Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment

Author(s): Francesca Fanfarillo, Giampiero Ferraguti, Marco Lucarelli, Silvia Francati, Christian Barbato, Antonio Minni, Mauro Ceccanti, Luigi Tarani, Carla Petrella and Marco Fiore*

Volume 23, Issue 4, 2024

Published on: 24 May, 2023

Page: [449 - 462] Pages: 14

DOI: 10.2174/1871527322666230403105438

Price: $65

Abstract

Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.

Graphical Abstract

[1]
Ostrom QT, Gittleman H, Stetson L, Virk S, Barnholtz-Sloan JS. Epidemiology of intracranial gliomas. Prog Neurol Surg 2018; 30: 1-11.
[http://dx.doi.org/10.1159/000464374] [PMID: 29241168]
[2]
Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR. Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol 2019; 15(7): 405-17.
[http://dx.doi.org/10.1038/s41582-019-0220-2] [PMID: 31227792]
[3]
Bauchet L, Ostrom QT. Epidemiology and molecular epidemiology. Neurosurg Clin N Am 2019; 30(1): 1-16.
[http://dx.doi.org/10.1016/j.nec.2018.08.010] [PMID: 30470396]
[4]
Bondy ML, Scheurer ME, Malmer B, et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008; 113(S7): 1953-68.
[http://dx.doi.org/10.1002/cncr.23741] [PMID: 18798534]
[5]
Primic-žakelj M. Cancer epidemiology. Humana Press 2008; p. 472.
[http://dx.doi.org/10.1201/b14140-9]
[6]
Preston DL, Ron E, Yonehara S, et al. Tumors of the nervous system and pituitary gland associated with atomic bomb radiation exposure. J Natl Cancer Inst 2002; 94(20): 1555-63.
[http://dx.doi.org/10.1093/jnci/94.20.1555] [PMID: 12381708]
[7]
Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2006; 2(9): 494-503.
[http://dx.doi.org/10.1038/ncpneuro0289] [PMID: 16932614]
[8]
Luo KQ, Mu SQ, Wu ZX, Shi YN, Peng JC. Polymorphisms in DNA repair genes and risk of glioma and meningioma. Asian Pac J Cancer Prev 2013; 14(1): 449-52.
[http://dx.doi.org/10.7314/APJCP.2013.14.1.449] [PMID: 23534771]
[9]
Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet 2012; 205(12): 613-21.
[http://dx.doi.org/10.1016/j.cancergen.2012.10.009] [PMID: 23238284]
[10]
Turner MC, Krewski D, Armstrong BK, et al. Allergy and brain tumors in the INTERPHONE study: pooled results from Australia, Canada, France, Israel, and New Zealand. Cancer Causes Control 2013; 24(5): 949-60.
[http://dx.doi.org/10.1007/s10552-013-0171-7] [PMID: 23443320]
[11]
Rittmeyer D, Lorentz A. Relationship between allergy and cancer: an overview. Int Arch Allergy Immunol 2012; 159(3): 216-25.
[http://dx.doi.org/10.1159/000338994] [PMID: 22722389]
[12]
Ostrom QT, Barnholtz-Sloan JS. Current state of our knowledge on brain tumor epidemiology. Curr Neurol Neurosci Rep 2011; 11(3): 329-35.
[http://dx.doi.org/10.1007/s11910-011-0189-8] [PMID: 21336822]
[13]
Norden AD, Wen PY. Glioma therapy in adults. Neurologist 2006; 12(6): 279-92.
[http://dx.doi.org/10.1097/01.nrl.0000250928.26044.47] [PMID: 17122724]
[14]
Wen PY, Schiff D, Kesari S, Drappatz J, Gigas DC, Doherty L. Medical management of patients with brain tumors. J Neurooncol 2006; 80(3): 313-32.
[http://dx.doi.org/10.1007/s11060-006-9193-2] [PMID: 16807780]
[15]
Mitchell P, Ellison DW, Mendelow AD. Surgery for malignant gliomas: mechanistic reasoning and slippery statistics. Lancet Neurol 2005; 4(7): 413-22.
[http://dx.doi.org/10.1016/S1474-4422(05)70118-6] [PMID: 15963444]
[16]
Minniti G, De Sanctis V, Muni R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma in elderly patients. J Neurooncol 2008; 88(1): 97-103.
[http://dx.doi.org/10.1007/s11060-008-9538-0] [PMID: 18250965]
[17]
Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 1994; 102(S10): 5-12.
[http://dx.doi.org/10.1289/ehp.94102s105] [PMID: 7705305]
[18]
Nakai K, Tsuruta D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? Int J Mol Sci 2021; 22(19): 10799.
[http://dx.doi.org/10.3390/ijms221910799] [PMID: 34639139]
[19]
Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008; 4(2): 89-96.
[PMID: 23675073]
[20]
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[21]
Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 2014; 224: 164-75.
[http://dx.doi.org/10.1016/j.cbi.2014.10.016] [PMID: 25452175]
[22]
Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 2009; 20(7): 332-40.
[http://dx.doi.org/10.1016/j.tem.2009.04.001] [PMID: 19733481]
[23]
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 2007; 19(9): 1807-19.
[http://dx.doi.org/10.1016/j.cellsig.2007.04.009] [PMID: 17570640]
[24]
Valko M, Jomova K, Rhodes CJ. Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2016; 90(1): 1-37.
[http://dx.doi.org/10.1007/s00204-015-1579-5] [PMID: 26343967]
[25]
Di Meo S, Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid Med Cell Longev 2020; 2020: 1-32.
[http://dx.doi.org/10.1155/2020/9829176] [PMID: 32411336]
[26]
Jelic M, Mandic A, Maricic S, Srdjenovic B. Oxidative stress and its role in cancer. J Cancer Res Ther 2021; 17(1): 22-8.
[http://dx.doi.org/10.4103/jcrt.JCRT_862_16] [PMID: 33723127]
[27]
Meliante PG, Barbato C, Zoccali F, et al. Programmed cell death-ligand 1 in head and neck squamous cell carcinoma: molecular insights, preclinical and clinical data, and therapies. Int J Mol Sci 2022; 23(23): 15384.
[http://dx.doi.org/10.3390/ijms232315384] [PMID: 36499710]
[28]
Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1): 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[29]
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87(1): 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[30]
Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol 2013; 32(3): 249-70.
[http://dx.doi.org/10.3109/08830185.2012.755176] [PMID: 23617726]
[31]
Olivier C, Oliver L, Lalier L, Vallette FM. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Front Mol Biosci 2021; 7: 620677.
[http://dx.doi.org/10.3389/fmolb.2020.620677] [PMID: 33585565]
[32]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[33]
Slater TF. Free-radical mechanisms in tissue injury. Biochem J 1984; 222(1): 1-15.
[http://dx.doi.org/10.1042/bj2220001] [PMID: 6383353]
[34]
Dargel R. Lipid peroxidation — a common pathogenetic mechanism? Exp Toxicol Pathol 1992; 44(4): 169-81.
[http://dx.doi.org/10.1016/S0940-2993(11)80202-2] [PMID: 1392519]
[35]
Ferraguti G, Terracina S, Petrella C, et al. Alcohol and head and neck cancer: updates on the role of oxidative stress, genetic, epigenetics, oral microbiota, antioxidants, and alkylating agents. Antioxidants 2022; 11(1): 145.
[http://dx.doi.org/10.3390/antiox11010145] [PMID: 35052649]
[36]
Koji Yamamoto, Shosuke Kawanishi. Free radical production and site-specific DNA damage induced by hydralazine in the presence of metal ions or peroxidase/hydrogen peroxide. Biochem Pharmacol 1991; 41(6-7): 905-14.
[http://dx.doi.org/10.1016/0006-2952(91)90195-B] [PMID: 1848978]
[37]
Gupta RK, Patel AK, Shah N, et al. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev 2014; 15(11): 4405-9.
[http://dx.doi.org/10.7314/APJCP.2014.15.11.4405] [PMID: 24969860]
[38]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[39]
Halliwell B, Gutteridge JMC. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 1995; 18(1): 125-6.
[http://dx.doi.org/10.1016/0891-5849(95)91457-3] [PMID: 7896166]
[40]
Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med 2010; 14(4): 840-60.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00897.x] [PMID: 19754673]
[41]
Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem 2021; 209: 112891.
[http://dx.doi.org/10.1016/j.ejmech.2020.112891] [PMID: 33032084]
[42]
He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 2017; 44(2): 532-53.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[43]
Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem 2020; 44(3): e13145.
[http://dx.doi.org/10.1111/jfbc.13145] [PMID: 31960481]
[44]
Betteridge DJ. What is oxidative stress? Metabolism 2000; 49(2) (Suppl. 1): 3-8.
[http://dx.doi.org/10.1016/S0026-0495(00)80077-3] [PMID: 10693912]
[45]
Wang X, Li P, Ding Q, Wu C, Zhang W, Tang B. Illuminating the function of the hydroxyl radical in the brains of mice with depression phenotypes by two‐photon fluorescence imaging. Angew Chem Int Ed 2019; 58(14): 4674-8.
[http://dx.doi.org/10.1002/anie.201901318] [PMID: 30737982]
[46]
Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 2018; 63(1): 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[47]
Adeoye O, Olawumi J, Opeyemi A, Christiania O. Review on the role of glutathione on oxidative stress and infertility. JBRA Assist Reprod 2017; 22(1): 61-6.
[http://dx.doi.org/10.5935/1518-0557.20180003] [PMID: 29266896]
[48]
Noctor G, Foyer CH. ascorbate And Glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 1998; 49(1): 249-79.
[http://dx.doi.org/10.1146/annurev.arplant.49.1.249] [PMID: 15012235]
[49]
Gillissen A, Schärling B, Jaworska M, Bartling A, Rasche K, Schultze-Werninghaus G. Oxidant scavenger function of ambroxol in vitro: A comparison with N-acetylcysteine. Res Exp Med 1997; 196(6): 389-98.
[http://dx.doi.org/10.1007/s004330050049] [PMID: 9089888]
[50]
Oyewole AO, Birch-Machin MA. Mitochondria‐targeted antioxidants. FASEB J 2015; 29(12): 4766-71.
[http://dx.doi.org/10.1096/fj.15-275404] [PMID: 26253366]
[51]
Carito V, Venditti A, Bianco A, et al. Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Nat Prod Res 2014; 28(22): 1970-84.
[http://dx.doi.org/10.1080/14786419.2014.918977] [PMID: 24865115]
[52]
Petrella C, Carito V, Carere C, et al. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition 2020; 79-80: 110783.
[http://dx.doi.org/10.1016/j.nut.2020.110783] [PMID: 32569950]
[53]
Carito V, Ceccanti M, Cestari V, et al. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition 2017; 33: 65-9.
[http://dx.doi.org/10.1016/j.nut.2016.08.014] [PMID: 27908553]
[54]
Carito V, Ceccanti M, Tarani L, Ferraguti G, Chaldakov GN, Fiore M. Neurotrophins’ Modulation by Olive Polyphenols. Curr Med Chem 2016; 23(28): 3189-97.
[http://dx.doi.org/10.2174/0929867323666160627104022] [PMID: 27356540]
[55]
De Nicoló S, Tarani L, Ceccanti M, et al. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition 2013; 29(4): 681-7.
[http://dx.doi.org/10.1016/j.nut.2012.11.007] [PMID: 23466052]
[56]
Retsky KL, Chen K, Zeind J, Frei B. Inhibition of copper-induced LDL oxidation by vitamin C is associated with decreased copper-binding to LDL and 2-oxo-histidine formation. Free Radic Biol Med 1999; 26(1-2): 90-8.
[http://dx.doi.org/10.1016/S0891-5849(98)00151-8] [PMID: 9890644]
[57]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[58]
Conti A, Gulì C, La Torre D, Tomasello C, Angileri FF, Aguennouz MH. Role of inflammation and oxidative stress mediators in gliomas. Cancers 2010; 2(2): 693-712.
[http://dx.doi.org/10.3390/cancers2020693] [PMID: 24281089]
[59]
Oswald MCW, Garnham N, Sweeney ST, Landgraf M. Regulation of neuronal development and function by ROS. FEBS Lett 2018; 592(5): 679-91.
[http://dx.doi.org/10.1002/1873-3468.12972] [PMID: 29323696]
[60]
Hidalgo C, Carrasco MA, Muñoz P, Núñez MT. A role for reactive oxygen/nitrogen species and iron on neuronal synaptic plasticity. Antioxid Redox Signal 2007; 9(2): 245-55.
[http://dx.doi.org/10.1089/ars.2007.9.245] [PMID: 17115937]
[61]
Orellana-Urzúa S, Rojas I, Líbano L, Rodrigo R. Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Curr Pharm Des 2020; 26(34): 4246-60.
[http://dx.doi.org/10.2174/1381612826666200708133912] [PMID: 32640953]
[62]
Simpson DSA, Oliver PL. Ros generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 2020; 9(8): 743.
[http://dx.doi.org/10.3390/antiox9080743] [PMID: 32823544]
[63]
Gardiner J, Barton D, Overall R, Marc J. Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist 2009; 15(1): 47-61.
[http://dx.doi.org/10.1177/1073858408325269] [PMID: 19218230]
[64]
Mittler R. ROS Are Good. Trends Plant Sci 2017; 22(1): 11-9.
[http://dx.doi.org/10.1016/j.tplants.2016.08.002] [PMID: 27666517]
[65]
Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol 2019; 25: 101084.
[http://dx.doi.org/10.1016/j.redox.2018.101084] [PMID: 30612957]
[66]
Yang Y, Karakhanova S, Hartwig W, et al. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J Cell Physiol 2016; 231(12): 2570-81.
[http://dx.doi.org/10.1002/jcp.25349] [PMID: 26895995]
[67]
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2018; 80: 50-64.
[http://dx.doi.org/10.1016/j.semcdb.2017.05.023] [PMID: 28587975]
[68]
Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010; 44(5): 479-96.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[69]
Ishikawa K, Takenaga K, Akimoto M, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008; 320(5876): 661-4.
[http://dx.doi.org/10.1126/science.1156906] [PMID: 18388260]
[70]
Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol Life Sci 2020; 77(22): 4459-83.
[http://dx.doi.org/10.1007/s00018-020-03536-5] [PMID: 32358622]
[71]
Nishikawa M. Reactive oxygen species in tumor metastasis. Cancer Lett 2008; 266(1): 53-9.
[http://dx.doi.org/10.1016/j.canlet.2008.02.031] [PMID: 18362051]
[72]
Burdon RH, Gill V, Rice-Evans C. Oxidative stress and tumour cell proliferation. Free Radic Res Commun 1990; 11(1-3): 65-76.
[http://dx.doi.org/10.3109/10715769009109669] [PMID: 1963620]
[73]
Sarsour EH, Venkataraman S, Kalen AL, Oberley LW, Goswami PC. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell 2008; 7(3): 405-17.
[http://dx.doi.org/10.1111/j.1474-9726.2008.00384.x] [PMID: 18331617]
[74]
Wang M, Kirk JS, Venkataraman S, et al. Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1α and vascular endothelial growth factor. Oncogene 2005; 24(55): 8154-66.
[http://dx.doi.org/10.1038/sj.onc.1208986] [PMID: 16170370]
[75]
Cadenas E. Mitochondrial free radical production and cell signaling. Mol Aspects Med 2004; 25(1-2): 17-26.
[http://dx.doi.org/10.1016/j.mam.2004.02.005] [PMID: 15051313]
[76]
Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000; 5(5): 415-8.
[http://dx.doi.org/10.1023/A:1009616228304] [PMID: 11256882]
[77]
Chung YM, Bae YS, Lee SY. Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic Biol Med 2003; 34(4): 434-42.
[http://dx.doi.org/10.1016/S0891-5849(02)01301-1] [PMID: 12566069]
[78]
Storz P. Mitochondrial ROS - radical detoxification, mediated by protein kinase D. Trends Cell Biol 2007; 17(1): 13-8.
[http://dx.doi.org/10.1016/j.tcb.2006.11.003] [PMID: 17126550]
[79]
Lee CH, Yao CF, Huang SM, et al. Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models. Cancer 2008; 113(4): 815-25.
[http://dx.doi.org/10.1002/cncr.23619] [PMID: 18618576]
[80]
Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 2005; 26(5): 958-67.
[http://dx.doi.org/10.1093/carcin/bgi040] [PMID: 15705601]
[81]
Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK. In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 2008; 13(12): 1465-78.
[http://dx.doi.org/10.1007/s10495-008-0278-6] [PMID: 19002586]
[82]
Shim HY, Park JH, Paik HD, Nah SY, Kim DSHL, Han YS. Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation. Mol Cells 2007; 24(1): 95-104.
[PMID: 17846503]
[83]
Takeda K, Matsuzawa A, Nishitoh H, Ichijo H. Roles of MAPKKK ASK1 in stress-induced cell death. Cell Struct Funct 2003; 28(1): 23-9.
[http://dx.doi.org/10.1247/csf.28.23] [PMID: 12655147]
[84]
Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of Apoptosis Signal-Regulating Kinase (ASK) 1. EMBO J 1998; 17(9): 2596-606.
[http://dx.doi.org/10.1093/emboj/17.9.2596] [PMID: 9564042]
[85]
Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96(6): 857-68.
[http://dx.doi.org/10.1016/S0092-8674(00)80595-4] [PMID: 10102273]
[86]
You H, Yamamoto K, Mak TW. Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc Natl Acad Sci 2006; 103(24): 9051-6.
[http://dx.doi.org/10.1073/pnas.0600889103] [PMID: 16757565]
[87]
Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 1993; 12(8): 3095-104.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb05978.x] [PMID: 8344250]
[88]
Xu YC, Wu RF, Gu Y, et al. Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase. J Biol Chem 2002; 277(31): 28051-7.
[http://dx.doi.org/10.1074/jbc.M202665200] [PMID: 12023963]
[89]
Wong GHW, Goeddel DV. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 1988; 242(4880): 941-4.
[http://dx.doi.org/10.1126/science.3263703] [PMID: 3263703]
[90]
Storz P, Toker A. Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO J 2003; 22(1): 109-20.
[http://dx.doi.org/10.1093/emboj/cdg009] [PMID: 12505989]
[91]
Storz P, Döppler H, Toker A. Activation loop phosphorylation controls protein kinase D-dependent activation of nuclear factor kappaB. Mol Pharmacol 2004; 66(4): 870-9.
[http://dx.doi.org/10.1124/mol.104.000687] [PMID: 15226414]
[92]
Chiu TT, Leung WY, Moyer MP, Strieter RM, Rozengurt E. Protein kinase D 2 mediates lysophosphatidic acid-induced interleukin 8 production in nontransformed human colonic epithelial cells through NF-κB. Am J Physiol Cell Physiol 2007; 292(2): C767-77.
[http://dx.doi.org/10.1152/ajpcell.00308.2006] [PMID: 16928771]
[93]
Mihailovic T, Marx M, Auer A, et al. Protein kinase D2 mediates activation of nuclear factor kappaB by Bcr-Abl in Bcr-Abl+ human myeloid leukemia cells. Cancer Res 2004; 64(24): 8939-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0981] [PMID: 15604256]
[94]
Storz P, Döppler H, Toker A. Protein kinase Cdelta selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol Cell Biol 2004; 24(7): 2614-26.
[http://dx.doi.org/10.1128/MCB.24.7.2614-2626.2004] [PMID: 15024053]
[95]
Song J, Li J, Qiao J, Jain S, Mark Evers B, Chung DH. PKD prevents H2O2-induced apoptosis via NF-κB and p38 MAPK in RIE-1 cells. Biochem Biophys Res Commun 2009; 378(3): 610-4.
[http://dx.doi.org/10.1016/j.bbrc.2008.11.106] [PMID: 19059215]
[96]
Storz P, Döppler H, Ferran C, Grey ST, Toker A. Functional dichotomy of A20 in apoptotic and necrotic cell death. Biochem J 2005; 387(1): 47-55.
[http://dx.doi.org/10.1042/BJ20041443] [PMID: 15527421]
[97]
Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 2008; 295(4): C849-68.
[http://dx.doi.org/10.1152/ajpcell.00283.2008] [PMID: 18684987]
[98]
Svineng G, Ravuri C, Rikardsen O, Huseby NE, Winberg JO. The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 2008; 49(3-4): 197-202.
[http://dx.doi.org/10.1080/03008200802143166] [PMID: 18661342]
[99]
Chiarugi P, Fiaschi T. Redox signalling in anchorage-dependent cell growth. Cell Signal 2007; 19(4): 672-82.
[http://dx.doi.org/10.1016/j.cellsig.2006.11.009] [PMID: 17204396]
[100]
Taddei ML, Parri M, Mello T, et al. Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxid Redox Signal 2007; 9(4): 469-81.
[http://dx.doi.org/10.1089/ars.2006.1392] [PMID: 17280488]
[101]
Yamaguchi H, Woods NT, Dorsey JF, et al. SRC directly phosphorylates Bif-1 and prevents its interaction with Bax and the initiation of anoikis. J Biol Chem 2008; 283(27): 19112-8.
[http://dx.doi.org/10.1074/jbc.M709882200] [PMID: 18474606]
[102]
Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 2007; 25(4): 695-705.
[http://dx.doi.org/10.1007/s10555-006-9037-8] [PMID: 17160708]
[103]
Brown NS, Bicknell R. Hypoxia and oxidative stress in breast cancer oxidative stress - its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 2001; 3(5): 323-7.
[http://dx.doi.org/10.1186/bcr315] [PMID: 11597322]
[104]
Duffy MJ, Maguire TM, Hill A, McDermott E, O’Higgins N. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2000; 2(4): 252-7.
[http://dx.doi.org/10.1186/bcr65] [PMID: 11250717]
[105]
Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 2004; 37(6): 768-84.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.06.008] [PMID: 15304253]
[106]
Rydlova M, Holubec L Jr, Ludvikova M Jr, et al. Biological activity and clinical implications of the matrix metalloproteinases. Anticancer Res 2008; 28(2B): 1389-97.
[PMID: 18505085]
[107]
Wenk J, Brenneisen P, Wlaschek M, et al. Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem 1999; 274(36): 25869-76.
[http://dx.doi.org/10.1074/jbc.274.36.25869] [PMID: 10464329]
[108]
Westermarck J, Kähäri VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 1999; 13(8): 781-92.
[http://dx.doi.org/10.1096/fasebj.13.8.781] [PMID: 10224222]
[109]
Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 1996; 98(11): 2572-9.
[http://dx.doi.org/10.1172/JCI119076] [PMID: 8958220]
[110]
van Wetering S, van Buul JD, Quik S, et al. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci 2002; 115(9): 1837-46.
[http://dx.doi.org/10.1242/jcs.115.9.1837] [PMID: 11956315]
[111]
Huot J, Houle F, Marceau F, Landry J. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 1997; 80(3): 383-92.
[http://dx.doi.org/10.1161/01.RES.80.3.383] [PMID: 9048659]
[112]
Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer 2003; 3(4): 276-85.
[http://dx.doi.org/10.1038/nrc1046] [PMID: 12671666]
[113]
Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001; 357(3): 593-615.
[http://dx.doi.org/10.1042/bj3570593] [PMID: 11463332]
[114]
Chong CM, Ai N, Ke M, et al. Roles of nitric oxide synthase isoforms in neurogenesis. Mol Neurobiol 2018; 55(3): 2645-52.
[http://dx.doi.org/10.1007/s12035-017-0513-7] [PMID: 28421538]
[115]
Jeffrey Man HS, Tsui AKY, Marsden PA. Nitric oxide and hypoxia signaling. Vitam Horm 2014; 96: 161-92.
[http://dx.doi.org/10.1016/B978-0-12-800254-4.00007-6] [PMID: 25189387]
[116]
Aloe L, Fiore M. TNF-α expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci Lett 1997; 238(1-2): 65-8.
[http://dx.doi.org/10.1016/S0304-3940(97)00850-1] [PMID: 9464656]
[117]
Ralli M, Grasso M, Gilardi A, et al. The role of cytokines in head and neck squamous cell carcinoma: A review. Clin Ter 2020; 171(3): e268-74.
[http://dx.doi.org/10.7417/CT.2020.2225] [PMID: 32323717]
[118]
Weidinger A, Kozlov A. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction. Biomolecules 2015; 5(2): 472-84.
[http://dx.doi.org/10.3390/biom5020472] [PMID: 25884116]
[119]
Ghosh A, Mukherjee J, Bhattacharjee M, et al. The other side of the coin: beneficiary effect of ‘oxidative burst’ upsurge with T11TS facilitates the elimination of glioma cells. Cell Mol Biol 2007; 53(5): 53-62.
[http://dx.doi.org/10.1170/T818] [PMID: 17543233]
[120]
Visconti R, Grieco D. New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel 2009; 12(2): 240-5.
[PMID: 19333869]
[121]
Hofseth LJ. Nitric oxide as a target of complementary and alternative medicines to prevent and treat inflammation and cancer. Cancer Lett 2008; 268(1): 10-30.
[http://dx.doi.org/10.1016/j.canlet.2008.03.024] [PMID: 18440130]
[122]
Cobbs CS, Brenman JE, Aldape KD, Bredt DS, Israel MA. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res 1995; 55(4): 727-30.
[PMID: 7531613]
[123]
Bakshi A, Nag TC, Wadhwa S, Mahapatra AK, Sarkar C. The expression of nitric oxide synthases in human brain tumours and peritumoral areas. J Neurol Sci 1998; 155(2): 196-203.
[http://dx.doi.org/10.1016/S0022-510X(97)00315-8] [PMID: 9562267]
[124]
Garbossa D, Fontanella M, Pagni CA, Vercelli A. Nitric oxide synthase and cytochrome c oxidase changes in the tumoural and peritumoural cerebral cortex. Acta Neurochir 2001; 143(9): 897-908.
[http://dx.doi.org/10.1007/s007010170020] [PMID: 11685622]
[125]
Broholm H, Rubin I, Kruse A, et al. Nitric oxide synthase expression and enzymatic activity in human brain tumors. Clin Neuropathol 2003; 22(6): 273-81.
[PMID: 14672505]
[126]
Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG, Samanta M. Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res 2003; 63(24): 8670-3.
[PMID: 14695179]
[127]
Zhang P, Wang YZ, Kagan E, Bonner JC. Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J Biol Chem 2000; 275(29): 22479-86.
[http://dx.doi.org/10.1074/jbc.M910425199] [PMID: 10801894]
[128]
van der Vliet A, Hristova M, Cross CE, Eiserich JP, Goldkorn T. Peroxynitrite induces covalent dimerization of epidermal growth factor receptors in A431 epidermoid carcinoma cells. J Biol Chem 1998; 273(48): 31860-6.
[http://dx.doi.org/10.1074/jbc.273.48.31860] [PMID: 9822654]
[129]
Li X, Sarno PD, Song L, Beckman JS, Jope RS. Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signalling in human neuroblastoma SH-SY5Y cells: attenuated effects in human 1321N1 astrocytoma cells. Biochem J 1998; 331(2): 599-606.
[http://dx.doi.org/10.1042/bj3310599] [PMID: 9531503]
[130]
Ying L, Hofseth AB, Browning DD, Nagarkatti M, Nagarkatti PS, Hofseth LJ. Nitric oxide inactivates the retinoblastoma pathway in chronic inflammation. Cancer Res 2007; 67(19): 9286-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2238] [PMID: 17909036]
[131]
Suh YA, Arnold RS, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999; 401(6748): 79-82.
[http://dx.doi.org/10.1038/43459] [PMID: 10485709]
[132]
Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res 2006; 4(4): 221-33.
[http://dx.doi.org/10.1158/1541-7786.MCR-05-0261] [PMID: 16603636]
[133]
Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458(7239): 780-3.
[http://dx.doi.org/10.1038/nature07733] [PMID: 19194462]
[134]
Sahu RP, Zhang R, Batra S, Shi Y, Srivastava SK. Benzyl isothiocyanate-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of MAPK in human pancreatic cancer cells. Carcinogenesis 2009; 30(10): 1744-53.
[http://dx.doi.org/10.1093/carcin/bgp157] [PMID: 19549704]
[135]
Laurent A, Nicco C, Chéreau C, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 2005; 65(3): 948-56.
[http://dx.doi.org/10.1158/0008-5472.948.65.3] [PMID: 15705895]
[136]
Ralli M, Botticelli A, Visconti IC, et al. Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions. J Immunol Res 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/9235638] [PMID: 32671117]
[137]
de Miguel M, Cordero MD. Oxidative therapy against cancer. In “Oxidative stress and diseases” Eds Lushchak VI, Gospodaryov DV. INTECH Open Access Publisher. London, UK. 2012; pp. 497-520.https://www.intechopen.com/chapters/35961
[http://dx.doi.org/10.5772/33251]
[138]
Rinaldi M, Caffo M, Minutoli L, et al. ROS and brain gliomas: An overview of potential and innovative therapeutic strategies. Int J Mol Sci 2016; 17(6): 984.
[http://dx.doi.org/10.3390/ijms17060984] [PMID: 27338365]
[139]
Zhu J, Wang H, Fan Y, et al. Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review). Oncol Rep 2014; 32(2): 443-50. http://dx.doi.org/10.3892/or.2014.3259
[PMID: 24926991]
[140]
Jia Y, Wang H, Wang Q, Ding H, Wu H, Pan H. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition. Biochem Biophys Res Commun 2016; 469(3): 665-71.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.034] [PMID: 26692480]
[141]
Akhavan D, Cloughesy TF, Mischel PS. mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro-oncol 2010; 12(8): 882-9.
[http://dx.doi.org/10.1093/neuonc/noq052] [PMID: 20472883]
[142]
Massi P, Vaccani A, Ceruti S, Colombo A, Abbracchio MP, Parolaro D. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharmacol Exp Ther 2004; 308(3): 838-45.
[http://dx.doi.org/10.1124/jpet.103.061002] [PMID: 14617682]
[143]
No JH, Kim YB, Song YS. Targeting nrf2 signaling to combat chemoresistance. J Cancer Prev 2014; 19(2): 111-7.
[http://dx.doi.org/10.15430/JCP.2014.19.2.111] [PMID: 25337579]
[144]
Singer E, Judkins J, Salomonis N, et al. Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma. Cell Death Dis 2015; 6(1): e1601.
[http://dx.doi.org/10.1038/cddis.2014.566] [PMID: 25590811]
[145]
Hsieh CH, Shyu WC, Chiang CY, Kuo JW, Shen WC, Liu RS. NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PLoS One 2011; 6(9): e23945.
[http://dx.doi.org/10.1371/journal.pone.0023945] [PMID: 21935366]
[146]
McAllister SD, Soroceanu L, Desprez PY. The antitumor activity of plant-derived non-psychoactive cannabinoids. J Neuroimmune Pharmacol 2015; 10(2): 255-67.
[http://dx.doi.org/10.1007/s11481-015-9608-y] [PMID: 25916739]
[147]
Ma D, Lu B, Feng C, et al. Deoxypodophyllotoxin triggers parthanatos in glioma cells via induction of excessive ROS. Cancer Lett 2016; 371(2): 194-204.
[http://dx.doi.org/10.1016/j.canlet.2015.11.044] [PMID: 26683770]
[148]
Vidak M, Rozman D, Komel R. Effects of flavonoids from food and dietary supplements on glial and glioblastoma multiforme cells. Molecules 2015; 20(10): 19406-32.
[http://dx.doi.org/10.3390/molecules201019406] [PMID: 26512639]
[149]
Atiq A, Parhar I. Anti-neoplastic potential of flavonoids and polysaccharide phytochemicals in glioblastoma. Molecules 2020; 25(21): 4895.
[http://dx.doi.org/10.3390/molecules25214895] [PMID: 33113890]
[150]
Lu Y, Jiang F, Jiang H, et al. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur J Pharmacol 2010; 641(2-3): 102-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.043] [PMID: 20553913]
[151]
Paolini A, Curti V, Pasi F, Mazzini G, Nano R, Capelli E. Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. Int J Oncol 2015; 46(4): 1491-7.
[http://dx.doi.org/10.3892/ijo.2015.2864] [PMID: 25646699]
[152]
Cohen AL, Colman H. Glioma biology and molecular markers Cancer Treat Res. 2015; 163: pp. 15-30.
[http://dx.doi.org/10.1007/978-3-319-12048-5_2] [PMID: 25468223]
[153]
Neurath KM, Keough MP, Mikkelsen T, Claffey KP. AMP-dependent protein kinase alpha 2 isoform promotes hypoxia-induced VEGF expression in human glioblastoma. Glia 2006; 53(7): 733-43.
[http://dx.doi.org/10.1002/glia.20326] [PMID: 16518831]
[154]
Zhang Y, Liu Q, Wang F, et al. Melatonin antagonizes hypoxia-mediated glioblastoma cell migration and invasion via inhibition of HIF-1α. J Pineal Res 2013; 55(2): 121-30.
[http://dx.doi.org/10.1111/jpi.12052] [PMID: 23551342]
[155]
Xu C, Wu X, Zhu J. VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. Sci World J 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/417413] [PMID: 23533349]
[156]
Preusser M, de Ribaupierre S, Wöhrer A, et al. Current concepts and management of glioblastoma. Ann Neurol 2011; 70(1): 9-21.
[http://dx.doi.org/10.1002/ana.22425] [PMID: 21786296]
[157]
Huveldt D, Lewis-Tuffin LJ, Carlson BL, et al. Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion. PLoS One 2013; 8(2): e56505.
[http://dx.doi.org/10.1371/journal.pone.0056505] [PMID: 23457577]
[158]
Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237(4819): 1154-62.
[http://dx.doi.org/10.1126/science.3306916] [PMID: 3306916]
[159]
Aloe L. Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. Trends Cell Biol 2004; 14(7): 395-9.
[http://dx.doi.org/10.1016/j.tcb.2004.05.011] [PMID: 15246433]
[160]
Chao MV. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat Rev Neurosci 2003; 4(4): 299-309.
[http://dx.doi.org/10.1038/nrn1078] [PMID: 12671646]
[161]
Aubert L, Guilbert M, Corbet C, et al. NGF-induced TrkA/CD44 association is involved in tumor aggressiveness and resistance to lestaurtinib. Oncotarget 2015; 6(12): 9807-19.
[http://dx.doi.org/10.18632/oncotarget.3227] [PMID: 25840418]
[162]
Hecht M, Schulte JH, Eggert A, Wilting J, Schweigerer L. The neurotrophin receptor TrkB cooperates with c-Met in enhancing neuroblastoma invasiveness. Carcinogenesis 2005; 26(12): 2105-15.
[http://dx.doi.org/10.1093/carcin/bgi192] [PMID: 16051641]
[163]
Skeldal S, Matusica D, Nykjaer A, Coulson EJ. Proteolytic processing of the p75 neurotrophin receptor: A prerequisite for signalling? BioEssays 2011; 33(8): 614-25.
[http://dx.doi.org/10.1002/bies.201100036] [PMID: 21717487]
[164]
Esposito D, Patel P, Stephens RM, et al. The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem 2001; 276(35): 32687-95.
[http://dx.doi.org/10.1074/jbc.M011674200] [PMID: 11435417]
[165]
Iacaruso MF, Galli S, Martí M, et al. Structural model for p75(NTR)-TrkA intracellular domain interaction: a combined FRET and bioinformatics study. J Mol Biol 2011; 414(5): 681-98.
[http://dx.doi.org/10.1016/j.jmb.2011.09.022] [PMID: 21978666]
[166]
Aloe L, Levi-Montalcini R. Nerve growth factor-induced transformation of immature chromaffin cells in vivo into sympathetic neurons: Effect of antiserum to nerve growth factor. Proc Natl Acad Sci 1979; 76(3): 1246-50.
[http://dx.doi.org/10.1073/pnas.76.3.1246] [PMID: 286308]
[167]
Angelucci F, Mathé AA, Aloe L. Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia Prog Brain Res. 2004; 146: pp. 151-65.
[http://dx.doi.org/10.1016/S0079-6123(03)46011-1] [PMID: 14699963]
[168]
Aloe L, Iannitelli A, Angelucci F, Bersani G, Fiore M. Studies in animal models and humans suggesting a role of nerve growth factor in schizophrenia-like disorders. Behav Pharmacol 2000; 11(3 & 4): 235-42.
[http://dx.doi.org/10.1097/00008877-200006000-00007] [PMID: 11103878]
[169]
Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Brain Res Rev 1998; 27(1): 1-39.
[http://dx.doi.org/10.1016/S0165-0173(98)00004-6] [PMID: 9639663]
[170]
Unsicker K, Skaper SD, Varon S. Phenotypical changes of embryonic chick adrenal medullary cells in vitro induced by nerve growth factor and ciliary neuronotrophic factor. Neurosci Lett 1985; 60(2): 127-32.
[http://dx.doi.org/10.1016/0304-3940(85)90232-0] [PMID: 4058804]
[171]
Fiore M, Triaca V, Amendola T, Tirassa P, Aloe L. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice. Physiol Behav 2002; 77(2-3): 437-43.
[http://dx.doi.org/10.1016/S0031-9384(02)00875-2] [PMID: 12419420]
[172]
Fiore M, Talamini L, Angelucci F, Koch T, Aloe L, Korf J. Prenatal methylazoxymethanol acetate alters behavior and brain NGF levels in young rats: a possible correlation with the development of schizophrenia-like deficits. Neuropharmacology 1999; 38(6): 857-69.
[http://dx.doi.org/10.1016/S0028-3908(99)00007-6] [PMID: 10465689]
[173]
Tirassa P, Triaca V, Amendola T, Fiore M, Aloe L. EGF and NGF injected into the brain of old mice enhance BDNF and ChAT in proliferating subventricular zone. J Neurosci Res 2003; 72(5): 557-64.
[http://dx.doi.org/10.1002/jnr.10614] [PMID: 12749020]
[174]
Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 1996; 19(11): 514-20.
[http://dx.doi.org/10.1016/S0166-2236(96)10058-8] [PMID: 8931279]
[175]
Amendola T, Fiore M, Aloe L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci Lett 2003; 345(1): 37-40.
[http://dx.doi.org/10.1016/S0304-3940(03)00491-9] [PMID: 12809983]
[176]
Di Fausto V, Fiore M, Tirassa P, Lambiase A, Aloe L. Eye drop NGF administration promotes the recovery of chemically injured cholinergic neurons of adult mouse forebrain. Eur J Neurosci 2007; 26(9): 2473-80.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05883.x] [PMID: 17970722]
[177]
Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 2001; 24(1): 1217-81.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.1217] [PMID: 11520933]
[178]
Chaldakov GN, Fiore M, Tonchev AB, Aloe L. Neuroadipology: A novel component of neuroendocrinology. Cell Biol Int 2010; 34(10): 1051-3.
[http://dx.doi.org/10.1042/CBI20100509] [PMID: 20825365]
[179]
Tore F, Tonchev A, Fiore M, et al. From adipose tissue protein secretion to adipopharmacology of disease. Immunol Endocr Metab Agents Med Chem 2007; 7(2): 149-55.
[http://dx.doi.org/10.2174/187152207780363712]
[180]
Ceci FM, Ferraguti G, Petrella C, et al. Nerve growth factor, stress and diseases. Curr Med Chem 2021; 28(15): 2943-59.
[http://dx.doi.org/10.2174/1875533XMTA5EMjAr2] [PMID: 32811396]
[181]
Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000; 14(23): 2919-37.
[http://dx.doi.org/10.1101/gad.841400] [PMID: 11114882]
[182]
Evangelopoulos ME, Weis J, Kruttgen A. Neurotrophin effects on neuroblastoma cells: correlation with trk and p75NTR expression and influence of Trk receptor bodies. J Neurooncol 2004; 66(1/2): 101-10.
[http://dx.doi.org/10.1023/B:NEON.0000013492.37426.0c] [PMID: 15015775]
[183]
Grotzer MA, Janss AJ, Fung KM, et al. TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 2000; 18(5): 1027-35.
[http://dx.doi.org/10.1200/JCO.2000.18.5.1027] [PMID: 10694553]
[184]
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[185]
Iwamoto S, Burrows RC, Agoff SN, Piepkorn M, Bothwell M, Schmidt R. The p75 neurotrophin receptor, relative to other Schwann cell and melanoma markers, is abundantly Expressed in spindled melanomas. Am J Dermatopathol 2001; 23(4): 288-94.
[http://dx.doi.org/10.1097/00000372-200108000-00002] [PMID: 11481518]
[186]
Iwata H, Ito T, Mutoh T, Ishiguro Y, Xiao H, Hamaguchi M. Abundant but inactive-state gp140proto-trk is expressed in neuroblastomas of patients with good prognosis. Jpn J Cancer Res 1994; 85(1): 32-9.
[http://dx.doi.org/10.1111/j.1349-7006.1994.tb02883.x] [PMID: 7508904]
[187]
Kao S, Jaiswal RK, Kolch W, Landreth GE. Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 2001; 276(21): 18169-77.
[http://dx.doi.org/10.1074/jbc.M008870200] [PMID: 11278445]
[188]
Krüttgen A, Schneider I, Weis J. The dark side of the NGF family: neurotrophins in neoplasias. Brain Pathol 2006; 16(4): 304-10.
[http://dx.doi.org/10.1111/j.1750-3639.2006.00037.x] [PMID: 17107600]
[189]
Aloe L, Manni L, Properzi F, De Santis S, Fiore M. Evidence that nerve growth factor promotes the recovery of peripheral neuropathy induced in mice by Cisplatin: behavioral, structural and biochemical analysis. Auton Neurosci 2000; 86(1-2): 84-93.
[http://dx.doi.org/10.1016/S1566-0702(00)00247-2] [PMID: 11269929]
[190]
De Santis S, Pace A, Bove L, et al. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor. Clin Cancer Res 2000; 6(1): 90-5.
[PMID: 10656436]
[191]
Wang Y, Hagel C, Hamel W, et al. Trk A, B, and C are commonly expressed in human astrocytes and astrocytic gliomas but not by human oligodendrocytes and oligodendroglioma. Acta Neuropathol 1998; 96(4): 357-64.
[http://dx.doi.org/10.1007/s004010050906] [PMID: 9797000]
[192]
Wadhwa S, Nag TC, Jindal A, Kushwaha R, Mahapatra AK, Sarkar C. Expression of the neurotrophin receptors Trk A and Trk B in adult human astrocytoma and glioblastoma. J Biosci 2003; 28(2): 181-8.
[http://dx.doi.org/10.1007/BF02706217] [PMID: 12711810]
[193]
Farina AR, Di Ianni N, Cappabianca L, et al. TrkAIII promotes microtubule nucleation and assembly at the centrosome in SH-SY5Y neuroblastoma cells, contributing to an undifferentiated anaplastic phenotype. BioMed Res Int 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/740187] [PMID: 23841091]
[194]
Ruggeri P, Cappabianca L, Farina AR, Gneo L, Mackay AR. NGF sensitizes TrkA SH-SY5Y neuroblastoma cells to TRAIL-induced apoptosis. Cell Death Discov 2016; 2(1): 16004.
[http://dx.doi.org/10.1038/cddiscovery.2016.4] [PMID: 27551499]
[195]
Micera A, Lambiase A, Stampachiacchiere B, Bonini S, Bonini S, Levischaffer F. Nerve growth factor and tissue repair remodeling: trkANGFR and p75NTR, two receptors one fate. Cytokine Growth Factor Rev 2007; 18(3-4): 245-56.
[http://dx.doi.org/10.1016/j.cytogfr.2007.04.004] [PMID: 17531524]
[196]
Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 2021; 499: 60-72.
[http://dx.doi.org/10.1016/j.canlet.2020.10.050] [PMID: 33166616]
[197]
Roesler R, Brunetto AT, Abujamra AL, de Farias CB, Brunetto AL, Schwartsmann G. Current and emerging molecular targets in glioma. Expert Rev Anticancer Ther 2010; 10(11): 1735-51.
[http://dx.doi.org/10.1586/era.10.167] [PMID: 21080801]
[198]
Singh A, Ruan Y, Tippett T, Narendran A. Targeted inhibition of MEK1 by cobimetinib leads to differentiation and apoptosis in neuroblastoma cells. J Exp Clin Cancer Res 2015; 34(1): 104.
[http://dx.doi.org/10.1186/s13046-015-0222-x] [PMID: 26384788]
[199]
Guerra B, Fischer M, Schaefer S, Issinger OG. The kinase inhibitor D11 induces caspase-mediated cell death in cancer cells resistant to chemotherapeutic treatment. J Exp Clin Cancer Res 2015; 34(1): 125.
[http://dx.doi.org/10.1186/s13046-015-0234-6] [PMID: 26480820]
[200]
Swenberg JA, Koestner A, Wechsler W, Denlinger RH. Quantitative aspects of transplacental tumor induction with ethylnitrosourea in rats. Cancer Res 1972; 32(12): 2656-60.
[PMID: 4345400]
[201]
Falsini B, Chiaretti A, Barone G, et al. Topical nerve growth factor as a visual rescue strategy in pediatric optic gliomas: a pilot study including electrophysiology. Neurorehabil Neural Repair 2011; 25(6): 512-20.
[http://dx.doi.org/10.1177/1545968310397201] [PMID: 21444653]
[202]
Chiaretti A, Falsini B, Servidei S, Marangoni D, Pierri F, Riccardi R. Nerve growth factor eye drop administration improves visual function in a patient with optic glioma. Neurorehabil Neural Repair 2011; 25(4): 386-90.
[http://dx.doi.org/10.1177/1545968310395601] [PMID: 21343523]
[203]
Hutton LA, DeVellis J, Perez-Polo JR. Expression of p75NGFR trkA, and trkB mRNA in rat C6 glioma and type I astrocyte cultures. J Neurosci Res 1992; 32(3): 375-83.
[http://dx.doi.org/10.1002/jnr.490320309] [PMID: 1279189]
[204]
Spoerri PE, Romanello S, Petrelli L, et al. Nerve growth factor (NGF) receptors in a central nervous system glial cell line: Upregulation by NGF and brain-derived neurotrophic factor. J Neurosci Res 1992; 33(1): 82-90.
[http://dx.doi.org/10.1002/jnr.490330111] [PMID: 1453486]
[205]
Hamel W, Westphal M,. Szőnyi É, Escandón E, Nikolics K. Neurotrophin gene expression by cell lines derived from human gliomas. J Neurosci Res 1993; 34(2): 147-57.
[http://dx.doi.org/10.1002/jnr.490340202] [PMID: 8450561]
[206]
Chiaretti A, Aloe L, Antonelli A, et al. Neurotrophic factor expression in childhood low-grade astrocytomas and ependymomas. Childs Nerv Syst 2004; 20(6): 412-9.
[http://dx.doi.org/10.1007/s00381-004-0959-6] [PMID: 15138791]
[207]
Chin LS, Murray SF, Zitnay KM, Rami B. K252a inhibits proliferation of glioma cells by blocking platelet-derived growth factor signal transduction. Clin Cancer Res 1997; 3(5): 771-6.
[PMID: 9815748]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy