Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Intramolecular Click Cycloaddition Reactions: Synthesis of 1,2,3-Triazoles

Author(s): Zahra Tashrifi, Mohammad Mohammadi Khanaposhtani, Saeed Bahadorikhalili, Bagher Larijani and Mohammad Mahdavi*

Volume 21, Issue 2, 2024

Published on: 09 June, 2023

Page: [166 - 194] Pages: 29

DOI: 10.2174/1570179420666230407103320

Price: $65

Abstract

Click Chemistry, as a powerful tool, has been used for the synthesis of a variety of 1,2,3-triazoles. Among click cycloaddition reactions, intramolecular click reactions carried out in azido-alkyne precursors has not been thoroughly reviewed. Hence, in this review, we have summarized and categorised the recent literature (from 2012 on) based on the azidoalkynyl precursor's type and a brief and concise description of the involved mechanisms is presented. Accordingly, we have classified the relevant literature into three categories: (1) substitution precursors (2) addition and (3) multi-component reaction (MCR) products.

Graphical Abstract

[1]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[2]
Partyka, D.V.; Updegraff, J.B.; Zeller, M.; Hunter, A.D.; Gray, T.G. Carbon− gold bond formation through [3+ 2] cycloaddition reactions of gold (I) azides and terminal alkynes. Organometallics, 2007, 26(1), 183-186.
[http://dx.doi.org/10.1021/om0607200]
[3]
Chowdhury, C.; Mandal, S.B.; Achari, B. Palladium–copper catalysed heteroannulation of acetylenic compounds: an expeditious synthesis of isoindoline fused with triazoles. Tetrahedron Lett., 2005, 46(49), 8531-8534.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.006]
[4]
Avula, S.K.; Khan, A.; Rehman, N.U.; Anwar, M.U.; Al-Abri, Z.; Wadood, A.; Riaz, M.; Csuk, R.; Al-Harrasi, A. Synthesis of 1H-1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorg. Chem., 2018, 81, 98-106.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.008] [PMID: 30118991]
[5]
Dehestani, L.; Ahangar, N.; Hashemi, S.M.; Irannejad, H.; Honarchian Masihi, P.; Shakiba, A.; Emami, S. Design, synthesis, in vivo and in silico evaluation of phenacyl triazole hydrazones as new anticonvulsant agents. Bioorg. Chem., 2018, 78, 119-129.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.001] [PMID: 29550532]
[6]
Garudachari, B.; Isloor, A.M.; Satyanarayana, M.N.; Fun, H.K.; Hegde, G. Click chemistry approach: Regioselective one-pot synthesis of some new 8-trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents. Eur. J. Med. Chem., 2014, 74, 324-332.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.008] [PMID: 24486415]
[7]
Anand, A.; Naik, R.J.; Revankar, H.M.; Kulkarni, M.V.; Dixit, S.R.; Joshi, S.D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem., 2015, 105, 194-207.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.019] [PMID: 26491982]
[8]
Tashrifi, Z.; Mohammadi-khanaposhtani, M.; Shafiee Ardestani, M.; Safavi, M.; Rad-Moghadam, K.; Mehrdad, M.; Larijani, B.; Mahdavi, M. Design, Synthesis and In vitro cytotoxicity of new 1,2,3-triazol- and nitrostyrene hybrids as potent anticancer agents. Lett. Drug Des. Discov., 2018, 16(2), 213-219.
[http://dx.doi.org/10.2174/1570180815666180427151830]
[9]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[10]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[11]
Rodionov, V.O.; Fokin, V.V.; Finn, M.G. Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. Angew. Chem. Int. Ed., 2005, 44(15), 2210-2215.
[http://dx.doi.org/10.1002/anie.200461496] [PMID: 15693051]
[12]
Sisson, A.L.; Papp, I.; Landfester, K.; Haag, R. Functional nanoparticles from dendritic precursors: Hierarchical assembly in miniemulsion. Macromolecules, 2009, 42(2), 556-559.
[http://dx.doi.org/10.1021/ma802238e]
[13]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[14]
Ma, N.; Wang, Y.; Zhao, B-X.; Ye, W-C.; Jiang, S. The application of click chemistry in the synthesis of agents with anticancer activity. Drug Des. Devel. Ther., 2015, 9, 1585-1599.
[PMID: 25792812]
[15]
Li, H.; Aneja, R.; Chaiken, I. Click chemistry in peptide-based drug design. Molecules, 2013, 18(8), 9797-9817.
[http://dx.doi.org/10.3390/molecules18089797] [PMID: 23959192]
[16]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[17]
Iha, R.K.; Wooley, K.L.; Nyström, A.M.; Burke, D.J.; Kade, M.J.; Hawker, C.J. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem. Rev., 2009, 109(11), 5620-5686.
[http://dx.doi.org/10.1021/cr900138t] [PMID: 19905010]
[18]
Singh, M.S.; Chowdhury, S.; Koley, S. Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron, 2016, 72(35), 5257-5283.
[http://dx.doi.org/10.1016/j.tet.2016.07.044]
[19]
Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev., 2011, 255(23-24), 2933-2945.
[http://dx.doi.org/10.1016/j.ccr.2011.06.028]
[20]
Pasini, D. The click reaction as an efficient tool for the construction of macrocyclic structures. Molecules, 2013, 18(8), 9512-9530.
[http://dx.doi.org/10.3390/molecules18089512] [PMID: 23966075]
[21]
Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomater. Res., 2018, 22(1), 13.
[http://dx.doi.org/10.1186/s40824-018-0123-0] [PMID: 29686885]
[22]
Patil, P.C.; Luzzio, F.A. The intramolecular click reaction using ‘carbocontiguous’ precursors. Tetrahedron, 2017, 73(29), 4206-4213.
[http://dx.doi.org/10.1016/j.tet.2016.11.016] [PMID: 28943665]
[23]
Basavaiah, D.; Reddy, B.S.; Lingam, H. Synthesis of fused nine-membered rings: A simple protocol for synthesis of [1,2,3]-triazolo-[1,4]-benzoxazonine frameworks from the Baylis–Hillman acetates. Tetrahedron, 2013, 69(47), 10060-10067.
[http://dx.doi.org/10.1016/j.tet.2013.09.056]
[24]
Banerji, B.; Pramanik, S.K.; Sanphui, P.; Nikhar, S.; Biswas, S.C. Synthesis and cytotoxicity studies of novel triazolo-benzoxazepine as new anticancer agents. Chem. Biol. Drug Des., 2013, 82(4), 401-409.
[http://dx.doi.org/10.1111/cbdd.12164] [PMID: 23672315]
[25]
Majumdar, K.; Ganai, S. An efficient one-pot strategy for the synthesis of triazole-fused 1, 4-benzodiazepinones from N-substituted 2-azidobenzamides. Synthesis, 2013, 45(18), 2619-2625.
[http://dx.doi.org/10.1055/s-0033-1339346]
[26]
Majumdar, K.C.; Ganai, S. An expedient approach to substituted triazolo[1,5-a][1,4]benzodiazepines via Cu-catalyzed tandem Ullmann C–N coupling/azide-alkyne cycloaddition. Tetrahedron Lett., 2013, 54(46), 6192-6195.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.125]
[27]
Konda, S.; Rao, P.; Oruganti, S. Click chemistry route to tricyclic monosaccharide triazole hybrids: design and synthesis of substituted hexahydro-4H-pyrano[2,3-f][1,2,3]triazolo[5,1-c][1,4]oxazepi-nes. RSC Advances, 2014, 4(109), 63962-63965.
[http://dx.doi.org/10.1039/C4RA11035H]
[28]
Hussain, M.K.; Ansari, M.I.; Kant, R.; Hajela, K. Tandem C-2 functionalization-intramolecular azide-alkyne 1,3-dipolar cycloaddition reaction: a convenient route to highly diversified 9H-benzo[b]pyrrolo[1,2-g][1,2,3]triazolo[1,5-d][1,4]diazepines. Org. Lett., 2014, 16(2), 560-563.
[http://dx.doi.org/10.1021/ol403420z] [PMID: 24350729]
[29]
Samala, S.; Arigela, R.K.; Kant, R.; Kundu, B. Diversity-oriented synthesis of ketoindoloquinoxalines and indolotriazoloquinoxalines from 1-(2-nitroaryl)-2-alkynylindoles. J. Org. Chem., 2014, 79(6), 2491-2500.
[http://dx.doi.org/10.1021/jo402783p] [PMID: 24571484]
[30]
Fülöpová, V.; Funk, P.; Popa, I.; McMaster, C.; Soural, M. Solid-Phase Synthesis of Trisubstituted Benzo[ f][1,2,3]triazolo[1,5- a][1,4]diazepin-6(5 H)-ones and Their Sulfonyl Analogues under Mild Reaction Conditions. Eur. J. Org. Chem., 2015, 2015(16), 3551-3557.
[http://dx.doi.org/10.1002/ejoc.201500314]
[31]
Arbačiauskienė E.; Laukaitytė V.; Holzer, W.; Šačkus, A. Metal-Free Intramolecular Alkyne-Azide Cycloaddition To Construct the Pyraz¬olo[4,3- f][1,2,3]triazolo[5,1- c][1,4]oxazepine Ring System. Eur. J. Org. Chem., 2015, 2015(25), 5663-5670.
[http://dx.doi.org/10.1002/ejoc.201500541]
[32]
Sudhapriya, N.; Nandakumar, A.; Arun, Y.; Perumal, P.T.; Balachandran, C.; Emi, N. An expedient route to highly diversified [1,2,3]triazolo[1,5-a][1,4]benzodiazepines and their evaluation for antimicrobial, antiproliferative and in silico studies. RSC Advances, 2015, 5(81), 66260-66270.
[http://dx.doi.org/10.1039/C5RA12497B]
[33]
Senwar, K.R.; Sharma, P.; Reddy, T.S.; Jeengar, M.K.; Nayak, V.L.; Naidu, V.G.M.; Kamal, A.; Shankaraiah, N. Spirooxindole-derived morpholine-fused-1,2,3-triazoles: Design, synthesis, cytotoxicity and apoptosis inducing studies. Eur. J. Med. Chem., 2015, 102, 413-424.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.017] [PMID: 26301558]
[34]
Mishra, K.B.; Shashi, S.; Tiwari, V.K. Metal free synthesis of morpholine fused [5,1-c] triazolyl glycoconjugates via glycosyl azido alcohols. RSC Advances, 2015, 5(105), 86840-86848.
[http://dx.doi.org/10.1039/C5RA17181D]
[35]
Arigela, R.K.; Mandadapu, A.K.; Sharma, S.K.; Kumar, B.; Kundu, B. Cascade intermolecular Michael addition-intramolecular azide/internal alkyne 1,3-dipolar cycloaddition reaction in one pot. Org. Lett., 2012, 14(7), 1804-1807.
[http://dx.doi.org/10.1021/ol300399y] [PMID: 22440058]
[36]
Guggenheim, K.G.; Toru, H.; Kurth, M.J. One-pot, two-step cascade synthesis of quinazolinotriazolobenzodiazepines. Org. Lett., 2012, 14(14), 3732-3735.
[http://dx.doi.org/10.1021/ol301592z] [PMID: 22746550]
[37]
Saeedi, M.; Mahdavi, M.; Foroumadi, A.; Shafiee, A. Synthesis of novel fused 4,5-dihydro-1,2,3-triazolo[1,5-a][1,4]benzodiazepine derivatives via four-component Ugi–Smiles-type reaction. Tetrahedron, 2013, 69(16), 3506-3510.
[http://dx.doi.org/10.1016/j.tet.2013.02.023]
[38]
Maurya, R.A.; Adiyala, P.R.; Chandrasekhar, D.; Reddy, C.N.; Kapure, J.S.; Kamal, A. Rapid access to novel 1,2,3-triazolo-heterocyclic scaffolds via tandem Knoevenagel condensation/azide-alkyne 1,3-dipolar cycloaddition reaction in one pot. ACS Comb. Sci., 2014, 16(9), 466-477.
[http://dx.doi.org/10.1021/co500070e] [PMID: 24945583]
[39]
Ning, Y.; Wu, N.; Yu, H.; Liao, P.; Li, X.; Bi, X. Silver-catalyzed tandem hydroazidation/alkyne–azide cycloaddition of diynes with TMS-N3: an easy access to 1, 5-fused 1, 2, 3-triazole frameworks. Org. Lett., 2015, 17(9), 2198-2201.
[http://dx.doi.org/10.1021/acs.orglett.5b00784] [PMID: 25893824]
[40]
Sastry, K.N.V.; Routhu, S.R.; Datta, S.G.; Nagesh, N.; Babu, B.N.; Nanubolu, J.B.; Kumar, C.G.; Maurya, R.A.; Kamal, A. Synthesis, DNA binding affinity and anticancer activity of novel 4H-benzo[g][1,2,3]triazolo[5,1-c][1,4]oxazocines. Org. Biomol. Chem., 2016, 14(39), 9294-9305.
[http://dx.doi.org/10.1039/C6OB01077F] [PMID: 27714202]
[41]
Nekkanti, S.; Pooladanda, V.; Veldandi, M.; Tokala, R.; Godugu, C.; Shankaraiah, N. Synthesis of 1,2,3-Triazolo-fused-tetrahydro-&#946;-carboline Derivatives via 1,3-Dipolar Cycloaddition Reaction: Cytotoxicity Evaluation and DNA-Binding studies. ChemistrySelect, 2017, 2(24), 7210-7221.
[http://dx.doi.org/10.1002/slct.201700620]
[42]
Gour, J.; Gatadi, S.; Pooladanda, V.; Ghouse, S.M.; Malasala, S.; Madhavi, Y.V.; Godugu, C.; Nanduri, S. Facile synthesis of 1,2,3-triazole-fused indolo- and pyrrolo[1,4]diazepines, DNA-binding and evaluation of their anticancer activity. Bioorg. Chem., 2019, 93103306
[http://dx.doi.org/10.1016/j.bioorg.2019.103306] [PMID: 31586710]
[43]
Nguyen, H.H.; Palazzo, T.A.; Kurth, M.J. Facile one-pot assembly of imidazotriazolobenzodiazepines via indium(III)-catalyzed multicomponent reactions. Org. Lett., 2013, 15(17), 4492-4495.
[http://dx.doi.org/10.1021/ol402045h] [PMID: 23961714]
[44]
Dhondge, A.P.; Afraj, S.N.; Nuzlia, C.; Chen, C.; Lee, G.H. A Facile Synthesis of 4,6,7,8,8 a, 9-Hexahydropyrrolo[1,2- a][1,2,3]triazolo[1,5- d]pyr¬azines by a Three-Component Coupling Reaction Followed by Intramolecular 1,3-Dipolar Cycloaddition. Eur. J. Org. Chem., 2013, 2013(19), 4119-4130.
[http://dx.doi.org/10.1002/ejoc.201300226]
[45]
De Moliner, F.; Bigatti, M.; Banfi, L.; Riva, R.; Basso, A. OPHA (oxidation-Passerini-hydrolysis-alkylation) strategy: a four-step, one-pot improvement of the alkylative Passerini reaction. Org. Lett., 2014, 16(8), 2280-2283.
[http://dx.doi.org/10.1021/ol500813p] [PMID: 24720585]
[46]
Abeykoon, G.A.; Sahn, J.J.; Martin, S.F. Novel substituted triazolo benzodiazepine scaffolds to explore chemical space. Tetrahedron Lett., 2021, 66152828
[http://dx.doi.org/10.1016/j.tetlet.2021.152828]
[47]
Reddy, B.; Majumder, N.; Rao, T. Four-Component, One-Pot Synthesis of N-Alkyl-4-oxo-3-phenylhexahydro-4H-spiro[1,3] dioxolo[4'5'4,5]furo[2,3-f][1,2,3]triazolo[1,5-a][1,4]diazepine-9,1'-cyclohexane-6-carboxamide Derivatives. Synthesis, 2014, 46(24), 3408-3414.
[http://dx.doi.org/10.1055/s-0034-1379031]
[48]
Barlow, T.M.A.; Jida, M.; Tourwé, D.; Ballet, S. Efficient synthesis of conformationally constrained, amino-triazoloazepinone-containing di- and tripeptides via a one-pot Ugi–Huisgen tandem reaction. Org. Biomol. Chem., 2014, 12(36), 6986-6989.
[http://dx.doi.org/10.1039/C4OB01381F] [PMID: 25116189]
[49]
Chavez-Acevedo, L.; Miranda, L.D. Synthesis of novel tryptamine-based macrocycles using an Ugi 4-CR/microwave assisted click-cycloaddition reaction protocol. Org. Biomol. Chem., 2015, 13(15), 4408-4412.
[http://dx.doi.org/10.1039/C5OB00067J] [PMID: 25766574]
[50]
Salvador, C.E.M.; Pieber, B.; Neu, P.M.; Torvisco, A.; Kleber, Z. Andrade, C.; Kappe, C.O. A sequential Ugi multicomponent/Cu-catalyzed azide-alkyne cycloaddition approach for the continuous flow generation of cyclic peptoids. J. Org. Chem., 2015, 80(9), 4590-4602.
[http://dx.doi.org/10.1021/acs.joc.5b00445] [PMID: 25842982]
[51]
Zakharova, E.A.; Shmatova, O.I.; Kutovaya, I.V.; Khrustalev, V.N.; Nenajdenko, V.G. Synthesis of macrocyclic peptidomimetics via the Ugi-click-strategy. Org. Biomol. Chem., 2019, 17(13), 3433-3445.
[http://dx.doi.org/10.1039/C9OB00229D] [PMID: 30874270]
[52]
Shafie, A.; Mohammadi-Khanaposhtani, M.; Asadi, M.; Rahimi, N.; Ranjbar, P.R.; Ghasemi, J.B.; Larijani, B.; Mahdavi, M.; Shafaroodi, H.; Dehpour, A.R. Novel fused 1,2,3-triazolo-benzodiazepine derivatives as potent anticonvulsant agents: Design, synthesis, in vivo, and in silico evaluations. Mol. Divers., 2020, 24(1), 179-189.
[http://dx.doi.org/10.1007/s11030-019-09940-9] [PMID: 30895449]
[53]
Asgari, M.S.; Sepehri, S.; Bahadorikhalili, S.; Ranjbar, P.R.; Rahimi, R.; Gholami, A.; Kazemi, A.; Khoshneviszadeh, M.; Larijani, B.; Mahdavi, M. Magnetic silica nanoparticle-supported copper complex as an efficient catalyst for the synthesis of novel triazolopyrazinylacetamides with improved antibacterial activity. Chem. Heterocycl. Compd., 2020, 56(4), 488-494.
[http://dx.doi.org/10.1007/s10593-020-02685-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy