Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Merrifield Resin Supported Ionic Liquids: Catalytic Applications in Organic Synthesis

Author(s): Ayushi Aggarwal, Avtar Singh and Harish Kumar Chopra*

Volume 27, Issue 2, 2023

Published on: 17 April, 2023

Page: [130 - 152] Pages: 23

DOI: 10.2174/1385272827666230406082857

Price: $65

Abstract

Ever since their discovery, Ionic Liquids have raised great interest in organic transformations ranging from solvents to catalytic entities. These belong to a class of nonmolecular compounds composed of ions having curiously low melting points. In the last few years, the Supported Ionic Liquids have drawn the attention of researchers and chemists due to their advantages over homogeneous catalysis. The most commonly used support for immobilized ionic liquids is polymeric. Due to its efficient recovery, reusability and chemical inertness, Merrifield resin can be considered an excellent solid support for ionic liquids. The present review summarizes the synthesis and application of Merrifield Resin Supported Ionic Liquids (MRSILs). The MRSILs can be synthesized by the immobilization of amines like ammonium, choline, imidazolium, DABCO, DMAP, pyridine, and many other functionalized precursors. Additionally, these MRSILs play an incredible role in the field of catalysis, where both metal-free and metal-containing MRSILs are embodied as a catalyst.

Graphical Abstract

[1]
Schaub, T. Efficient industrial organic synthesis and the principles of green chemistry. Chemistry, 2021, 27(6), 1865-1869.
[http://dx.doi.org/10.1002/chem.202003544] [PMID: 33448523]
[2]
Singh, A.; Kaur, N.; Parmar, A.; Chopra, H.K. The Fundamental perspectives of greener synthesis. Handbook of Greener Synthesis of Nanomaterials and Compounds; Elsevier: Amsterdam, 2021, Vol. 1, pp. 3-36.
[http://dx.doi.org/10.1016/B978-0-12-821938-6.00001-3]
[3]
Holbrey, J.D.; Reichert, W.M.; Swatloski, R.P.; Broker, G.A.; Pitner, W.R.; Seddon, K.R.; Rogers, R.D. Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethylsulfate anions. Green Chem., 2002, 4(5), 407-413.
[http://dx.doi.org/10.1039/b204469b]
[4]
Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[5]
Gorman, J. Faster, better, cleaner?: New liquids take aim at old‐fashioned chemistry. Sci. News, 2001, 160(10), 156-158.
[http://dx.doi.org/10.2307/4012654]
[6]
Stark, A.; Ott, D.; Kralisch, D.; Kreisel, G.; Ondruschka, B. Ionic liquids and green chemistry: A lab experiment. J. Chem. Educ., 2010, 87(2), 196-201.
[http://dx.doi.org/10.1021/ed8000396]
[7]
MacFarlane, D.R.; Seddon, K.R. Ionic liquids—progress on the fundamental issues. Aust. J. Chem., 2007, 60(1), 3-5.
[http://dx.doi.org/10.1071/CH06478]
[8]
Welton, T. Ionic liquids: A brief history. Biophys. Rev., 2018, 10(3), 691-706.
[http://dx.doi.org/10.1007/s12551-018-0419-2] [PMID: 29700779]
[9]
Kaur, N.; Singh, A.; Chopra, H.K. Exploring low-cost natural precursors as chiral building blocks in synthesis: Chiral carbohydrate-ionic liquids. Mini Rev. Org. Chem., 2018, 15(3), 208-219.
[http://dx.doi.org/10.2174/1570193X15666171218161135]
[10]
Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev., 2017, 117(10), 6633-6635.
[http://dx.doi.org/10.1021/acs.chemrev.7b00246] [PMID: 28535681]
[11]
Kudłak, B.; Owczarek, K.; Namieśnik, J. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environ. Sci. Pollut. Res. Int., 2015, 22(16), 11975-11992.
[http://dx.doi.org/10.1007/s11356-015-4794-y] [PMID: 26040266]
[12]
Earle, M.J.; Esperança, J.M.S.S.; Gilea, M.A.; Canongia Lopes, J.N.; Rebelo, L.P.N.; Magee, J.W.; Seddon, K.R.; Widegren, J.A. The distillation and volatility of ionic liquids. Nature, 2006, 439(7078), 831-834.
[http://dx.doi.org/10.1038/nature04451] [PMID: 16482154]
[13]
Cho, C.W.; Pham, T.P.T.; Zhao, Y.; Stolte, S.; Yun, Y.S. Review of the toxic effects of ionic liquids. Sci. Total Environ., 2021, 786, 147309.
[http://dx.doi.org/10.1016/j.scitotenv.2021.147309] [PMID: 33975102]
[14]
Aparicio, S.; Atilhan, M.; Karadas, F. Thermophysical properties of pure ionic liquids: review of present situation. Ind. Eng. Chem. Res., 2010, 49(20), 9580-9595.
[http://dx.doi.org/10.1021/ie101441s]
[15]
Ueno, K.; Tokuda, H.; Watanabe, M. Ionicity in ionic liquids: Correlation with ionic structure and physicochemical properties. Phys. Chem. Chem. Phys., 2010, 12(8), 1649-1658.
[http://dx.doi.org/10.1039/b921462n] [PMID: 20145829]
[16]
Singh, A.; Kaur, N.; Chopra, H.K. Enantioselective reduction reactions using chiral ionic liquids: An overview. Curr. Org. Synth., 2018, 15(5), 578-586.
[http://dx.doi.org/10.2174/1570179415666180427111428]
[17]
Singh, A.; Kaur, N.; Kumar Chopra, H. Chiral recognition methods in analytical chemistry: Role of the chiral ionic liquids. Crit. Rev. Anal. Chem., 2019, 49(6), 553-569.
[http://dx.doi.org/10.1080/10408347.2019.1565985] [PMID: 31056926]
[18]
Kaur, N.; Rahim, J.U.; Rai, R.; Chopra, H.K. Synthesis and application of (S)‐Nicotine‐Based chiral ionic liquids in enantiomeric recognition by using fluorescence spectroscopy. ChemistrySelect, 2021, 6(23), 5685-5688.
[http://dx.doi.org/10.1002/slct.202100935]
[19]
Hou, Q.; Li, W.; Zhen, M.; Liu, L.; Chen, Y.; Yang, Q.; Huang, F.; Zhang, S.; Ju, M. An ionic liquid–organic solvent biphasic system for efficient production of 5-hydroxymethylfurfural from carbohydrates at high concentrations. RSC Advances, 2017, 7(75), 47288-47296.
[http://dx.doi.org/10.1039/C7RA10237B]
[20]
González-Miquel, M.; Díaz, I. Green solvent screening using modeling and simulation. Curr. Opin. Green Sustain. Chem., 2021, 29, 100469.
[http://dx.doi.org/10.1016/j.cogsc.2021.100469]
[21]
Zhao, H.; Xia, S.; Ma, P. Use of ionic liquids as ‘green’ solvents for extractions. J. Chem. Technol. Biotechnol., 2005, 80(10), 1089-1096.
[http://dx.doi.org/10.1002/jctb.1333]
[22]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun., 2001, 23(23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[23]
Han, X.; Armstrong, D.W. Ionic liquids in separations. Acc. Chem. Res., 2007, 40(11), 1079-1086.
[http://dx.doi.org/10.1021/ar700044y] [PMID: 17910515]
[24]
Wang, Z.; He, S.; Nguyen, V.; Riley, K.E. Ionic liquids as “Green solvent and/or electrolyte” for energy interface. Engin. Sci., 2020, 11, 3-18.
[http://dx.doi.org/10.30919/es8d0013]
[25]
Kaur, N.; Singh, A.; Kaur, P.; Chopra, H.K. Ionic liquids in chiral separations. Ionic Liquids in Analytical Chemistry; Elsevier: Amsterdam, 2022, pp. 275-296.
[http://dx.doi.org/10.1016/B978-0-12-823334-4.00007-2]
[26]
Kaur, N.; Chopra, H.K. Synthesis, characterization, and organocatalytic application of chiral ionic liquids derived from (S,R)-noscapine. Synth. Commun., 2018, 48(1), 26-31.
[http://dx.doi.org/10.1080/00397911.2017.1384842]
[27]
Singh, A.; Kaur, N.; Parmar, A.; Chopra, H.K. Structure and properties of Ionic liquids: Green aspects.Ionic Liquids in Analytical Chemistry; Elsevier: Amsterdam, 2022, pp. 1-32.
[http://dx.doi.org/10.1016/B978-0-12-823334-4.00004-7]
[28]
Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev., 2004, 248(21-24), 2459-2477.
[http://dx.doi.org/10.1016/j.ccr.2004.04.015]
[29]
Gu, Y.; Li, G. Ionic liquids‐based catalysis with solids: State of the art. Adv. Synth. Catal., 2009, 351(6), 817-847.
[http://dx.doi.org/10.1002/adsc.200900043]
[30]
Chudasama, S.J.; Shah, B.J.; Patel, K.M.; Dhameliya, T.M. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J. Mol. Liq., 2022, 361, 119664.
[http://dx.doi.org/10.1016/j.molliq.2022.119664]
[31]
Singh, A.; Chopra, H.K. S-Substituted-2-mercaptobenzthiazolium-based chiral ionic liquids: Efficient organocatalysts for enantioselective sodium borohydride reductions of prochiral ketones. Tetrahedron Asymmetry, 2017, 28(3), 414-418.
[http://dx.doi.org/10.1016/j.tetasy.2017.02.008]
[32]
Xiao, Y.; Malhotra, S.V. Diels–Alder reactions in pyridinium based ionic liquids. Tetrahedron Lett., 2004, 45(45), 8339-8342.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.070]
[33]
Zheng, X.; Qian, Y.; Wang, Y. Direct asymmetric aza Diels–Alder reaction catalyzed by chiral 2-pyrrolidinecarboxylic acid ionic liquid. Catal. Commun., 2010, 11(6), 567-570.
[http://dx.doi.org/10.1016/j.catcom.2009.12.021]
[34]
Xu, F.; Chen, H.; Zhang, H.; Zhou, X.; Cheng, G. Protophilic amide ionic liquid assisted esterification and catalysis mechanism. J. Mol. Catal. Chem., 2009, 307(1-2), 9-12.
[http://dx.doi.org/10.1016/j.molcata.2009.03.003]
[35]
Deng, Y.; Shi, F.; Beng, J.; Qiao, K. Ionic liquid as a green catalytic reaction medium for esterifications. J. Mol. Catal. Chem., 2001, 165(1-2), 33-36.
[http://dx.doi.org/10.1016/S1381-1169(00)00422-2]
[36]
Neuhaus, W.C.; Bakanas, I.J.; Lizza, J.R.; Boon, C.T., Jr; Moura-Letts, G. Novel biodegradable protonic ionic liquid for the Fischer indole synthesis reaction. Green Chem. Lett. Rev., 2016, 9(1), 39-43.
[http://dx.doi.org/10.1080/17518253.2016.1149231]
[37]
Sekar, S.; Surianarayanan, M.; Ranganathan, V.; MacFarlane, D.R.; Mandal, A.B. Choline-based ionic liquids-enhanced biodegradation of azo dyes. Environ. Sci. Technol., 2012, 46(9), 4902-4908.
[http://dx.doi.org/10.1021/es204489h] [PMID: 22497364]
[38]
Kirchhecker, S.; Esposito, D. Amino acid based ionic liquids: A green and sustainable perspective. Curr. Opin. Green Sustain. Chem., 2016, 2, 28-33.
[http://dx.doi.org/10.1016/j.cogsc.2016.09.001]
[39]
Yan, Q.; Zang, H.; Wu, C.; Feng, J.; Li, M.; Zhang, M.; Wang, L.; Cheng, B. Synthesis, characterization and catalytic application of novel ionic liquids based on thiazolium cation. J. Mol. Liq., 2015, 204, 156-161.
[http://dx.doi.org/10.1016/j.molliq.2015.01.016]
[40]
Xiao, Y.; Malhotra, S.V. Friedel–Crafts alkylation reactions in pyridinium-based ionic liquids. J. Mol. Catal. Chem., 2005, 230(1-2), 129-133.
[http://dx.doi.org/10.1016/j.molcata.2004.12.015]
[41]
Tindale, J.J.; Hartlen, K.D.; Alizadeh, A.; Workentin, M.S.; Ragogna, P.J. Maleimide-modified phosphonium ionic liquids: A template towards (multi)task-specific ionic liquids. Chemistry, 2010, 16(30), 9068-9075.
[http://dx.doi.org/10.1002/chem.200902610] [PMID: 20572165]
[42]
Wang, G.; Guan, Z.; Tang, R.; He, Y. Ionic liquid as catalyst and reaction medium: a simple and efficient procedure for Paal–Knorr furan synthesis. Synth. Commun., 2010, 40(3), 370-377.
[http://dx.doi.org/10.1080/00397910902978049]
[43]
Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.; Sun, D. Mannich reaction using acidic ionic liquids as catalysts and solvents Electronic supplementary information (ESI) available: spectral data for the Mannich products, IR spectrum of the acidic ionic liquids. See http://www.rsc.org/suppdata/gc/b3/b309700p/. Green Chem. , 2004, 6(2), 75-77.
[http://dx.doi.org/10.1039/b309700p]
[44]
Lin, I.J.B.; Vasam, C.S. Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J. Organomet. Chem., 2005, 690(15), 3498-3512.
[http://dx.doi.org/10.1016/j.jorganchem.2005.03.007]
[45]
Varona, M.; Eor, P.; Ferreira Neto, L.C.; Merib, J.; Anderson, J.L. Metal-containing and magnetic ionic liquids in analytical extractions and gas separations. Trends Analyt. Chem., 2021, 140, 116275.
[http://dx.doi.org/10.1016/j.trac.2021.116275]
[46]
Prodius, D.; Mudring, A.V. Rare earth metal-containing ionic liquids. Coord. Chem. Rev., 2018, 363, 1-16.
[http://dx.doi.org/10.1016/j.ccr.2018.02.004]
[47]
Zehbe, K.; Kollosche, M.; Lardong, S.; Kelling, A.; Schilde, U.; Taubert, A. Ionogels based on poly (methyl methacrylate) and metal-containing ionic liquids: Correlation between structure and mechanical and electrical properties. Int. J. Mol. Sci., 2016, 17(3), 391.
[http://dx.doi.org/10.3390/ijms17030391] [PMID: 26999112]
[48]
Zazybin, A.G.; Rafikova, K.; Yu, V.; Zolotareva, D.; Dembitsky, V.M.; Sasaki, T. Metal-containing ionic liquids: Current paradigm and applications. Russ. Chem. Rev., 2017, 86(12), 1254-1270.
[http://dx.doi.org/10.1070/RCR4743]
[49]
Zheng, Z.; Guo, J.; Mao, H.; Xu, Q.; Qin, J.; Yan, F. Metal-containing poly (ionic liquid) membranes for antibacterial applications. ACS Biomater. Sci. Eng., 2017, 3(6), 922-928.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00165] [PMID: 33429564]
[50]
Ko, N.H.; Lee, J.S.; Huh, E.S.; Lee, H.; Jung, K.D.; Kim, H.S.; Cheong, M. Extractive desulfurization using Fe-containing ionic liquids. Energy Fuels, 2008, 22(3), 1687-1690.
[http://dx.doi.org/10.1021/ef7007369]
[51]
Kim, D.; Moon, Y.; Ji, D.; Kim, H.; Cho, D. Metal-containing ionic liquids as synergistic catalysts for the cycloaddition of CO2: A density functional theory and response surface methodology corroborated study. ACS Sustain. Chem.& Eng., 2016, 4(9), 4591-4600.
[http://dx.doi.org/10.1021/acssuschemeng.6b00711]
[52]
Matsuoka, A.; Kamio, E.; Matsuyama, H. Investigation into the effective chemical structure of metal-containing ionic liquids for oxygen absorption. Ind. Eng. Chem. Res., 2019, 58(51), 23304-23316.
[http://dx.doi.org/10.1021/acs.iecr.9b03467]
[53]
Brooks, N.R.; Schaltin, S.; Van Hecke, K.; Van Meervelt, L.; Binnemans, K.; Fransaer, J. Copper(I)-containing ionic liquids for high-rate electrodeposition. Chemistry, 2011, 17(18), 5054-5059.
[http://dx.doi.org/10.1002/chem.201003209] [PMID: 21416512]
[54]
Bica, K.; Gaertner, P. Metal‐containing ionic liquids as efficient catalysts for hydroxymethylation in water. Eur. J. Org. Chem., 2008, 2008(20), 3453-3456.
[http://dx.doi.org/10.1002/ejoc.200800323]
[55]
Dengler, J.E.; Doroodian, A.; Rieger, B. Protic metal-containing ionic liquids as catalysts: Cooperative effects between anion and cation. J. Organomet. Chem., 2011, 696(24), 3831-3835.
[http://dx.doi.org/10.1016/j.jorganchem.2011.07.035]
[56]
Zhong, C.; Sasaki, T.; Tada, M.; Iwasawa, Y. Ni ion-containing ionic liquid salt and Ni ion-containing immobilized ionic liquid on silica: Application to Suzuki cross-coupling reactions between chloroarenes and arylboronic acids. J. Catal., 2006, 242(2), 357-364.
[http://dx.doi.org/10.1016/j.jcat.2006.06.020]
[57]
Zhang, P.; Gong, Y.; Lv, Y.; Guo, Y.; Wang, Y.; Wang, C.; Li, H. Ionic liquids with metal chelate anions. Chem. Commun., 2012, 48(17), 2334-2336.
[http://dx.doi.org/10.1039/c2cc16906a] [PMID: 22215209]
[58]
Kim, H.S.; Kim, Y.J.; Lee, H.; Park, K.Y.; Lee, C.; Chin, C.S. Ionic liquids containing anionic selenium species: applications for the oxidative carbonylation of aniline. Angew. Chem. Int. Ed., 2002, 41(22), 4300-4303.
[http://dx.doi.org/10.1002/1521-3773(20021115)41:22<4300::AID-ANIE4300>3.0.CO;2-V] [PMID: 12434369]
[59]
Li, B.; Hu, R.; Qin, A.; Tang, B.Z. Copper-based ionic liquid-catalyzed click polymerization of diazides and diynes toward functional polytriazoles for sensing applications. Polym. Chem., 2020, 11(12), 2006-2014.
[http://dx.doi.org/10.1039/C9PY01443H]
[60]
Sentman, A.C.; Csihony, S.; Waymouth, R.M.; Hedrick, J.L. Silver(I)-carbene complexes/ionic liquids: Novel N-heterocyclic carbene delivery agents for organocatalytic transformations. J. Org. Chem., 2005, 70(6), 2391-2393.
[http://dx.doi.org/10.1021/jo048555q] [PMID: 15760240]
[61]
Xie, W.; Wan, F. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chem. Eng. J., 2019, 365, 40-50.
[http://dx.doi.org/10.1016/j.cej.2019.02.016]
[62]
Ghandi, K. A review of ionic liquids, their limits and applications. Green Sust. Chem., 2014, 4(1), 44-53.
[http://dx.doi.org/10.4236/gsc.2014.41008]
[63]
Shamsuri, A.A. Ionic liquids: preparations and limitations. MAKARA of Science Series, 2011, 14(2)
[http://dx.doi.org/10.7454/mss.v14i2.677]
[64]
Sadeghzadeh, S.M. Ionic liquid immobilized onto fibrous nano-silica: A highly active and reusable catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones. Catal. Commun., 2015, 72, 91-96.
[http://dx.doi.org/10.1016/j.catcom.2015.09.016]
[65]
Sadeghzadeh, S.M. A heteropolyacid-based ionic liquid immobilized onto fibrous nano-silica as an efficient catalyst for the synthesis of cyclic carbonate from carbon dioxide and epoxides. Green Chem., 2015, 17(5), 3059-3066.
[http://dx.doi.org/10.1039/C5GC00377F]
[66]
Chiappe, C.; Pieraccini, D. Ionic liquids: Solvent properties and organic reactivity. J. Phys. Org. Chem., 2005, 18(4), 275-297.
[http://dx.doi.org/10.1002/poc.863]
[67]
Mai, N.L.; Ahn, K.; Koo, Y.M. Methods for recovery of ionic liquids—a review. Process Biochem., 2014, 49(5), 872-881.
[http://dx.doi.org/10.1016/j.procbio.2014.01.016]
[68]
Chernikova, E.A.; Glukhov, L.M.; Krasovskiy, V.G.; Kustov, L.M.; Vorobyeva, M.G.; Koroteev, A.A. Ionic liquids as heat transfer fluids: Comparison with known systems, possible applications, advantages and disadvantages. Russ. Chem. Rev., 2015, 84(8), 875-890.
[http://dx.doi.org/10.1070/RCR4510]
[69]
Mehnert, C.P. Supported ionic liquid catalysis. Chemistry, 2005, 11(1), 50-56.
[http://dx.doi.org/10.1002/chem.200400683] [PMID: 15515066]
[70]
Kaur, P.; Chopra, H.K. Recent advances in applications of supported ionic liquids. Curr. Org. Chem., 2020, 23(26), 2881-2915.
[http://dx.doi.org/10.2174/1385272823666191204151803]
[71]
Chopra, H.K.; Kaur, P. Recent advances in supported ionic liquid membrane technology in gas/organic compounds separations. Curr. Org. Chem., 2022, 26(12), 1149-1184.
[http://dx.doi.org/10.2174/1385272826666220901145540]
[72]
Romanovsky, B.V.; Tarkhanova, I.G. Supported ionic liquids in catalysis. Russ. Chem. Rev., 2017, 86(5), 444-458.
[http://dx.doi.org/10.1070/RCR4666]
[73]
Selvam, T.; Machoke, A.; Schwieger, W. Supported ionic liquids on nonporous and porous inorganic materials—a topical review. Appl. Catal. A Gen., 2012, 445-446, 92-101.
[http://dx.doi.org/10.1016/j.apcata.2012.08.007]
[74]
Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Yadav, P.; Sharma, R.K. Magnetically supported ionic liquids: A sustainable catalytic route for organic transformations. Mater. Horiz., 2020, 7(12), 3097-3130.
[http://dx.doi.org/10.1039/D0MH01088J]
[75]
Manojkumar, K.; Sivaramakrishna, A.; Vijayakrishna, K. A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids). J. Nanopart. Res., 2016, 18(4), 103.
[http://dx.doi.org/10.1007/s11051-016-3409-y]
[76]
Skoda-Földes, R. The use of supported acidic ionic liquids in organic synthesis. Molecules, 2014, 19(7), 8840-8884.
[http://dx.doi.org/10.3390/molecules19078840] [PMID: 24972271]
[77]
Valkenberg, M.H.; deCastro, C.; Hölderich, W.F. Immobilisation of ionic liquids on solid supports. Green Chem., 2002, 4(2), 88-93.
[http://dx.doi.org/10.1039/b107946h]
[78]
Xin, B.; Hao, J. Imidazolium-based ionic liquids grafted on solid surfaces. Chem. Soc. Rev., 2014, 43(20), 7171-7187.
[http://dx.doi.org/10.1039/C4CS00172A] [PMID: 25000475]
[79]
Sainz Martinez, A.; Hauzenberger, C.; Sahoo, A.R.; Csendes, Z.; Hoffmann, H.; Bica, K. Continuous conversion of carbon dioxide to propylene carbonate with supported ionic liquids. ACS Sustain. Chem.& Eng., 2018, 6(10), 13131-13139.
[http://dx.doi.org/10.1021/acssuschemeng.8b02627]
[80]
Li, Z.M.; Zhou, Y.; Tao, D.J.; Huang, W.; Chen, X.S.; Yang, Z. MOR zeolite supported Brønsted acidic ionic liquid: an efficient and recyclable heterogeneous catalyst for ketalization. RSC Advances, 2014, 4(24), 12160-12167.
[http://dx.doi.org/10.1039/C4RA00092G]
[81]
Song, H.; Li, R.; Jin, F.; Li, Z.; Chen, J. Efficient and reusable zeoliteimmobilized acidic ionic liquids for the synthesis of polyoxymethylene dimethyl ethers. Molecular Catalysis, 2018, 455, 179-187.
[http://dx.doi.org/10.1016/j.mcat.2018.06.012]
[82]
Wu, C.; Fan, J.; Jiang, J.; Wang, J. pH/temperature dependent selective removal of trace Cr(VI) from aqueous solution by imidazolium ionic liquid functionalized magnetic carbon nanotubes. RSC Advances, 2015, 5(58), 47165-47173.
[http://dx.doi.org/10.1039/C5RA06026E]
[83]
Chen, W.; Zhang, Y.; Zhu, L.; Lan, J.; Xie, R.; You, J. A concept of supported amino acid ionic liquids and their application in metal scavenging and heterogeneous catalysis. J. Am. Chem. Soc., 2007, 129(45), 13879-13886.
[http://dx.doi.org/10.1021/ja073633n] [PMID: 17941636]
[84]
Watile, R.A.; Deshmukh, K.M.; Dhake, K.P.; Bhanage, B.M. Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst. Catal. Sci. Technol., 2012, 2(5), 1051-1055.
[http://dx.doi.org/10.1039/c2cy00458e]
[85]
Zhang, W.; Wang, Q.; Wu, H.; Wu, P.; He, M. A highly ordered mesoporous polymer supported imidazolium-based ionic liquid: an efficient catalyst for cycloaddition of CO2 with epoxides to produce cyclic carbonates. Green Chem., 2014, 16(11), 4767-4774.
[http://dx.doi.org/10.1039/C4GC01245C]
[86]
Garkoti, C.; Shabir, J.; Gupta, P.; Sharma, M.; Mozumdar, S. Heterogenization of amine-functionalized ionic liquids using graphene oxide as a support material: a highly efficient catalyst for the synthesis of 3-substituted indoles via Yonemitsu-type reaction. New J. Chem., 2017, 41(24), 15545-15554.
[http://dx.doi.org/10.1039/C7NJ03450D]
[87]
Xue, B.; Wu, J.; Liu, N.; Zhu, X.; Li, Y. Facile immobilization of base ionic liquids onto graphene oxide in water at room temperature as heterogeneous catalysts for transesterification. Molecular Catalysis, 2017, 428, 1-8.
[http://dx.doi.org/10.1016/j.molcata.2016.11.034]
[88]
Xu, J.; Xu, M.; Wu, J.; Wu, H.; Zhang, W.H.; Li, Y.X. Graphene oxide immobilized with ionic liquids: facile preparation and efficient catalysis for solvent-free cycloaddition of CO2 to propylene carbonate. RSC Advances, 2015, 5(88), 72361-72368.
[http://dx.doi.org/10.1039/C5RA13533H]
[89]
Elhamifar, D.; Nasr-Esfahani, M.; Karimi, B.; Moshkelgosha, R.; Shábani, A. Ionic liquid and sulfonic acid based bifunctional periodic mesoporous organosilica (BPMO–IL–SO3H) as a highly efficient and reusable nanocatalyst for the biginelli reaction. ChemCatChem, 2014, 6(9), 2593-2599.
[http://dx.doi.org/10.1002/cctc.201402162]
[90]
Yao, N.; Tan, J.; Liu, X.; Liu, Y.; Lin Hu, Y. Multifunctional periodic mesoporous organosilica supported dual imidazolium ionic liquids as novel and efficient catalysts for heterogeneous Knoevenagel condensation. J. Saudi Chem. Soc., 2019, 23(6), 740-752.
[http://dx.doi.org/10.1016/j.jscs.2019.01.001]
[91]
Arseniyadis, S.; Wagner, A.; Mioskowski, C. A straightforward preparation of amino–polystyrene resin from Merrifield resin. Tetrahedron Lett., 2002, 43(52), 9717-9719.
[http://dx.doi.org/10.1016/S0040-4039(02)02192-5]
[92]
Tamami, B.; Nezhad, M.M.; Ghasemi, S.; Farjadian, F. PCP-pincer palladium nanoparticles supported on modified Merrifield resin: A novel and efficient heterogeneous catalyst for carbon–carbon cross-coupling reactions. J. Organomet. Chem., 2013, 743, 10-16.
[http://dx.doi.org/10.1016/j.jorganchem.2013.05.040]
[93]
Fantinel, M.; Valiati, N.; Moro, P.A.M.; Sá, M.M. Amino-modified Merrifield resins as recyclable catalysts for the safe and sustainable preparation of functionalized α-diazo carbonyl compounds. Tetrahedron, 2021, 86, 132081.
[http://dx.doi.org/10.1016/j.tet.2021.132081]
[94]
Langanke, J.; Wolf, A.; Hofmann, J.; Böhm, K.; Subhani, M.A.; Müller, T.E.; Leitner, W.; Gürtler, C. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem., 2014, 16(4), 1865-1870.
[http://dx.doi.org/10.1039/C3GC41788C]
[95]
Sakakura, T.; Choi, J.C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev., 2007, 107(6), 2365-2387.
[http://dx.doi.org/10.1021/cr068357u] [PMID: 17564481]
[96]
Laserna, V.; Fiorani, G.; Whiteoak, C.J.; Martin, E.; Escudero-Adán, E.; Kleij, A.W. Carbon dioxide as a protecting group: Highly efficient and selective catalytic access to cyclic cis-diol scaffolds. Angew. Chem. Int. Ed., 2014, 53(39), 10416-10419.
[http://dx.doi.org/10.1002/anie.201406645] [PMID: 25132290]
[97]
Alper, E.; Yuksel Orhan, O. CO2 utilization: Developments in conversion processes. Petroleum, 2017, 3(1), 109-126.
[http://dx.doi.org/10.1016/j.petlm.2016.11.003]
[98]
Bigi, F.; Maggi, R.; Sartori, G. Selected syntheses of ureas through phosgene substitutes. Green Chem., 2000, 2(4), 140-148.
[http://dx.doi.org/10.1039/b002127j]
[99]
Kim, H.S.; Kim, Y.J.; Lee, H.; Lee, S.D.; Chin, C.S. Oxidative carbonylation of aromatic amines by selenium compounds. J. Catal., 1999, 184(2), 526-534.
[http://dx.doi.org/10.1006/jcat.1999.2458]
[100]
Mizuno, T.; Iwai, T.; Ishino, Y. The simple solvent-free synthesis of 1Hquinazoline-2,4-diones using supercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett., 2004, 45(38), 7073-7075.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.152]
[101]
Pulla, S.; Felton, C. M.; Ramidi, P.; Gartia, Y.; Ali, N.; Nasini, U. B.; Ghosh, A. Advancements in oxazolidinone synthesis utilizing carbon dioxide as a C1 source. J. CO2 Util., 2013, 2, 49-57.
[102]
Hu, B.; Guild, C.; Suib, S.L. Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J. CO2 Util., 2013, 1, 18-27.
[103]
Sun, J.; Wang, L.; Zhang, S.; Li, Z.; Zhang, X.; Dai, W.; Mori, R. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. J. Mol. Catal. Chem., 2006, 256(1-2), 295-300.
[http://dx.doi.org/10.1016/j.molcata.2006.05.004]
[104]
Sun, J.; Cheng, W.; Fan, W.; Wang, Y.; Meng, Z.; Zhang, S. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal. Today, 2009, 148(3-4), 361-367.
[http://dx.doi.org/10.1016/j.cattod.2009.07.070]
[105]
Kim, D.W.; Chi, D.Y. Polymer-supported ionic liquids: Imidazolium salts as catalysts for nucleophilic substitution reactions including fluorinations. Angew. Chem. Int. Ed., 2004, 43(4), 483-485.
[http://dx.doi.org/10.1002/anie.200352760] [PMID: 14735541]
[106]
Yu, J.I.; Choi, H.J.; Selvaraj, M.; Park, D.W. Catalytic performance of polymer-supported ionic liquids in the cycloaddition of carbon dioxide to allyl glycidyl ether. React. Kinet. Mech. Catal., 2011, 102(2), 353-365.
[http://dx.doi.org/10.1007/s11144-010-0280-1]
[107]
Amaral, A.J.R.; Coelho, J.F.J.; Serra, A.C. Synthesis of bifunctional cyclic carbonates from CO2 catalysed by choline-based systems. Tetrahedron Lett., 2013, 54(40), 5518-5522.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.152]
[108]
Jadhav, A.H.; Thorat, G.M.; Lee, K.; Lim, A.C.; Kang, H.; Seo, J.G. Effect of anion type of imidazolium based polymer supported ionic liquids on the solvent free synthesis of cycloaddition of CO2 into epoxide. Catal. Today, 2016, 265, 56-67.
[http://dx.doi.org/10.1016/j.cattod.2015.09.048]
[109]
Nguyen, D.S.; Cho, J.K.; Shin, S.H.; Mishra, D.K.; Kim, Y.J. Reusable polystyrene-functionalized basic ionic liquids as catalysts for carboxylation of amines to disubstituted ureas. ACS Sustain. Chem.& Eng., 2016, 4(2), 451-460.
[http://dx.doi.org/10.1021/acssuschemeng.5b01369]
[110]
Saptal, V.B.; Bhanage, B.M. Bifunctional ionic liquids for the multitask fixation of carbon dioxide into valuable chemicals. ChemCatChem, 2016, 8(1), 244-250.
[http://dx.doi.org/10.1002/cctc.201501044]
[111]
Han, J.; Liu, Q.; Li, X.; Pan, J.; Wei, L.; Wu, Y.; Peng, H.; Wang, Y.; Li, G.; Chen, C.; Xiao, L.; Lu, J.; Zhuang, L. An effective approach for alleviating cation-induced backbone degradation in aromatic ether-based alkaline polymer electrolytes. ACS Appl. Mater. Interfaces, 2015, 7(4), 2809-2816.
[http://dx.doi.org/10.1021/am508009z] [PMID: 25594224]
[112]
Yan, X.; Gao, L.; Zheng, W.; Ruan, X.; Zhang, C.; Wu, X.; He, G. Longspacer-chain imidazolium functionalized poly(ether ether ketone) as hydroxide exchange membrane for fuel cell. Int. J. Hydrogen Energy, 2016, 41(33), 14982-14990.
[http://dx.doi.org/10.1016/j.ijhydene.2016.06.030]
[113]
Yan, X.; Ding, X.; Pan, Y.; Xu, X.; Hao, C.; Zheng, W.; He, G. Quaternaryammonium-immobilized polystyrenes as efficient and reusable heterogeneous catalysts for synthesis of cyclic carbonate: Effects of linking chains and pendent hydroxyl group. Chin. J. Catal., 2017, 38(5), 862-871.
[http://dx.doi.org/10.1016/S1872-2067(17)62819-5]
[114]
Watile, R.A.; Bagal, D.B.; Deshmukh, K.M.; Dhake, K.P.; Bhanage, B.M. Polymer supported diol functionalized ionic liquids: An efficient, heterogeneous and recyclable catalyst for 5-aryl-2-oxazolidinones synthesis from CO2 and aziridines under mild and solvent free condition. J. Mol. Catal. Chem., 2011, 351, 196-203.
[http://dx.doi.org/10.1016/j.molcata.2011.10.007]
[115]
Kȩdra-Królik, K.; Fabrice, M.; Jaubert, J.N. Extraction of thiophene or pyridine from n-heptane using ionic liquids. Gasoline and diesel desulfurization. Ind. Eng. Chem. Res., 2011, 50(4), 2296-2306.
[http://dx.doi.org/10.1021/ie101834m]
[116]
Francisco, M.; Arce, A.; Soto, A. Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilib., 2010, 294(1-2), 39-48.
[http://dx.doi.org/10.1016/j.fluid.2009.12.020]
[117]
Gao, H.; Luo, M.; Xing, J.; Wu, Y.; Li, Y.; Li, W.; Liu, Q.; Liu, H. Desulfurization of fuel by extraction with pyridinium-based ionic liquids. Ind. Eng. Chem. Res., 2008, 47(21), 8384-8388.
[http://dx.doi.org/10.1021/ie800739w]
[118]
Kaur, P.; Kumar Chopra, H. SBA-15 supported benzimidazolium-based ionic liquids: Synthesis, characterization, and applications in the fuel desulfurization. Fuel, 2022, 328, 125261.
[http://dx.doi.org/10.1016/j.fuel.2022.125261]
[119]
Wang, X.; Wan, H.; Han, M.; Gao, L.; Guan, G. Removal of thiophene and its derivatives from model gasoline using polymer-supported metal chlorides ionic liquid moieties. Ind. Eng. Chem. Res., 2012, 51(8), 3418-3424.
[http://dx.doi.org/10.1021/ie201931a]
[120]
Kaur, P.; Kumar Chopra, H. MCM-41 supported S-alkyl/aryl-substituted 2-mercaptobenzothiazolium-based ionic liquids: synthesis, characterization, and application in the fuel desulfurization. Fuel, 2023, 332, 126009.
[http://dx.doi.org/10.1016/j.fuel.2022.126009]
[121]
Lin, Y.; Wang, F.; Zhang, Z.; Yang, J.; Wei, Y. Polymer-supported ionic liquids: Synthesis, characterization and application in fuel desulfurization. Fuel, 2014, 116, 273-280.
[http://dx.doi.org/10.1016/j.fuel.2013.08.014]
[122]
Xie, L.L.; Favre-Reguillon, A.; Wang, X.X.; Fu, X.; Vrinat, M.; Lemaire, M. Selective extraction of neutral nitrogen-containing compounds from straightrun diesel feed using polymer-supported ionic liquid moieties. Ind. Eng. Chem. Res., 2009, 48(8), 3973-3977.
[http://dx.doi.org/10.1021/ie900142p]
[123]
Chinnusamy, T.; Reiser, O. A recyclable TEMPO catalyst for the aerobic oxidation of sulfides to sulfoxides. Chem. Sus. Chem. , 2010, 3(9), 1040-1042.
[http://dx.doi.org/10.1002/cssc.201000105] [PMID: 20635379]
[124]
Fernández, I.; Khiar, N. Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev., 2003, 103(9), 3651-3706.
[http://dx.doi.org/10.1021/cr990372u] [PMID: 12964880]
[125]
Carreño, M.C. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem. Rev., 1995, 95(6), 1717-1760.
[http://dx.doi.org/10.1021/cr00038a002]
[126]
Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X.Q.; Noyori, R. Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent- and halogen-free conditions. Tetrahedron, 2001, 57(13), 2469-2476.
[http://dx.doi.org/10.1016/S0040-4020(01)00068-0]
[127]
Doherty, S.; Knight, J.G.; Carroll, M.A.; Clemmet, A.R.; Ellison, J.R.; Backhouse, T.; Holmes, N.; Thompson, L.A.; Bourne, R.A. Efficient and selective oxidation of sulfides in batch and continuous flow using styrene-based polymer immobilised ionic liquid phase supported peroxotungstates. RSC Advances, 2016, 6(77), 73118-73131.
[http://dx.doi.org/10.1039/C6RA11157B]
[128]
Boruah, J.J.; Das, S.P.; Ankireddy, S.R.; Gogoi, S.R.; Islam, N.S. Merrifield resin supported peroxomolybdenum(vi) compounds: Recoverable heterogeneous catalysts for the efficient, selective and mild oxidation of organic sulfides with H2O2. Green Chem., 2013, 15(10), 2944-2959.
[http://dx.doi.org/10.1039/c3gc40304a]
[129]
Parmeggiani, C.; Cardona, F. Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chem., 2012, 14(3), 547-564.
[http://dx.doi.org/10.1039/c2gc16344f]
[130]
Bijudas, K.; Bashpa, P.; Bijudas, K.; Bashpa, P. Oxidation of Benzaldehyde and Substituted Benzaldehydes by Permanganate under Phase Transfer Catalysis in Non Polar Solvents. IRA-Int. J. Appl. Sci. (ISSN 2455-4499), 2016, 5(3), 110.
[http://dx.doi.org/10.21013/jas.v5.n3.p1]
[131]
Možina, Š.; Iskra, J. Aerobic oxidation of secondary alcohols with nitric acid and iron (III) chloride as catalysts in fluorinated alcohol. J. Org. Chem., 2019, 84(22), 14579-14586.
[http://dx.doi.org/10.1021/acs.joc.9b02109] [PMID: 31642683]
[132]
Ahmed, M.S.; Mannel, D.S.; Root, T.W.; Stahl, S.S. Aerobic oxidation of diverse primary alcohols to carboxylic acids with a heterogeneous Pd–Bi–Te/C (PBT/C) catalyst. Org. Process Res. Dev., 2017, 21(9), 1388-1393.
[http://dx.doi.org/10.1021/acs.oprd.7b00223]
[133]
Kesharwani, N.; Chaudhary, N.; Haldar, C. Synthesis and characterization of Merrifield resin and graphene oxide supported air stable oxidovanadium(IV) radical complexes for the catalytic oxidation of light aliphatic alcohols. Catal. Today, 2022, 397-399, 604-617.
[http://dx.doi.org/10.1016/j.cattod.2021.06.005]
[134]
Restrepo, J.; Lozano, P.; Burguete, M.I.; García-Verdugo, E.; Luis, S.V. Gold nanoparticles immobilized onto supported ionic liquid-like phases for microwave phenylethanol oxidation in water. Catal. Today, 2015, 255, 97-101.
[http://dx.doi.org/10.1016/j.cattod.2014.12.023]
[135]
Restrepo, J.; Porcar, R.; Lozano, P.; Burguete, M.I.; García-Verdugo, E.; Luis, S.V. Microwave-assisted selective oxidation of 1-phenyl ethanol in water catalyzed by metal nanoparticles immobilized onto supported ionic liquidlike phases. ACS Catal., 2015, 5(8), 4743-4750.
[http://dx.doi.org/10.1021/acscatal.5b01129]
[136]
Gao, L.; Deng, K.; Zheng, J.; Liu, B.; Zhang, Z. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin. Chem. Eng. J., 2015, 270, 444-449.
[http://dx.doi.org/10.1016/j.cej.2015.02.068]
[137]
Pisk, J.; Agustin, D.; Poli, R. Organic salts and merrifield resin supported [PM12O40] 3−(M= Mo or W) as catalysts for adipic acid synthesis. Molecules, 2019, 24(4), 783.
[http://dx.doi.org/10.3390/molecules24040783] [PMID: 30795615]
[138]
Aldea, L.; Fraile, J.M.; García-Marín, H.; García, J.I.; Herrerías, C.I.; Mayoral, J.A.; Pérez, I. Study of the recycling possibilities for azabis(oxazoline)–cobalt complexes as catalysts for enantioselective conjugate reduction. Green Chem., 2010, 12(3), 435-440.
[http://dx.doi.org/10.1039/b923137d]
[139]
Rashinkar, G.; Kamble, S.; Kumbhar, A.; Salunkhe, R. An expeditious synthesis of homoallylic alcohols using Brønsted acidic supported ionic liquid phase catalyst with pendant ferrocenyl group. Catal. Commun., 2011, 12(15), 1442-1447.
[http://dx.doi.org/10.1016/j.catcom.2011.05.026]
[140]
Parvanak Boroujeni, K.; Jafarinasab, M. Polystyrene-supported chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for Knoevenagel condensation. Chin. Chem. Lett., 2012, 23(9), 1067-1070.
[http://dx.doi.org/10.1016/j.cclet.2012.06.019]
[141]
Atwal, K.S.; Rovnyak, G.C.; O’Reilly, B.C.; Schwartz, J. Substituted 1,4-dihydropyrimidines. 3. Synthesis of selectively functionalized 2-hetero-1,4-dihydropyrimidines. J. Org. Chem., 1989, 54(25), 5898-5907.
[http://dx.doi.org/10.1021/jo00286a020]
[142]
Snider, B. B.; Shi, Z. Biomimetic synthesis of the pentacyclic nucleus of ptilomycalin A. JACS., 1994, 116(2), 549-557.
[143]
Wang, Z.T.; Wang, S.C.; Xu, L.W. Polymer‐supported ionic‐liquid‐catalyzed synthesis of 1, 2, 3, 4‐tetrahydro‐2‐oxopyrimidine‐5‐carboxylates via Biginelli reaction. Helv. Chim. Acta, 2005, 88(5), 986-989.
[http://dx.doi.org/10.1002/hlca.200590093]
[144]
Burguete, M.I.; García-Verdugo, E.; Garcia-Villar, I.; Gelat, F.; Licence, P.; Luis, S.V.; Sans, V. Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): A remarkable effect of the nature of the support. J. Catal., 2010, 269(1), 150-160.
[http://dx.doi.org/10.1016/j.jcat.2009.11.002]
[145]
White, J.D.; Shaw, S. A new catalyst for the asymmetric Henry reaction: synthesis of β-nitroethanols in high enantiomeric excess. Org. Lett., 2012, 14(24), 6270-6273.
[http://dx.doi.org/10.1021/ol3030023] [PMID: 23194499]
[146]
Yadav, G.D.; Singh, S. Direct asymmetric aldol reactions catalysed by trans-4-hydroxy-(S)-prolinamide in solvent-free conditions. Tetrahedron Asymmetry, 2015, 26(20), 1156-1166.
[http://dx.doi.org/10.1016/j.tetasy.2015.09.003]
[147]
Smitha, G.; Sreekumar, K.; Elsymol, G.; Sudhishna, P.S. Synthesis of heterogeneous catalysts and study of its catalytic activity towards Henry reaction and Asymmetric aldol reaction. Mater. Today Proc., 2019, 9, 46-53.
[http://dx.doi.org/10.1016/j.matpr.2019.02.035]
[148]
Mandal, S.; Mandal, S.; Ghosh, S.K.; Ghosh, A.; Saha, R.; Banerjee, S.; Saha, B. Review of the aldol reaction. Synth. Commun., 2016, 46(16), 1327-1342.
[http://dx.doi.org/10.1080/00397911.2016.1206938]
[149]
Li, P.; Wang, L.; Wang, M.; Zhang, Y. Polymer‐immobilized pyrrolidine‐based chiral ionic liquids as recyclable organocatalysts for asymmetric Michael additions to nitrostyrenes under solvent‐free reaction conditions. Eur. J. Org. Chem., 2008, 2008(7), 1157-1160.
[http://dx.doi.org/10.1002/ejoc.200701037]
[150]
Sayyahi, S.; Heidari, S. Polymer-supported basic ionic liquid as an efficient heterogeneous catalyst system for straightforward synthesis of flavanones. Iran. J. Catal., 2016, 6(2), 167-172.
[151]
Brauch, S.; van Berkel, S.S.; Westermann, B. Higher-order multicomponent reactions: Beyond four reactants. Chem. Soc. Rev., 2013, 42(12), 4948-4962.
[http://dx.doi.org/10.1039/c3cs35505e] [PMID: 23426583]
[152]
Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent reactions for the synthesis of bioactive compounds: A review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
[153]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. Med. Chem. Comm. , 2012, 3(10), 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[154]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S.J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5(11), 2318-2335.
[http://dx.doi.org/10.1002/asia.201000310] [PMID: 20922748]
[155]
Patil, P.; Yadav, A.; Bavkar, L.; N, N.B.; Satyanarayan, N.D.; Mane, A.; Gurav, A.; Hangirgekar, S.; Sankpal, S. [MerDABCO-SO3H]Cl catalyzed synthesis, antimicrobial and antioxidant evaluation and molecular docking study of pyrazolopyranopyrimidines. J. Mol. Struct., 2021, 1242, 130672.
[http://dx.doi.org/10.1016/j.molstruc.2021.130672]
[156]
Patil, P.; Yadav, A.; Chandam, D.; Gurav, R.; Hangirgekar, S.; Sankpal, S. [MerDABCO-BSA][HSO4]2: A novel polymer supported Brønsted acidic ionic liquid catalyst for the synthesis of biscoumarins and orthoaminocarbonitriles. J. Mol. Struct., 2022, 1259, 132622.
[http://dx.doi.org/10.1016/j.molstruc.2022.132622]
[157]
Jagadale, M.; Kale, D.; Salunkhe, R.; Rajmane, M.; Rashinkar, G. Compatibility of supported ionic liquid phase catalysts under ultrasonication. J. Mol. Liq., 2018, 265, 525-535.
[http://dx.doi.org/10.1016/j.molliq.2018.06.039]
[158]
Rashinkar, G.; Salunkhe, R. Ferrocene labelled supported ionic liquid phase (SILP) containing organocatalytic anion for multi-component synthesis. J. Mol. Catal. Chem., 2010, 316(1-2), 146-152.
[http://dx.doi.org/10.1016/j.molcata.2009.10.013]
[159]
Wang, Y.; Liu, J.; Xia, C. Insights into Supported Copper(II)-catalyzed azide-alkyne cycloaddition in water. Adv. Synth. Catal., 2011, 353(9), 1534-1542.
[http://dx.doi.org/10.1002/adsc.201000868]
[160]
Cho, H.J.; Lee, S.M.; Jung, S.; Lee, T.K.; Yoon, H.J.; Lee, Y.S. Ionic liquid incorporated polystyrene resin for solid-phase peptide synthesis. Tetrahedron Lett., 2011, 52(13), 1459-1461.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.067]
[161]
More, S.; Jadhav, S.; Salunkhe, R.; Kumbhar, A. Palladium supported ionic liquid phase catalyst (Pd@SILP-PS) for room temperature Suzuki-Miyaura cross-coupling reaction. Mol. Catal., 2017, 442, 126-132.
[http://dx.doi.org/10.1016/j.mcat.2017.08.023]
[162]
Kim, D.W.; Hong, D.J.; Jang, K.S.; Chi, D.Y. Structural modification of polymer-supported ionic liquids as catalysts for nucleophilic substitution reactions including fluorination. Adv. Synth. Catal., 2006, 348(12-13), 1719-1727.
[http://dx.doi.org/10.1002/adsc.200606119]
[163]
Zhu, L.; Guo, L.; Zhang, Z.; Chen, J.; Zhang, S. The preparation of supported ionic liquids (SILs) and their application in rare metals separation. Sci. China Chem., 2012, 55(8), 1479-1487.
[http://dx.doi.org/10.1007/s11426-012-4632-8]
[164]
Zhu, L.; Liu, Y.; Chen, J.; Liu, W. Extraction of scandium(III) using ionic liquids functionalized solvent impregnated resins. J. Appl. Polym. Sci., 2011, 120(6), 3284-3290.
[http://dx.doi.org/10.1002/app.33501]
[165]
Zhu, L.; Liu, Y.; Chen, J. Synthesis of N-methylimidazolium functionalized strongly basic anion exchange resins for adsorption of Cr (VI). Ind. Eng. Chem. Res., 2009, 48(7), 3261-3267.
[http://dx.doi.org/10.1021/ie801278f]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy