Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Treating Sensorineural Hearing Loss: Recent Advances in Inner Ear Drug Delivery

Author(s): Dolly N. Vachheta, Yamini Dushyant Shah, Mansi Ninaad Athalye*, Drashty Kumarbhai Kakkad and Mansi Jitenderabhai Darji

Volume 13, Issue 3, 2023

Published on: 22 May, 2023

Page: [167 - 185] Pages: 19

DOI: 10.2174/2210303113666230407082515

Price: $65

Abstract

This review aims to provide historical, present, and future drug deliveries for treating inner ear disorders. Systemic delivery, such as antibiotics and steroids for the inner ear, was the basis on which current drug delivery systems and devices have been researched and developed. Researchers and clinicians had to develop and deliver drugs locally due to adverse effects caused by drugs systemically. Intratympanic method of antibiotics and steroid delivery has been common; however, newer techniques such as microcatheter implantation, hydrogels, nanoparticles, and intracochlear implants are being investigated successfully. Recently advances in microfluidic and microsystems technology have applied medications directly into the inner ear. This technology will also be adopted to deliver gene therapy, RNA interference technology, and stem cell therapy by clinicians in the future.

Next »
Graphical Abstract

[1]
Brewster, K.K.; Ciarleglio, A.; Brown, P.J.; Chen, C.; Kim, H.O.; Roose, S.P.; Golub, J.S.; Rutherford, B.R. Age-related hearing loss and its association with depression in later life. Am. J. Geriatr. Psychiatry, 2018, 26(7), 788-796.
[http://dx.doi.org/10.1016/j.jagp.2018.04.003] [PMID: 29752060]
[2]
Rutherford, B.R.; Brewster, K.; Golub, J.S.; Kim, A.H.; Roose, S.P. Sensation and psychiatry: Linking age-related hearing loss to late-life depression and cognitive decline. Am. J. Psychiatry, 2018, 175(3), 215-224.
[http://dx.doi.org/10.1176/appi.ajp.2017.17040423] [PMID: 29202654]
[3]
Golub, J.S. Brain changes associated with age-related hearing loss. Curr. Opin. Otolaryngol. Head Neck Surg., 2017, 25(5), 347-352.
[http://dx.doi.org/10.1097/MOO.0000000000000387] [PMID: 28661962]
[4]
Kale, S.; Cervantes, V.M.; Wu, M.R.; Pisano, D.; Sheth, N.; Olson, E.S. A novel perfusion-based method for cochlear implant electrode insertion. Hear. Res., 2014, 314, 33-41.
[5]
Cruickshanks, K.J.; Tweed, T.S.; Wiley, T.L.; Klein, B.E.K.; Klein, R.; Chappell, R.; Nondahl, D.M.; Dalton, D.S. The 5-year incidence and progression of hearing loss: the epidemiology of hearing loss study. Arch. Otolaryngol. Head Neck Surg., 2003, 129(10), 1041-1046.
[http://dx.doi.org/10.1001/archotol.129.10.1041] [PMID: 14568784]
[6]
Brownell, W.E. How the ear works: Nature’s solutions for listening. Volta Review, 1997, 99(5), 9-28.
[PMID: 20585407]
[7]
Isaacson, J.E.; Vora, N.M. Differential diagnosis and treatment of hearing loss. Am. Fam. Physician, 2003, 68(6), 1125-1132.
[PMID: 14524400]
[8]
Riley, D.N.; Herberger, S.; McBride, G.; Law, K. Myringotomy and ventilation tube insertion: A ten-year follow-up. J. Laryngol. Otol., 1997, 111(3), 257-261.
[http://dx.doi.org/10.1017/S0022215100137016] [PMID: 9156062]
[9]
Stankovic, M.D. Audiologic results of surgery for cholesteatoma: Short- and long-term follow-up of influential factors. Otol. Neurotol., 2008, 29(7), 933-940.
[http://dx.doi.org/10.1097/MAO.0b013e31818201af] [PMID: 18667943]
[10]
Valencia, D.M.; Rimell, F.L.; Friedman, B.J.; Oblander, M.R.; Helmbrecht, J. Cochlear implantation in infants less than 12 months of age. Int. J. Pediatr. Otorhinolaryngol., 2008, 72(6), 767-773.
[http://dx.doi.org/10.1016/j.ijporl.2008.02.009] [PMID: 18403026]
[11]
Ciorba, A.; Bianchini, C.; Pelucchi, S.; Pastore, A. The impact of hearing loss on the quality of life of elderly adults. Clin. Interv. Aging, 2012, 7, 159-163.
[http://dx.doi.org/10.2147/CIA.S26059] [PMID: 22791988]
[12]
Blazer, D.G.; Domnitz, S.; Liverman, C.T. Hearing Health Care for Adults: Priorities for Improving Access and Affordability; National Academies Press (US): Washington (DC), 2016.
[13]
Mikulec, A.A.; Plontke, S.K.; Hartsock, J.J.; Salt, A.N. Entry of substances into perilymph through the bone of the otic capsule after intratympanic applications in guinea pigs: implications for local drug delivery in humans. Otol. Neurotol., 2009, 30(2), 131-138.
[http://dx.doi.org/10.1097/MAO.0b013e318191bff8] [PMID: 19180674]
[14]
Goycoolea, M.V.; Lundman, L. Round window membrane. Structure-function and permeability: A review. Microsc. Res. Tech., 1997, 36(3), 201-211.
[15]
Chandrasekhar, S.S.; Tsai, Do. B.S.; Schwartz, S.R.; Bontempo, L.J.; Faucett, E.A.; Finestone, S.A.; Holligrowth, D.B.; Kelley, D.M.; Kmocha, S.T.; Moonis, G.; Polling, G.L. Clinical practice guideline: sudden hearing loss (Update). Otolaryngology - Head and Neck Surgery (United States) 2019, 161(2), 195-210.
[http://dx.doi.org/10.1177/0194599819859885]
[16]
Diamond, C.; Hornig, J.D.; Liu, R.; O’Connell, D.A. Systematic review of intratympanic gentamicin in Meniere’s disease. J. Otolaryngol., 2003, 32(6), 351-361.
[http://dx.doi.org/10.2310/7070.2003.13863] [PMID: 14967079]
[17]
Bird, P.A.; Begg, E.J.; Zhang, M.; Keast, A.T.; Murray, D.P.; Balkany, T.J. Intratympanic versus intravenous delivery of methylprednisolone to cochlear perilymph. Otol. Neurotol., 2007, 28(8), 1124-1130.
[http://dx.doi.org/10.1097/MAO.0b013e31815aee21] [PMID: 18043438]
[18]
Silverstein, H.; Lewis, W.B.; Jackson, L.E.; Rosenberg, S.I.; Thompson, J.H.; Hoffmann, K.K. Changing trends in the surgical treatment of Ménière’s disease: Results of a 10-year survey. Ear Nose Throat J., 2003, 82(3), 185-194, 191-194.
[http://dx.doi.org/10.1177/014556130308200311] [PMID: 12696238]
[19]
Bremer, H.G.; van Rooy, I.; Pullens, B.; Colijn, C.; Stegeman, I.; van der Zaag-Loonen, H.J.; van Benthem, P.P.; Klis, S.F.L.; Grolman, W.; Bruintjes, T.D. Intratympanic gentamicin treatment for Ménière’s disease: A randomized, double-blind, placebo-controlled trial on dose efficacy-results of a prematurely ended study. Trials, 2014, 15(1), 328.
[http://dx.doi.org/10.1186/1745-6215-15-328] [PMID: 25135244]
[20]
Hahn, H.; Salt, A.N.; Biegner, T.; Kammerer, B.; Delabar, U.; Hartsock, J.J.; Plontke, S.K. Dexamethasone levels and base-to-apex concentration gradients in the scala tympani perilymph after intracochlear delivery in the guinea pig. Otol. Neurotol., 2012, 33(4), 660-665.
[http://dx.doi.org/10.1097/MAO.0b013e318254501b] [PMID: 22588238]
[21]
Salt, A.N.; Hartsock, J.; Plontke, S.; LeBel, C.; Piu, F. Distribution of dexamethasone and preservation of inner ear function following intratympanic delivery of a gel-based formulation. Audiol. Neurotol., 2011, 16(5), 323-335.
[http://dx.doi.org/10.1159/000322504] [PMID: 21178339]
[22]
Neng, L.; Zhang, F.; Kachelmeier, A.; Shi, X. Endothelial cell, pericyte, and perivascular resident macrophage-type melanocyte interactions regulate cochlear intrastrial fluid-blood barrier permeability. J. Assoc. Res. Otolaryngol., 2013, 14(2), 175-185.
[http://dx.doi.org/10.1007/s10162-012-0365-9] [PMID: 23247886]
[23]
Ikeda, K.; Morizono, T. Changes of the permeability of round window membrane in otitis media. Arch. Otolaryngol. Head Neck Surg., 1988, 114(8), 895-897.
[http://dx.doi.org/10.1001/archotol.1988.01860200079023] [PMID: 3390334]
[24]
Schachern, P.A.; Paparella, M.M.; Goycoolea, M.V.; Duvall, A.J., III; Choo, Y.B. The permeability of the round window membrane during otitis media. Arch. Otolaryngol. Head Neck Surg., 1987, 113(6), 625-629.
[http://dx.doi.org/10.1001/archotol.1987.01860060051014] [PMID: 3566945]
[25]
King, E.B.; Salt, A.N.; Kel, G.E.; Eastwood, H.T.; O’Leary, S.J. Gentamicin administration on the stapes footplate causes greater hearing loss and vestibulotoxicity than round window administration in guinea pigs. Hear. Res., 2013, 304, 159-166.
[http://dx.doi.org/10.1016/j.heares.2013.07.013] [PMID: 23899413]
[26]
Tanaka, K.; Motomura, S. Permeability of the labyrinthine windows in guinea pigs. Arch. Otorhinolaryngol., 1981, 233(1), 67-75.
[http://dx.doi.org/10.1007/BF00464276] [PMID: 6976164]
[27]
Saijo, S.; Kimura, R.S. Distribution of HRP in the inner ear after injection into the middle ear cavity. Acta Otolaryngol., 1984, 97(5-6), 593-610.
[http://dx.doi.org/10.3109/00016488409132937] [PMID: 6464711]
[28]
Salt, A.N.; King, E.B.; Hartsock, J.J.; Gill, R.M.; O’Leary, S.J. Marker entry into vestibular perilymph via the stapes following applications to the round window niche of guinea pigs. Hear. Res., 2012, 283(1-2), 14-23.
[http://dx.doi.org/10.1016/j.heares.2011.11.012] [PMID: 22178981]
[29]
Salt, A.N.; Hartsock, J.J.; Gill, R.M.; King, E.; Kraus, F.B.; Plontke, S.K. Perilymph pharmacokinetics of locally-applied gentamicin in the guinea pig. Hear. Res., 2016, 342, 101-111.
[http://dx.doi.org/10.1016/j.heares.2016.10.003] [PMID: 27725177]
[30]
Coelho, D.H.; Lalwani, A.K. Medical management of Ménière’s disease. Laryngoscope, 2008, 118(6), 1099-1108.
[http://dx.doi.org/10.1097/MLG.0b013e31816927f0] [PMID: 18418279]
[31]
Kennedy, D.W.; Hoffer, M.E.; Holliday, M. The effects of etidronate disodium on progressive hearing loss from otosclerosis. Otolaryngol. Head Neck Surg., 1993, 109(3), 461-467.
[http://dx.doi.org/10.1177/019459989310900312] [PMID: 8414563]
[32]
Liu, H.; Hao, J.; Li, K.S. Current strategies for drug delivery to the inner ear. Acta Pharm. Sin. B, 2013, 3(2), 86-96.
[http://dx.doi.org/10.1016/j.apsb.2013.02.003]
[33]
Paulson, D.P.; Abuzeid, W.; Jiang, H.; Oe, T.; O’Malley, B.W.; Li, D. A novel controlled local drug delivery system for inner ear disease. Laryngoscope, 2008, 118(4), 706-711.
[http://dx.doi.org/10.1097/MLG.0b013e31815f8e41] [PMID: 18182968]
[34]
Borkholder, D.A. State-of-the-art mechanisms of intracochlear drug delivery. Curr. Opin. Otolaryngol. Head Neck Surg., 2008, 16(5), 472-477.
[http://dx.doi.org/10.1097/MOO.0b013e32830e20db] [PMID: 18797291]
[35]
McCall, A.A.; Swan, E.E.L.; Borenstein, J.T.; Sewell, W.F.; Kujawa, S.G.; McKenna, M.J. Drug delivery for treatment of inner ear disease: Current state of knowledge. Ear Hear., 2010, 31(2), 156-165.
[http://dx.doi.org/10.1097/AUD.0b013e3181c351f2] [PMID: 19952751]
[36]
Grantham, D.W.; Ashmead, D.H.; Ricketts, T.A.; Labadie, R.F.; Haynes, D.S. Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants. Ear Hear., 2007, 28(4), 524-541.
[http://dx.doi.org/10.1097/AUD.0b013e31806dc21a] [PMID: 17609614]
[37]
Sensorion Announces First Patient Enrolled in Phase 2a Proof of Concept Clinical Trial of SENS-401 in Cisplatin-Induced. Available from: https://pharma-industry-review.com/sensorion-announces-first-patient-enrolled-in-phase-2a-proof-of-concept-clinical-trial-of-sens-401-in-cisplatin-induced
[38]
Qi, W.; Ding, D.; Zhu, H.; Lu, D.; Wang, Y.; Ding, J. Efficient siRNA transfection to the inner ear through the intact round window by a novel proteidic delivery technology in the chinchilla. Gene Ther., 2013, 21(1), 10-18.
[39]
What stem cell-based therapies are currently available for hearing loss?-Harvard Stem Cell Institute (HSCI). Available from: https://hsci.harvard.edu/faq/hearing
[40]
He, Z.; Ding, Y.; Mu, Y.; Xu, X.; Kong, W.; Chai, R.; Chen, X. Stem Cell-Based Therapies in Hearing Loss. Front. Cell Dev. Biol., 2021, 9, 730042.
[http://dx.doi.org/10.3389/fcell.2021.730042] [PMID: 34746126]
[41]
Reversing hearing loss with regenerative therapy. Available from: https://alum.mit.edu/slice/reversing-hearing-loss-regenerative-therapy
[42]
Liu, S.S.; Yang, R. Inner ear drug delivery for sensorineural hearing loss: current challenges and opportunities. Front. Neurosci., 2022, 16, 867453.
[http://dx.doi.org/10.3389/fnins.2022.867453] [PMID: 35685768]
[43]
Anderson, C.R.; Xie, C.; Su, M.P.; Garcia, M.; Blackshaw, H.; Schilder, A.G.M. Local delivery of therapeutics to the inner ear: The State of the Science. Front. Cell. Neurosci., 2019, 13, 418.
[http://dx.doi.org/10.3389/fncel.2019.00418] [PMID: 31649507]
[44]
Qi, J.; Fu, X.; Zhang, L.; Tan, F.; Li, N.; Sun, Q.; Hu, X.; He, Z.; Xia, M.; Chai, R. Current AAV-mediated gene therapy in sensorineural hearing loss; Fundament. Res, 2022.
[http://dx.doi.org/10.1016/j.fmre.2022.08.015]
[45]
Regulatory Requirements for Hearing Aid Devices and Personal Sound Amplification Products-FDA. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/regulatory-requirements-hearing-aid-devices-and-personal-sound-amplification-products
[47]
[48]
Immediately in Effect Guidance Document: Conditions for Sale for Air-Conduction Hearing Aids: Guidance for Industry and Food and Drug Administration Staff. Available from: https://www.hhs.gov/guidance/document/immediately-effect-guidance-document-conditions-sale-air-conduction-hearing-aids-guidance
[49]
USFDA. Code of Federal Regulations - Title 21 - Food and Drugs. U.S. Food & Drug administration, 2018. Available from: https://www.fda.gov/medical-devices/medical-device-databases/code-federal-regulations-title-21-food-and-drugs#:~:text=Title
[50]
21 CFR § 801.420 - Hearing aid devices; professional and patient labeling. CFR-US Law-LII / Legal Information Institute. Available from: https://www.law.cornell.edu/cfr/text/21/801.420
[51]
Kang, W.S.; Nguyen, K.; McKenna, C.E.; Sewell, W.F.; McKenna, M.J.; Jung, D.H. Intracochlear drug delivery through the oval window in fresh cadaveric human temporal bones. Otol. Neurotol., 2016, 37(3), 218-222.
[http://dx.doi.org/10.1097/MAO.0000000000000964] [PMID: 26859540]
[52]
Mittal, R.; Pena, S.A.; Zhu, A.; Eshraghi, N.; Fesharaki, A.; Horesh, E.J.; Mittal, J.; Eshraghi, A.A. Nanoparticle-based drug delivery in the inner ear: Current challenges, limitations and opportunities. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1312-1320.
[http://dx.doi.org/10.1080/21691401.2019.1573182] [PMID: 30987439]
[53]
Bowe, S.N.; Jacob, A. Round window perfusion dynamics: Implications for intracochlear therapy. Curr. Opin. Otolaryngol. Head Neck Surg., 2010, 18(5), 377-385.
[http://dx.doi.org/10.1097/MOO.0b013e32833d30f0] [PMID: 20808222]
[54]
Diane, E. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation, 2011, 123(19), 2145-2156.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839]
[55]
Swan, E.E.L.; Mescher, M.J.; Sewell, W.F.; Tao, S.L.; Borenstein, J.T. Inner ear drug delivery for auditory applications. Adv. Drug Deliv. Rev., 2008, 60(15), 1583-1599.
[http://dx.doi.org/10.1016/j.addr.2008.08.001] [PMID: 18848590]
[56]
Wei, B.P.C.; Stathopoulos, D.; O’Leary, S. Steroids for idiopathic sudden sensorineural hearing loss. Cochrane Libr., 2013, 2013(7), CD003998.
[http://dx.doi.org/10.1002/14651858.CD003998.pub3] [PMID: 23818120]
[57]
Ge, X.; Jackson, R.L.; Liu, J.; Harper, E.A.; Hoffer, M.E.; Wassel, R.A.; Dormer, K.J.; Kopke, R.D.; Balough, B.J. Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol. Head Neck Surg., 2007, 137(4), 619-623.
[http://dx.doi.org/10.1016/j.otohns.2007.04.013] [PMID: 17903580]
[58]
Borenstein, J.T. Intracochlear drug delivery systems. Expert Opin. Drug Deliv., 2011, 8(9), 1161-1174.
[http://dx.doi.org/10.1517/17425247.2011.588207] [PMID: 21615213]
[59]
Fetoni, A.R. Sergi, B.; Ferraresi, A.; Paludetti, G.; Troiani, D. α-Tocopherol protective effects on gentamicin ototoxicity: an experimental study. Int. J. Audiol., 2004, 43(3), 166-171.
[http://dx.doi.org/10.1080/14992020400050023] [PMID: 15198381]
[60]
Li, L.; Chao, T.; Brant, J.; O’Malley, B., Jr; Tsourkas, A.; Li, D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv. Drug Deliv. Rev., 2017, 108, 2-12.
[http://dx.doi.org/10.1016/j.addr.2016.01.004] [PMID: 26796230]
[61]
Hao, J.; Li, S.K. Inner ear drug delivery: Recent advances, challenges, and perspective. Eur. J. Pharm. Sci., 2019, 126, 82-92.
[http://dx.doi.org/10.1016/j.ejps.2018.05.020] [PMID: 29792920]
[62]
Stöver, T.; Yagi, M.; Raphael, Y. Cochlear gene transfer: round window versus cochleostomy inoculation. Hear. Res., 1999, 136(1-2), 124-130.
[http://dx.doi.org/10.1016/S0378-5955(99)00115-X] [PMID: 10511631]
[63]
Salt, A.N.; Ma, Y. Quantification of solute entry into cochlear perilymph through the round window membrane. Hear. Res., 2001, 154(1-2), 88-97.
[http://dx.doi.org/10.1016/S0378-5955(01)00223-4] [PMID: 11423219]
[64]
Plontke, S.K.R.; Wood, A.W.; Salt, A.N. Analysis of gentamicin kinetics in fluids of the inner ear with round window administration. Otol. Neurotol., 2002, 23(6), 967-974.
[http://dx.doi.org/10.1097/00129492-200211000-00026] [PMID: 12438864]
[65]
Diane, E. Handy, Rita Castro. J. L. NIH Public Access. Bone, 2011, 23(1), 1-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839]
[66]
Lajud, S.A.; Han, Z.; Chi, F.L.; Gu, R.; Nagda, D.A.; Bezpalko, O.; Sanyal, S.; Bur, A.; Han, Z.; O’Malley, B.W., Jr; Li, D. A regulated delivery system for inner ear drug application. J. Control. Release, 2013, 166(3), 268-276.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.031] [PMID: 23313113]
[67]
Xu, L.; Heldrich, J.; Wang, H.; Yamashita, T.; Miyamoto, S.; Li, A.; Uboh, C.E.; You, Y.; Bigelow, D.; Ruckenstein, M.; O’Malley, B.; Li, D. A controlled and sustained local gentamicin delivery system for inner ear applications. Otol. Neurotol., 2010, 31(7), 1115-1121.
[http://dx.doi.org/10.1097/MAO.0b013e3181eb32d1] [PMID: 20616758]
[68]
Ito, J.; Endo, T.; Nakagawa, T.; Kita, T.; Kim, T.S.; Iguchi, F. A new method for drug application to the inner ear. ORL J. Otorhinolaryngol. Relat. Spec., 2005, 67(5), 272-275.
[http://dx.doi.org/10.1159/000089407] [PMID: 16374059]
[69]
Nakagawa, T.; Ito, J. Drug delivery systems for the treatment of sensorineural hearing loss. Acta Otolaryngol., 2007, 127(Suppl. 557), 30-35.
[http://dx.doi.org/10.1080/03655230601065332] [PMID: 17453440]
[70]
Lee, K.Y.; Nakagawa, T.; Okano, T.; Hori, R.; Ono, K.; Tabata, Y.; Lee, S.H.; Ito, J. Novel therapy for hearing loss: Delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel. Otol. Neurotol., 2007, 28(7), 976-981.
[http://dx.doi.org/10.1097/MAO.0b013e31811f40db] [PMID: 17704706]
[71]
Yu, D.; Sun, C.; Zheng, Z.; Wang, X.; Chen, D.; Wu, H.; Wang, X.; Shi, F. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel. Int. J. Pharm., 2016, 503(1-2), 229-237.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.048] [PMID: 26972377]
[72]
Cassano, M.; Tarantini, V.; Trecca, E.M.C.; Moffa, A.; Grilli, G. Traumatic Sensorineural Hearing Loss. In: Sensorineural Hearing Loss; Pathophysiology, Diagnosis and Treatment, 2019.
[http://dx.doi.org/10.1159/000275594]
[73]
Plontke, S.K.; Zimmermann, R.; Zenner, H.; Lo, H. Technical note on microcatheter implantation for local inner ear drug delivery: Surgical technique and safety aspects. Otol. Neurotol., 2006, 27(7), 912-917.
[74]
Plontke; Plontke, S.; Löwenheim, H.; Plontke, S.; Löwenheim, H.; Preyer, S.; Leins, P.; Dietz, K.; Koitschev, A.; Zimmermann, R.; Zenner, H-P. Outcomes research analysis of continuous intratympanic glucocorticoid delivery in patients with acute severe to profound hearing loss: Basis for planning randomized controlled trials. Acta Otolaryngol., 2005, 125(8), 830-839.
[http://dx.doi.org/10.1080/00016480510037898] [PMID: 16158529]
[75]
Rejali, D.; Lee, V.A.; Abrashkin, K.A.; Humayun, N.; Swiderski, D.L.; Raphael, Y. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons. Hear. Res., 2007, 228(1-2), 180-187.
[http://dx.doi.org/10.1016/j.heares.2007.02.010] [PMID: 17416474]
[76]
Richardson, R.T.; Thompson, B.; Moulton, S.; Newbold, C.; Lum, M.G.; Cameron, A.; Wallace, G.; Kapsa, R.; Clark, G.; O’Leary, S. The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons. Biomaterials, 2007, 28(3), 513-523.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.008] [PMID: 17007922]
[77]
Pararas, E.E.L.; Chen, Z.; Fiering, J.; Mescher, M.J.; Kim, E.S.; McKenna, M.J.; Kujawa, S.G.; Borenstein, J.T.; Sewell, W.F. Kinetics of reciprocating drug delivery to the inner ear. J. Control. Release, 2011, 152(2), 270-277.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.021] [PMID: 21385596]
[78]
Adunka, O.; Unkelbach, M.H.; Mac, K.M.; Hambek, M.; Gstoettner, W.; Kiefer, J. Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: A histologically controlled insertion study. Acta Otolaryngol., 2004, 124(7), 807-812.
[http://dx.doi.org/10.1080/00016480410018179] [PMID: 15370564]
[79]
Nadol, J.B., Jr; Burgess, B.J.; Gantz, B.J.; Coker, N.J.; Ketten, D.R.; Kos, I.; Roland, J.T., Jr; Shiao, J.Y.; Eddington, D.K.; Montandon, P.; Shallop, J.K. Histopathology of cochlear implants in humans. Ann. Otol. Rhinol. Laryngol., 2001, 110(9), 883-891.
[http://dx.doi.org/10.1177/000348940111000914] [PMID: 11558767]
[80]
Liu, Y.; Jolly, C.; Braun, S.; Stark, T.; Scherer, E.; Plontke, S.K.; Kiefer, J. In vitro and in vivo pharmacokinetic study of a dexamethasone-releasing silicone for cochlear implants. Eur. Arch. Otorhinolaryngol., 2016, 273(7), 1745-1753.
[http://dx.doi.org/10.1007/s00405-015-3760-0] [PMID: 26319276]
[81]
Ross, A.M.; Rahmani, S.; Prieskorn, D.M.; Dishman, A.F.; Miller, J.M.; Lahann, J.; Altschuler, R.A. Persistence, distribution, and impact of distinctly segmented microparticles on cochlear health following in vivo infusion. J. Biomed. Mater. Res. A, 2016, 104(6), 1510-1522.
[http://dx.doi.org/10.1002/jbm.a.35675] [PMID: 26841263]
[82]
Rahmani, S.; Ross, A.M.; Park, T.H.; Durmaz, H.; Dishman, A.F.; Prieskorn, D.M.; Jones, N.; Altschuler, R.A.; Lahann, J. Dual release carriers for cochlear delivery. Adv. Healthc. Mater., 2016, 5(1), 94-100.
[http://dx.doi.org/10.1002/adhm.201500141] [PMID: 26178272]
[83]
Tandon, V.; Kang, W.S.; Robbins, T.A.; Spencer, A.J.; Kim, E.S.; McKenna, M.J.; Kujawa, S.G.; Fiering, J.; Pararas, E.E.L.; Mescher, M.J.; Sewell, W.F.; Borenstein, J.T. Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing. Lab Chip, 2016, 16(5), 829-846.
[http://dx.doi.org/10.1039/C5LC01396H] [PMID: 26778829]
[84]
Wise, A.K.; Richardson, R.; Hardman, J.; Clark, G.; O’Leary, S. Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. J. Comp. Neurol., 2005, 487(2), 147-165.
[http://dx.doi.org/10.1002/cne.20563] [PMID: 15880560]
[85]
Rodrigues, T.B.; Ballesteros, P. Kinetic properties of the redox switch/redox coupling mechanism as determined in primary cultures of cortical neurons and astrocytes from rat brain. J. Neurosci. Res., 2007, 3253(April), 3244-3253.
[http://dx.doi.org/10.1002/jnr]
[86]
Zou, J.; Sood, R.; Zhang, Y.; Kinnunen, P.K.J.; Pyykkö, I. Pathway and morphological transformation of liposome nanocarriers after release from a novel sustained inner-ear delivery system. Nanomedicine, 2014, 9(14), 2143-2155.
[http://dx.doi.org/10.2217/nnm.13.181] [PMID: 24471501]
[87]
Wang, J.; Lloyd Faulconbridge, R.V.; Fetoni, A.; Guitton, M.J.; Pujol, R.; Puel, J.L. Local application of sodium thiosulfate prevents cisplatin-induced hearing loss in the guinea pig. Neuropharmacology, 2003, 45(3), 380-393.
[http://dx.doi.org/10.1016/S0028-3908(03)00194-1] [PMID: 12871655]
[88]
Ayoob, A.M.; Borenstein, J.T. The role of intracochlear drug delivery devices in the management of inner ear disease. Expert Opin. Drug Deliv., 2015, 12(3), 465-479.
[http://dx.doi.org/10.1517/17425247.2015.974548] [PMID: 25347140]
[89]
Toyota, H.; Shimogori, H.; Sugahara, K.; Yamashita, H. A novel treatment for vestibular disorder with FGLM-NH2 plus SSSR. Neurosci. Lett., 2012, 526(2), 128-132.
[http://dx.doi.org/10.1016/j.neulet.2012.08.026] [PMID: 22939768]
[90]
Hoffer, M.E.; Allen, K.; Kopke, R.D.; Weisskopf, P.; Gottshall, K.; Wester, D. Transtympanic versus sustained-release administration of gentamicin: Kinetics, morphology, and function. Laryngoscope, 2001, 111(8), 1343-1357.
[http://dx.doi.org/10.1097/00005537-200108000-00007] [PMID: 11568567]
[91]
Praetorius, M.; Baker, K.; Brough, D.E.; Plinkert, P.; Staecker, H. Pharmacodynamics of adenovector distribution within the inner ear tissues of the mouse. Hear. Res., 2007, 227(1-2), 53-58.
[http://dx.doi.org/10.1016/j.heares.2006.07.002] [PMID: 17081711]
[92]
Oestreicher, E.; Arnold, W.; Ehrenberger, K.; Felix, D. New approaches for inner ear therapy with glutamate antagonists. Acta Otolaryngol., 1999, 119(2), 174-178.
[http://dx.doi.org/10.1080/00016489950181611] [PMID: 10320071]
[93]
Plontke, S.K.; Siedow, N.; Wegener, R.; Zenner, H.P.; Salt, A.N. Cochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model. Audiol. Neurotol., 2007, 12(1), 37-48.
[http://dx.doi.org/10.1159/000097246] [PMID: 17119332]
[94]
Kim, E.S.; Gustenhoven, E.; Mescher, M.J.; Leary Pararas, E.E.; Smith, K.A.; Spencer, A.J.; Tandon, V.; Borenstein, J.T.; Fiering, J. A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control. Lab Chip, 2014, 14(4), 710-721.
[http://dx.doi.org/10.1039/C3LC51105G] [PMID: 24302432]
[95]
Handzel, O.; Wang, H.; Fiering, J.; Borenstein, J.T.; Mescher, M.J.; Leary Swan, E.E.; Murphy, B.A.; Chen, Z.; Peppi, M.; Sewell, W.F.; Kujawa, S.G.; McKenna, M.J. Mastoid cavity dimensions and shape: Method of measurement and virtual fitting of implantable devices. Audiol. Neurotol., 2009, 14(5), 308-314.
[http://dx.doi.org/10.1159/000212110] [PMID: 19372649]
[96]
Pettingill, L.N.; Richardson, R.T.; Wise, A.K.; O’Leary, S.J.; Shepherd, R.K. Neurotrophic factors and neural prostheses: Potential clinical applications based upon findings in the auditory system. IEEE Trans. Biomed. Eng., 2007, 54(6), 1138-1148.
[http://dx.doi.org/10.1109/TBME.2007.895375] [PMID: 17551571]
[97]
Staecker, H.; Jolly, C.; Garnham, C. Cochlear implantation: An opportunity for drug development. Drug Discov. Today, 2010, 15(7-8), 314-321.
[http://dx.doi.org/10.1016/j.drudis.2010.02.005] [PMID: 20184966]
[98]
Graham, J.; Vickers, D.; Eyles, J.; Brinton, J.; Malky, G.A.; Aleksy, W.; Martin, J.; Henderson, L.; Mawman, D.; Robinson, P.; Midgley, E.; Hanvey, K.; Twomey, T.; Johnson, S.; Vanat, Z.; Broxholme, C.; Mcanallen, C.; Allen, A.; Bray, M. Bilateral sequential cochlear implantation in the congenitally deaf child: Evidence to support the concept of a ‘Critical Age’ after which the second ear is less likely to provide an adequate level of speech perception on its own. Cochlear Implants Int., 2009, 10(3), 119-141.
[http://dx.doi.org/10.1179/cim.2009.10.3.119] [PMID: 19593746]
[99]
Rhodes, R.M.; Tsai Do, B.S. Future of implantable auditory devices. Otolaryngol. Clin. North Am., 2019, 52(2), 363-378.
[http://dx.doi.org/10.1016/j.otc.2018.11.017] [PMID: 30765092]
[100]
Grossöhmichen, M.; Salcher, R.; Kreipe, H.H.; Lenarz, T.; Maier, H. The Codacs™ direct acoustic cochlear implant actuator: Exploring alternative stimulation sites and their stimulation efficiency. PLoS One, 2015, 10(3), e0119601.
[http://dx.doi.org/10.1371/journal.pone.0119601] [PMID: 25785860]
[101]
Hageman, K.N.; Kalayjian, Z.K.; Tejada, F.; Chiang, B.; Rahman, M.A.; Fridman, G.Y.; Dai, C.; Pouliquen, P.O.; Georgiou, J.; Della Santina, C.C.; Andreou, A.G. A CMOS neural interface for a multichannel vestibular prosthesis. IEEE Trans. Biomed. Circuits Syst., 2016, 10(2), 269-279.
[http://dx.doi.org/10.1109/TBCAS.2015.2409797] [PMID: 25974945]
[102]
Ward, B.K.; Agrawal, Y.; Hoffman, H.J.; Carey, J.P.; Della Santina, C.C. Prevalence and impact of bilateral vestibular hypofunction: Results from the 2008 US National Health Interview Survey. JAMA Otolaryngol. Head Neck Surg., 2013, 139(8), 803-810.
[http://dx.doi.org/10.1001/jamaoto.2013.3913] [PMID: 23949355]
[103]
Gehrke, M.; Sircoglou, J.; Gnansia, D.; Tourrel, G.; Willart, J.F.; Danede, F.; Lacante, E.; Vincent, C.; Siepmann, F.; Siepmann, J. Ear Cubes for local controlled drug delivery to the inner ear. Int. J. Pharm., 2016, 509(1-2), 85-94.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.003] [PMID: 27050866]
[104]
Salt, A.N.; Hirose, K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear. Res., 2018, 362, 25-37.
[http://dx.doi.org/10.1016/j.heares.2017.12.010] [PMID: 29277248]
[105]
Shi, H.; Li, Y.; Yin, S.; Zou, J. The predominant vestibular uptake of gadolinium through the oval window pathway is compromised by endolymphatic hydrops in Ménière’s disease. Otol. Neurotol., 2014, 35(2), 315-322.
[http://dx.doi.org/10.1097/MAO.0000000000000196] [PMID: 24270715]
[106]
Plontke, S.K.; Hartsock, J.J.; Gill, R.M.; Salt, A.N. Intracochlear drug injections through the round window membrane: Measures to improve drug retention. Audiol. Neurotol., 2016, 21(2), 72-79.
[http://dx.doi.org/10.1159/000442514] [PMID: 26905306]
[107]
Fritzsch, B.; Beisel, K.W.; Hansen, L.A. The molecular basis of neurosensory cell formation in ear development: A blueprint for hair cell and sensory neuron regeneration? BioEssays, 2006, 28(12), 1181-1193.
[http://dx.doi.org/10.1002/bies.20502] [PMID: 17120192]
[108]
Kaplan, D.R.; Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol., 2000, 10(3), 381-391.
[http://dx.doi.org/10.1016/S0959-4388(00)00092-1] [PMID: 10851172]
[109]
Chen, G.; Zhang, X.; Yang, F.; Mu, L. Disposition of nanoparticle-based delivery system via inner ear administration. Curr. Drug Metab., 2010, 11(10), 886-897.
[http://dx.doi.org/10.2174/138920010794479673] [PMID: 21208174]
[110]
Tayler, A.B. Fluid flow between a roller and absorbent compressible paper. Q. J. Mech. Appl. Math., 1978, 31(4), 481-495.
[http://dx.doi.org/10.1093/qjmam/31.4.481]
[111]
Praetorius; Brunner, C.; Lehnert, B.; Klingmann, C.; Schmidt, H.; Staecker, H.; Schick, B. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Otolaryngol., 2007, 127(5), 486-490.
[http://dx.doi.org/10.1080/00016480600895102] [PMID: 17453474]
[112]
Zou, J.; Saulnier, P.; Perrier, T.; Zhang, Y.; Manninen, T.; Toppila, E.; Pyykkö, I. Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 87B(1), 10-18.
[http://dx.doi.org/10.1002/jbm.b.31058] [PMID: 18437698]
[113]
Tamura, T.; Kita, T.; Nakagawa, T.; Endo, T.; Kim, T.S.; Ishihara, T.; Mizushima, Y.; Higaki, M.; Ito, J. Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope, 2005, 115(11), 2000-2005.
[http://dx.doi.org/10.1097/01.mlg.0000180174.81036.5a] [PMID: 16319613]
[114]
Du, X.; Chen, K.; Kuriyavar, S.; Kopke, R.D.; Grady, B.P.; Bourne, D.H.; Li, W.; Dormer, K.J. Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs. Otol. Neurotol., 2013, 34(1), 41-47.
[http://dx.doi.org/10.1097/MAO.0b013e318277a40e] [PMID: 23187928]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy