto, V.; Reza, M.; Ruokolainen, J.; Hussain, R.; Hamley, I.W. Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chem. Commun., 2015, 51(58), 11634-11637.
[http://dx.doi.org/10.1039/C5CC03640B] [PMID: 26094619]
[34]
Jürgen-Hinrich, F.; Tianyu, W. Bolaamphiphiles. Chem. Rev., 2004, 104, 2901-2937.
[http://dx.doi.org/10.1021/cr030602b] [PMID: 15186184]
[35]
Zhao, Y.; Hu, X.; Zhang, L.; Wang, D.; King, S.M.; Rogers, S.E.; Wang, J.; Lu, J.R.; Xu, H. Monolayer wall nanotubes self-assembled from short peptide bolaamphiphiles. J. Colloid Interface Sci., 2021, 583, 553-562.
[http://dx.doi.org/10.1016/j.jcis.2020.09.023] [PMID: 33038605]
[36]
Pérez, L.; Pinazo, A.; Pons, R.; Infante, M.R. Gemini surfactants from natural amino acids. Adv. Colloid Interface Sci., 2014, 205, 134-155.
[http://dx.doi.org/10.1016/j.cis.2013.10.020] [PMID: 24238395]
[37]
Zhao, W.; Wang, Y. Coacervation with surfactants: From single-chain surfactants to gemini surfactants. Adv. Colloid Interface Sci., 2017, 239, 199-212.
[http://dx.doi.org/10.1016/j.cis.2016.04.005] [PMID: 27260407]
[38]
Parikh, K.; Mistry, B.; Jana, S.; Gupta, S.; Devkar, R.V.; Kumar, S. Physico-biochemical studies on cationic gemini surfactants: Role of spacer. J. Mol. Liq., 2015, 206, 19-28.
[http://dx.doi.org/10.1016/j.molliq.2015.01.055]
[39]
Hutchinson, J.A.; Burholt, S.; Hamley, I.W. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications. J. Pept. Sci., 2017, 23(2), 82-94.
[http://dx.doi.org/10.1002/psc.2954] [PMID: 28127868]
[40]
Castelletto, V.; Kaur, A.; Kowalczyk, R.M.; Hamley, I.W.; Reza, M.; Ruokolainen, J. Supramolecular hydrogel formation in a series of self-assembling lipopeptides with varying lipid chain length. Biomacromolecules, 2017, 18(7), 2013-2023.
[http://dx.doi.org/10.1021/acs.biomac.7b00057] [PMID: 28535062]
[41]
Ben Ayed, H.; Hmidet, N.; Béchet, M.; Chollet, M.; Chataigné, G.; Leclère, V.; Jacques, P.; Nasri, M. Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem., 2014, 49(10), 1699-1707.
[http://dx.doi.org/10.1016/j.procbio.2014.07.001]
[42]
Fa, K.; Liu, H.; Li, Z.; Gong, H.; Petkov, J.; Lu, J.R. Acyl chain length tuning improves antimicrobial potency and biocompatibility of short designed lipopeptides. J. Colloid Interface Sci., 2023, 630(Pt B), 911-923.
[http://dx.doi.org/10.1016/j.jcis.2022.10.114] [PMID: 36368131]
[43]
Chen, C.; Yang, C.; Chen, Y.; Wang, F.; Mu, Q.; Zhang, J.; Li, Z.; Pan, F.; Xu, H.; Lu, J.R. Surface physical activity and hydrophobicity of designed helical peptide amphiphiles control their bioactivity and cell selectivity. ACS Appl. Mater. Interfaces, 2016, 8(40), 26501-26510.
[http://dx.doi.org/10.1021/acsami.6b08297] [PMID: 27644109]
[44]
Qiu, F.; Chen, Y.; Tang, C.; Zhao, X. Amphiphilic peptides as novel nanomaterials: Design, self-assembly and application. Int. J. Nanomedicine, 2018, 13, 5003-5022.
[http://dx.doi.org/10.2147/IJN.S166403] [PMID: 30214203]
[45]
Hamley, I.W.; Castelletto, V. Self-assembly of peptide bioconjugates: Selected recent research highlights. Bioconjug. Chem., 2017, 28(3), 731-739.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00284] [PMID: 27348697]
[46]
Taylor, P.A.; Jayaraman, A. Molecular modeling and simulations of peptide–polymer conjugates. Annu. Rev. Chem. Biomol. Eng., 2020, 11(1), 257-276.
[http://dx.doi.org/10.1146/annurev-chembioeng-092319-083243] [PMID: 32513082]
[47]
Messina, M.S.; Messina, K.M.M.; Bhattacharya, A.; Montgomery, H.R.; Maynard, H.D. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog. Polym. Sci., 2020, 100, 101186.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.101186] [PMID: 32863465]
[48]
Gómara, M.J.; Pons, R.; Herrera, C.; Ziprin, P.; Haro, I. Peptide amphiphilic-based supramolecular structures with anti-hiv-1 activity. Bioconjug. Chem., 2021, 32(9), 1999-2013.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00292] [PMID: 34254794]
[49]
Otter, R.; Berac, C.M.; Seiffert, S.; Besenius, P. Tuning the life-time of supramolecular hydrogels using ROS-responsive telechelic peptide-polymer conjugates. Eur. Polym. J., 2018, 2019(110), 90-96.
[50]
Castelletto, V.; Seitsonen, J.; Ruokolainen, J.; Piras, C.; Cramer, R.; Edwards-Gayle, C.J.C.; Hamley, I.W. Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chem. Commun., 2020, 56(80), 11977-11980.
[http://dx.doi.org/10.1039/D0CC04299D] [PMID: 33033814]
[51]
Li, T.; Lu, X.M.; Zhang, M.R.; Hu, K.; Li, Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact. Mater., 2021, 11(11), 268-282.
[PMID: 34977431]
[52]
Ma, Z.; Wei, D.; Yan, P.; Zhu, X.; Shan, A.; Bi, Z. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Biomaterials, 2015, 52(1), 517-530.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.063] [PMID: 25818457]
[53]
Khakshoor, O.; Nowick, J.S. Artificial β-sheets: Chemical models of β-sheets. Curr. Opin. Chem. Biol., 2008, 12(6), 722-729.
[http://dx.doi.org/10.1016/j.cbpa.2008.08.009] [PMID: 18775794]
[54]
Ling Tan, H.; Shamsudeen, H.; Sufian So’aib, M. Effects of electric filed on β-sheet propensity self-assembled amphiphile peptides. Mater. Today Proc., 2018, 5, S143-S148.
[http://dx.doi.org/10.1016/j.matpr.2018.08.056]
[55]
Hadianamrei, R.; Tomeh, M.A.; Brown, S.; Wang, J.; Zhao, X. Correlation between the secondary structure and surface activity of β-sheet forming cationic amphiphilic peptides and their anticancer activity. Colloids Surf. B Biointerfaces, 2022, 209(Pt 2), 112165.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112165] [PMID: 34715505]
[56]
Ong, Z.Y.; Gao, S.J.; Yang, Y.Y. Short synthetic β-sheet forming peptide amphiphiles as broad spectrum antimicrobials with antibiofilm and endotoxin neutralizing capabilities. Adv. Funct. Mater., 2013, 23(29), 3682-3692.
[http://dx.doi.org/10.1002/adfm.201202850]
[57]
Wu, H.; Ong, Z.Y.; Liu, S.; Li, Y.; Wiradharma, N.; Yang, Y.Y.; Ying, J.Y. Synthetic β-sheet forming peptide amphiphiles for treatment of fungal keratitis. Biomaterials, 2015, 43(1), 44-49.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.052] [PMID: 25591960]
[58]
Gunasekaran, K.; Gomathi, L.; Ramakrishnan, C.; Chandrasekhar, J.; Balaram, P. Conformational interconversions in peptide β-turns: Analysis of turns in proteins and computational estimates of barriers 1 1Edited by J. Thornton. J. Mol. Biol., 1998, 284(5), 1505-1516.
[http://dx.doi.org/10.1006/jmbi.1998.2154] [PMID: 9878367]
[59]
Bellm, L.; Lehrer, R.I.; Ganz, T. Protegrins: New antibiotics of mammalian origin. Expert Opin. Investig. Drugs, 2000, 9(8), 1731-1742.
[http://dx.doi.org/10.1517/13543784.9.8.1731] [PMID: 11060772]
[60]
Giles, F.J.; Rodriguez, R.; Weisdorf, D.; Wingard, J.R.; Martin, P.J.; Fleming, T.R.; Goldberg, S.L.; Anaissie, E.J.; Bolwell, B.J.; Chao, N.J.; Shea, T.C.; Brunvand, M.M.; Vaughan, W.; Petersen, F.; Schubert, M.; Lazarus, H.M.; Maziarz, R.T.; Silverman, M.; Beveridge, R.A.; Redman, R.; Pulliam, J.G.; Devitt-Risse, P.; Fuchs, H.J.; Hurd, D.D. A phase III, randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy. Leuk. Res., 2004, 28(6), 559-565.
[http://dx.doi.org/10.1016/j.leukres.2003.10.021] [PMID: 15120931]
[61]
Xiang, Y.; Zhang, J.; Mao, H.; Yan, Z.; Wang, X.; Bao, C.; Zhu, L. Highly tough, stretchable, and enzymatically degradable hydrogels modulated by bioinspired hydrophobic β-sheet peptides. Biomacromolecules, 2021, 22(11), 4846-4856.
[http://dx.doi.org/10.1021/acs.biomac.1c01134] [PMID: 34706536]
[62]
Kumaraswamy, P.; Lakshmanan, R.; Sethuraman, S.; Krishnan, U.M. Self-assembly of peptides: Influence of substrate, pH and medium on the formation of supramolecular assemblies. Soft Matter, 2011, 7(6), 2744-2754.
[http://dx.doi.org/10.1039/C0SM00897D] [PMID: 28090615]
[63]
Del Borgo, M.P.; Mechler, A.I.; Traore, D.; Forsyth, C.; Wilce, J.A.; Wilce, M.C.J.; Aguilar, M.I.; Perlmutter, P. Supramolecular self-assembly of N-acetyl-capped β-peptides leads to nano- to macroscale fiber formation. Angew. Chem. Int. Ed., 2013, 52(32), 8266-8270.
[http://dx.doi.org/10.1002/anie.201303175] [PMID: 23784963]
[64]
Kobori, T.; Iwamoto, S.; Takeyasu, K.; Ohtani, T. Self-assembly of peptide amphiphiles: From molecules to self-assembly of peptide amphip. Biopolymers, 2007, 85(4), 392-406.
[PMID: 17211885]
[65]
Elmsmari, F.; González Sánchez, J.A.; Duran-Sindreu, F.; Belkadi, R.; Espina, M.; García, M.L.; Sánchez-López, E. Calcium hydroxide-loaded PLGA biodegradable nanoparticles as an intracanal medicament. Int. Endod. J., 2021, 54(11), 2086-2098.
[http://dx.doi.org/10.1111/iej.13603] [PMID: 34355406]
[66]
Jacoby, G.; Segal Asher, M.; Ehm, T.; Abutbul Ionita, I.; Shinar, H.; Azoulay-Ginsburg, S.; Zemach, I.; Koren, G.; Danino, D.; Kozlov, M.M.; Amir, R.J.; Beck, R. Order from disorder with intrinsically disordered peptide amphiphiles. J. Am. Chem. Soc., 2021, 143(30), 11879-11888.
[http://dx.doi.org/10.1021/jacs.1c06133] [PMID: 34310121]
[67]
de Almeida, R.N.; Han, Y.; Perez, J.; Kirkpatrick, S.; Wang, Y.; Sheridan, M.C. Design, synthesis, and nanostructure-dependent antibacterial activity of cationic peptide amphiphiles. ACS Appl. Mater. Interfaces, 2019, 11(3), 2790-2801.
[http://dx.doi.org/10.1021/acsami.8b17808] [PMID: 30588791]
[68]
Castelletto, V.; Edwards-Gayle, C.J.C.; Hamley, I.W.; Barrett, G.; Seitsonen, J.; Ruokolainen, J. Peptide-stabilized emulsions and gels from an arginine-rich surfactant-like peptide with antimicrobial activity. ACS Appl. Mater. Interfaces, 2019, 11(10), 9893-9903.
[http://dx.doi.org/10.1021/acsami.9b00581] [PMID: 30785266]
[69]
Gong, H.; Zhang, J.; Hu, X.; Li, Z.; Fa, K.; Liu, H.; Waigh, T.A.; McBain, A.; Lu, J.R. Hydrophobic control of the bioactivity and cytotoxicity of de novo-designed antimicrobial peptides. ACS Appl. Mater. Interfaces, 2019, 11(38), 34609-34620.
[http://dx.doi.org/10.1021/acsami.9b10028] [PMID: 31448889]
[70]
Cirillo, S.; Tomeh, M.A.; Wilkinson, R.N.; Hill, C.; Brown, S.; Zhao, X. Designed antitumor peptide for targeted siRNA delivery into cancer Spheroids. ACS Appl. Mater. Interfaces, 2021, 13(42), 49713-49728.
[http://dx.doi.org/10.1021/acsami.1c14761] [PMID: 34657415]
[71]
Gong, Z.; Shi, Y.; Tan, H.; Wang, L.; Gao, Z.; Lian, B.; Wang, G.; Sun, H.; Sun, P.; Zhou, B.; Bai, J. Plasma amine oxidase-induced nanoparticle-to-nanofiber geometric transformation of an amphiphilic peptide for drug encapsulation and enhanced bactericidal activity. ACS Appl. Mater. Interfaces, 2020, 12(4), 4323-4332.
[http://dx.doi.org/10.1021/acsami.9b21296] [PMID: 31899611]
[72]
Pelin, J.N.B.D.; Edwards-Gayle, C.J.C.; Castelletto, V.; Aguilar, A.M.; Alves, W.A.; Seitsonen, J.; Ruokolainen, J.; Hamley, I.W. Self-assembly, nematic phase formation, and organocatalytic behavior of a proline-functionalized lipopeptide. ACS Appl. Mater. Interfaces, 2020, 12(12), 13671-13679.
[http://dx.doi.org/10.1021/acsami.0c00686] [PMID: 32134243]
[73]
Pan, F.; Li, Y.; Ding, Y.; Lv, S.; You, R.; Hadianamrei, R.; Tomeh, M.A.; Zhao, X. Anticancer effect of rationally designed α-helical amphiphilic peptides. Colloids Surf. B Biointerfaces, 2022, 220(September), 112841.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112841] [PMID: 36174494]
[74]
Cieślik-Boczula, K. Alpha-helix to beta-sheet transition in long-chain poly- l -lysine: Formation of alpha-helical fibrils by poly- l -lysine. Biochimie, 2017, 137, 106-114.
[http://dx.doi.org/10.1016/j.biochi.2017.03.006] [PMID: 28315381]
[75]
Sun, M.; Wang, C.; Lv, M.; Fan, Z.; Du, J. Intracellular self-assembly of peptides to induce apoptosis against drug-resistant melanoma. J. Am. Chem. Soc., 2022, 144(16), 7337-7345.
[http://dx.doi.org/10.1021/jacs.2c00697] [PMID: 35357824]
[76]
Woldemichael, T.; Keswani, R.K.; Rzeczycki, P.M.; Murashov, M.D.; LaLone, V.; Gregorka, B.; Swanson, J.A.; Stringer, K.A.; Rosania, G.R. Reverse engineering the intracellular self-assembly of a functional mechanopharmaceutical device. Sci. Rep., 2018, 8(1), 2934.
[http://dx.doi.org/10.1038/s41598-018-21271-7] [PMID: 29440773]
[77]
Lee, S.; Trinh, T.H.T.; Yoo, M.; Shin, J.; Lee, H.; Kim, J.; Hwang, E.; Lim, Y.B.; Ryou, C. Self-assembling peptides and their application in the treatment of diseases. Int. J. Mol. Sci., 2019, 20(23), 5850.
[http://dx.doi.org/10.3390/ijms20235850] [PMID: 31766475]
[78]
Luo, J.; Wärmländer, S.K.T.S.; Gräslund, A.; Abrahams, J.P. Alzheimer peptides aggregate into transient nanoglobules that nucleate fibrils. Biochemistry, 2014, 53(40), 6302-6308.
[http://dx.doi.org/10.1021/bi5003579] [PMID: 25198136]
[79]
Edwards-Gayle, C.J.C.; Hamley, I.W. Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Org. Biomol. Chem., 2017, 15(28), 5867-5876.
[http://dx.doi.org/10.1039/C7OB01092C] [PMID: 28661532]
[80]
Zuo, Y.; Xiong, Q.; Li, Q.; Zhao, B.; Xue, F.; Shen, L.; Li, H.; Yuan, Q.; Cao, S. Osteogenic growth peptide (OGP)-loaded amphiphilic peptide (NapFFY) supramolecular hydrogel promotes osteogenesis and bone tissue reconstruction. Int. J. Biol. Macromol., 2022, 195(195), 558-564.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.028] [PMID: 34920074]
[81]
Karavasili, C.; Andreadis, D.A.; Katsamenis, O.L.; Panteris, E.; Anastasiadou, P.; Kakazanis, Z.; Zoumpourlis, V.; Markopoulou, C.K.; Koutsopoulos, S.; Vizirianakis, I.S.; Fatouros, D.G. Synergistic antitumor potency of a self-assembling peptide hydrogel for the local co-delivery of doxorubicin and curcumin in the treatment of head and neck cancer. Mol. Pharm., 2019, 16(6), 2326-2341.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01221] [PMID: 31026168]
[82]
Maude, S; Tai, LR; Davies, RP.; Liu, B; Harris, SA; Kocienski, PJ; Aggeli, A. Peptide Synthesis and Self-Assembly. In: Deming, T. (eds) Peptide-Based Materials. Topics in Current Chemistry, 2011, 310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_234
[83]
Dehsorkhi, A.; Castelletto, V.; Hamley, I.W.; Adamcik, J.; Mezzenga, R. The effect of pH on the self-assembly of a collagen derived peptide amphiphile. Soft Matter, 2013, 9(26), 6033-6036.
[http://dx.doi.org/10.1039/c3sm51029h]
[84]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6(6), PMC.S14459.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[85]
Teixeira, M.C.; Carbone, C.; Sousa, M.C.; Espina, M.; Garcia, M.L.; Sanchez-Lopez, E.; Souto, E.B. Nanomedicines for the delivery of antimicrobial peptides (Amps). Nanomaterials, 2020, 10(3), 560.
[http://dx.doi.org/10.3390/nano10030560] [PMID: 32244858]
[86]
Sánchez-López, E.; Gómara, M.J.; Haro, I. Nanotechnology-based platforms for vaginal delivery of peptide microbicides. Curr. Med. Chem., 2021, 28(22), 4356-4379.
[http://dx.doi.org/10.2174/0929867328666201209095753] [PMID: 33297908]
[87]
Koczulla, A.R.; Bals, R. Antimicrobial peptides. Drugs, 2003, 63(4), 389-406.
[http://dx.doi.org/10.2165/00003495-200363040-00005] [PMID: 12558461]
[88]
Bahar, A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[89]
Zhang, L.; Gallo, R.L. Antimicrobial peptides. Curr. Biol., 2016, 26(1), R14-R19.
[http://dx.doi.org/10.1016/j.cub.2015.11.017] [PMID: 26766224]
[90]
Kundu, R. Cationic amphiphilic peptides: Synthetic antimicrobial agents inspired by nature. ChemMedChem, 2020, 15(20), 1887-1896.
[http://dx.doi.org/10.1002/cmdc.202000301] [PMID: 32767819]
[91]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 2012, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[92]
Locock, K.E.S.; Michl, T.D.; Griesser, H.J.; Haeussler, M.; Meagher, L. Structure–activity relationships of guanylated antimicrobial polymethacrylates. Pure Appl. Chem., 2014, 86(8), 1281-1291.
[http://dx.doi.org/10.1515/pac-2014-0213]
[93]
Zha, R.H.; Sur, S.; Stupp, S.I. Self-assembly of cytotoxic peptide amphiphiles into supramolecular membranes for cancer therapy. Adv. Healthc. Mater., 2013, 2(1), 126-133.
[http://dx.doi.org/10.1002/adhm.201200118] [PMID: 23184589]
[94]
Trac, N.; Chen, L.Y.; Zhang, A.; Liao, C.P.; Poon, C.; Wang, J.; Ando, Y.; Joo, J.; Garri, C.; Shen, K.; Kani, K.; Gross, M.E.; Chung, E.J. CCR2-targeted micelles for anti-cancer peptide delivery and immune stimulation. J. Control. Release, 2021, 329(329), 614-623.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.054] [PMID: 33011241]
[95]
Xu, T.; Liang, C.; Zheng, D.; Yan, X.; Chen, Y.; Chen, Y.; Li, X.; Shi, Y.; Wang, L.; Yang, Z. Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. Nanoscale, 2020, 12(28), 15275-15282.
[http://dx.doi.org/10.1039/D0NR00143K] [PMID: 32644059]
[96]
Aronson, M.R.; Dahl, E.S.; Halle, J.A.; Simonson, A.W.; Gogal, R.A.; Glick, A.B.; Aird, K.M.; Medina, S.H. Re-engineering antimicrobial peptides into oncolytics targeting drug-resistant ovarian cancers. Cell. Mol. Bioeng., 2020, 13(5), 447-461.
[http://dx.doi.org/10.1007/s12195-020-00626-z] [PMID: 33184577]
[97]
Abdullah, T.; Bhatt, K.; Eggermont, L.J.; O’Hare, N.; Memic, A.; Bencherif, S.A. Supramolecular self-assembled peptide-based vaccines: Current state and future perspectives. Front Chem., 2020, 8, 598160.
[http://dx.doi.org/10.3389/fchem.2020.598160] [PMID: 33195107]
[98]
Zhang, R.; Smith, J.D.; Allen, B.N.; Kramer, J.S.; Schauflinger, M.; Ulery, B.D. Peptide amphiphile micelle vaccine size and charge influence the host antibody response. ACS Biomater. Sci. Eng., 2018, 4(7), 2463-2472.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00511] [PMID: 33435110]
[99]
Li, S.; Zhang, W.; Xue, H.; Xing, R.; Yan, X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem. Sci., 2020, 11(33), 8644-8656.
[http://dx.doi.org/10.1039/D0SC02937H] [PMID: 34123123]
[100]
O’Neill, C.L.; Shrimali, P.C.; Clapacs, Z.P.; Files, M.A.; Rudra, J.S. Peptide-based supramolecular vaccine systems. Acta Biomater., 2021, 133, 153-167.
[http://dx.doi.org/10.1016/j.actbio.2021.05.003] [PMID: 34010691]
[101]
Trent, A.; Ulery, B.D.; Black, M.J.; Barrett, J.C.; Liang, S.; Kostenko, Y.; David, N.A.; Tirrell, M.V. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS J., 2015, 17(2), 380-388.
[http://dx.doi.org/10.1208/s12248-014-9707-3] [PMID: 25527256]
[102]
Avila, L.A.; Aps, L.R.M.M.; Ploscariu, N.; Sukthankar, P.; Guo, R.; Wilkinson, K.E.; Games, P.; Szoszkiewicz, R.; Alves, R.P.S.; Diniz, M.O.; Fang, Y.; Ferreira, L.C.S.; Tomich, J.M. Gene delivery and immunomodulatory effects of plasmid DNA associated with branched amphiphilic peptide capsules. J. Control. Release, 2016, 241, 15-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.042] [PMID: 27592740]
[103]
Sukthankar, P.; Avila, L.A.; Whitaker, S.K.; Iwamoto, T.; Morgenstern, A.; Apostolidis, C.; Liu, K.; Hanzlik, R.P.; Dadachova, E.; Tomich, J.M. Branched amphiphilic peptide capsules: Cellular uptake and retention of encapsulated solutes. Biochim. Biophys. Acta Biomembr., 2014, 1838(9), 2296-2305.
[http://dx.doi.org/10.1016/j.bbamem.2014.02.005] [PMID: 24565797]
[104]
Chen, C.H.; Hsu, E.L.; Stupp, S.I. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration. Bone, 2020, 141(July), 115565.
[http://dx.doi.org/10.1016/j.bone.2020.115565] [PMID: 32745692]
[105]
Gelain, F.; Luo, Z.; Zhang, S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem. Rev., 2020, 120(24), 13434-13460.
[http://dx.doi.org/10.1021/acs.chemrev.0c00690] [PMID: 33216525]
[106]
Liu, X.; Ren, H.; Peng, A.; Cheng, H.; Chen, J.; Xia, X.; Liu, T.; Wang, X. The effect of RADA16-I and CDNF on neurogenesis and neuroprotection in brain ischemia-reperfusion injury. Int. J. Mol. Sci., 2022, 23(3), 1436.
[http://dx.doi.org/10.3390/ijms23031436] [PMID: 35163360]
[107]
Hosseinkhani, H.; Hosseinkhani, M.; Khademhosseini, A.; Kobayashi, H.; Tabata, Y. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials, 2006, 27(34), 5836-5844.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.003] [PMID: 16930687]
[108]
Chen, S.; Liu, Y.; Liang, R.; Hong, G.; An, J.; Peng, X.; Zheng, W-H.; Song, F. Self-assembly of amphiphilic peptides to construct activatable nanophotosensitizers for theranostic photodynamic therapy. Chin. Chem. Lett., 2021, 32(12), 3903-3906.
[http://dx.doi.org/10.1016/j.cclet.2021.06.041]
[109]
Son, K.; Takeoka, S.; Ito, Y.; Ueda, M. End-sealing of peptide nanotubes by cationic amphiphilic polypeptides and their salt-responsive accordion-like opening and closing behavior. Biomacromolecules, 2022, 23(7), 2785-2792.
[http://dx.doi.org/10.1021/acs.biomac.2c00153] [PMID: 35700101]
[110]
Yao, L.; Xu, J.; Zhang, L.; Zheng, T.; Liu, L.; Zhang, L. Physicochemical stability-increasing effects of anthocyanin via a co-assembly approach with an amphiphilic peptide. Food Chem., 2021, 362(May), 130101.
[http://dx.doi.org/10.1016/j.foodchem.2021.130101] [PMID: 34091173]
[111]
Michiue, H.; Kitamatsu, M.; Fukunaga, A.; Tsuboi, N.; Fujimura, A.; Matsushita, H.; Igawa, K.; Kasai, T.; Kondo, N.; Matsui, H.; Furuya, S. Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture therapy (BNCT). J. Control. Release, 2021, 330(330), 788-796.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.001] [PMID: 33188824]
[112]
Chen, T.; Lyu, Y.; Tan, M.; Yang, C.; Li, Y.; Shao, C.; Zhu, Y.; Shan, A. Fabrication of supramolecular antibacterial nanofibers with membrane-disruptive mechanism. J. Med. Chem., 2021, 64(22), 16480-16496.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00829] [PMID: 34783241]
[113]
Peng, F.; Liu, J.; Zhang, Y.; Fan, J.; Gong, D.; He, L.; Zhang, W.; Qiu, F. Designer self-assembling peptide nanofibers induce biomineralization of lidocaine for slow-release and prolonged analgesia. Acta Biomater., 2022, 146, 66-79.
[http://dx.doi.org/10.1016/j.actbio.2022.05.002] [PMID: 35545185]
[114]
Liang, J.; Wu, W.L.; Xu, X.D.; Zhuo, R.X.; Zhang, X.Z. pH Responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier. Colloids Surf. B Biointerfaces, 2014, 114, 398-403.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.037] [PMID: 24257687]
[115]
Chang, C.; Liang, P.; Chen, L.; Liu, J.; Chen, S.; Zheng, G.; Quan, C. pH-responsive nanoparticle assembly from peptide amphiphiles for tumor targeting drug delivery. J. Biomater. Sci. Polym. Ed., 2017, 28(13), 1338-1350.
[http://dx.doi.org/10.1080/09205063.2017.1325095] [PMID: 28467173]
[116]
Wirth, T.; Parker, N.; Ylä-Herttuala, S. History of gene therapy. Gene, 2013, 525(2), 162-169.
[http://dx.doi.org/10.1016/j.gene.2013.03.137] [PMID: 23618815]
[117]
Hadianamrei, R.; Wang, J.; Brown, S.; Zhao, X. Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. Int. J. Pharm., 2022, 617(February), 121619.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121619] [PMID: 35218898]
[118]
Liu, X.Y.; Zhang, X.; Yang, J.B.; Wu, C.Y.; Wang, Q.; Lu, Z.L.; Tang, Q. Multifunctional amphiphilic peptide dendrimer as nonviral gene vectors for effective cancer therapy via combined gene/photodynamic therapies. Colloids Surf. B Biointerfaces, 2022, 217(June), 112651.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112651] [PMID: 35759892]
[119]
Yuan, X.; Luo, S.Z.; Chen, L. Novel branched amphiphilic peptides for nucleic acids delivery. Int. J. Pharm., 2022, 624(February), 121983.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121983] [PMID: 35803534]
[120]
Qian, Y.; Wang, W.; Wang, Z.; Jia, X.; Han, Q.; Rostami, I.; Wang, Y.; Hu, Z. pH-Triggered peptide self-assembly for targeting imaging and therapy toward angiogenesis with enhanced signals. ACS Appl. Mater. Interfaces, 2018, 10(9), 7871-7881.
[http://dx.doi.org/10.1021/acsami.8b00583] [PMID: 29439558]
[121]
Tang, W.; Zhao, Z.; Chong, Y.; Wu, C.; Liu, Q.; Yang, J.; Zhou, R.; Lian, Z.X.; Liang, G. Tandem enzymatic self-assembly and slow release of dexamethasone enhances its antihepatic fibrosis effect. ACS Nano, 2018, 12(10), 9966-9973.
[http://dx.doi.org/10.1021/acsnano.8b04143] [PMID: 30285414]
[122]
Cao, M.; Lu, S.; Wang, N.; Xu, H.; Cox, H.; Li, R.; Waigh, T.; Han, Y.; Wang, Y.; Lu, J.R. Enzyme-triggered morphological transition of peptide nanostructures for tumor-targeted drug delivery and enhanced cancer therapy. ACS Appl. Mater. Interfaces, 2019, 11(18), 16357-16366.
[http://dx.doi.org/10.1021/acsami.9b03519] [PMID: 30991000]
[123]
Yao, L.; Xu, J.; Zhang, L.; Liu, L.; Zhang, L. Nanoencapsulation of anthocyanin by an amphiphilic peptide for stability enhancement. Food Hydrocoll., 2021, 118(March), 106741.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106741]
[124]
Shinga, K.; Iwata, T.; Murata, K.; Daitoku, Y.; Michibata, J.; Arafiles, J.V.V.; Sakamoto, K.; Akishiba, M.; Takatani-Nakase, T.; Mizuno, S.; Sugiyama, F.; Imanishi, M.; Futaki, S. L17ER4: A cell-permeable attenuated cationic amphiphilic lytic peptide. Bioorg. Med. Chem., 2022, 61(February), 116728.
[http://dx.doi.org/10.1016/j.bmc.2022.116728] [PMID: 35395514]
[125]
Mohammed, E.H.M.; Lohan, S.; Tiwari, R.K.; Parang, K. Amphiphilic cyclic peptide [W4KR5]-Antibiotics combinations as broad-spectrum antimicrobial agents. Eur. J. Med. Chem., 2022, 235, 114278.
[http://dx.doi.org/10.1016/j.ejmech.2022.114278] [PMID: 35339840]
[126]
Klemm, P.; Solomun, J.I.; Rodewald, M.; Kuchenbrod, M.T.; Hänsch, V.G.; Richter, F.; Popp, J.; Hertweck, C.; Hoeppener, S.; Bonduelle, C.; Lecommandoux, S.; Traeger, A.; Schubert, S. Efficient gene delivery of tailored amphiphilic polypeptides by polyplex surfing. Biomacromolecules, 2022, 23(11), 4718-4733.
[http://dx.doi.org/10.1021/acs.biomac.2c00919] [PMID: 36269943]
[127]
Crombez, L.; Aldrian-Herrada, G.; Konate, K.; Nguyen, Q.N.; McMaster, G.K.; Brasseur, R.; Heitz, F.; Divita, G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Ther., 2009, 17(1), 95-103.
[http://dx.doi.org/10.1038/mt.2008.215] [PMID: 18957965]
[128]
Hadianamrei, R.; Tomeh, M.A.; Brown, S.; Wang, J.; Zhao, X. Rationally designed short cationic α-helical peptides with selective anticancer activity. J. Colloid Interface Sci., 2022, 607(Pt 1), 488-501.
[http://dx.doi.org/10.1016/j.jcis.2021.08.200] [PMID: 34509120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy