Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

An Update on Parkinson’s Disease and its Neurodegenerative Counterparts

Author(s): Hussaini Adam, Subash C.B. Gopinath*, M.K. Md Arshad, Tijjani Adam, Sreeramanan Subramaniam and Uda Hashim

Volume 31, Issue 19, 2024

Published on: 14 June, 2023

Page: [2770 - 2787] Pages: 18

DOI: 10.2174/0929867330666230403085733

Price: $65

Abstract

Introduction: Neurodegenerative disorders are a group of diseases that cause nerve cell degeneration in the brain, resulting in a variety of symptoms and are not treatable with drugs. Parkinson's disease (PD), prion disease, motor neuron disease (MND), Huntington's disease (HD), spinal cerebral dyskinesia (SCA), spinal muscle atrophy (SMA), multiple system atrophy, Alzheimer's disease (AD), spinocerebellar ataxia (SCA) (ALS), pantothenate kinase-related neurodegeneration, and TDP-43 protein disorder are examples of neurodegenerative diseases. Dementia is caused by the loss of brain and spinal cord nerve cells in neurodegenerative diseases.

Background: Even though environmental and genetic predispositions have also been involved in the process, redox metal abuse plays a crucial role in neurodegeneration since the preponderance of symptoms originates from abnormal metal metabolism.

Method: Hence, this review investigates several neurodegenerative diseases that may occur symptoms similar to Parkinson's disease to understand the differences and similarities between Parkinson's disease and other neurodegenerative disorders based on reviewing previously published papers.

Results: Based on the findings, the aggregation of alpha-synuclein occurs in Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. Other neurodegenerative diseases occur with different protein aggregation or mutations.

Conclusion: We can conclude that Parkinson's disease, Multiple system atrophy, and Dementia with Lewy bodies are closely related. Therefore, researchers must distinguish among the three diseases to avoid misdiagnosis of Multiple System Atrophy and Dementia with Lewy bodies with Parkinson's disease symptoms.

[1]
Teissier, T.; Boulanger, E.; Deramecourt, V. Normal ageing of the brain: Histological and biological aspects. Rev. Neurol., 2020, 176(9), 649-660.
[http://dx.doi.org/10.1016/j.neurol.2020.03.017] [PMID: 32418702]
[2]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[3]
Wareham, L.K.; Liddelow, S.A.; Temple, S.; Benowitz, L.I.; Di Polo, A.; Wellington, C.; Goldberg, J.L.; He, Z.; Duan, X.; Bu, G.; Davis, A.A.; Shekhar, K.; Torre, A.L.; Chan, D.C.; Canto-Soler, M.V.; Flanagan, J.G.; Subramanian, P.; Rossi, S.; Brunner, T.; Bovenkamp, D.E.; Calkins, D.J. Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol. Neurodegener., 2022, 17(1), 23.
[http://dx.doi.org/10.1186/s13024-022-00524-0] [PMID: 35313950]
[4]
Picca, A.; Calvani, R.; Coelho-Júnior, H.J.; Landi, F.; Bernabei, R.; Marzetti, E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants, 2020, 9(8), 647.
[http://dx.doi.org/10.3390/antiox9080647] [PMID: 32707949]
[5]
Deture, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener, 2019, 5, 1-8.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[6]
Gustavsson, A.; Norton, N.; Fast, T.; Frölich, L.; Georges, J.; Holzapfel, D.; Kirabali, T.; Krolak-Salmon, P.; Rossini, P.M.; Ferretti, M.T.; Lanman, L.; Chadha, A.S.; van der Flier, W.M. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement., 2022, 1-13.
[PMID: 35652476]
[7]
Wilkaniec, A.; Gąssowska-Dobrowolska, M.; Strawski, M.; Adamczyk, A.; Czapski, G.A. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J. Neuroinflammation, 2018, 15(1), 1-18.
[http://dx.doi.org/10.1186/s12974-017-1027-y] [PMID: 29301548]
[8]
Shupp, A.; Casimiro, M.C.; Pestell, R.G. Biological functions of CDK5 and potential CDK5 targeted clinical treatments. Oncotarget, 2017, 8(10), 17373-17382.
[http://dx.doi.org/10.18632/oncotarget.14538] [PMID: 28077789]
[9]
Zahoor, I.; Shafi, A.; Haq, E. Parkinson’s disease (Book); Inc Animal Model Review, 2018.
[10]
McKay, J.L.; Hackney, M.E.; Factor, S.A.; Ting, L.H. Lower limb rigidity is associated with frequent falls in Parkinson’s disease. Mov. Disord. Clin. Pract., 2019, 6(6), 446-451.
[http://dx.doi.org/10.1002/mdc3.12784] [PMID: 31392245]
[11]
Emanuele, M.; Chieregatti, E. Mechanisms of alpha-synuclein action on neurotransmission: Cell-autonomous and non-cell autonomous role. Biomolecules, 2015, 5(2), 865-892.
[http://dx.doi.org/10.3390/biom5020865] [PMID: 25985082]
[12]
Novellino, F.; Salsone, M.; Riccelli, R.; Chiriaco, C.; Argirò, G.; Quattrone, A.; Madrigal, J.L.M.; Ferini Strambi, L.; Quattrone, A. Connectivity Alterations in Vascular Parkinsonism: A Structural Covariance Study; Applied Sciences: Switzerland, 2022, p. 12.
[13]
Son, S.J.; Kim, M.; Park, H. Imaging analysis of Parkinson’s disease patients using SPECT and tractography. Sci. Rep., 2016, 6(1), 38070.
[http://dx.doi.org/10.1038/srep38070] [PMID: 27901100]
[14]
Ray, B.; Mahalakshmi, A.M.; Tuladhar, S.; Bhat, A.; Srinivasan, A.; Pellegrino, C.; Kannan, A.; Bolla, S.R.; Chidambaram, S.B.; Sakharkar, M.K. “Janus-faced” α-synuclein: Role in Parkinson’s disease. Front. Cell Dev. Biol., 2021, 9, 673395.
[http://dx.doi.org/10.3389/fcell.2021.673395] [PMID: 34124057]
[15]
Nishida, N.; Miyamoto, T. Prion disease. Nippon Naika Gakkai Zasshi, 1997, 86(7), 1262-1268.
[PMID: 9379109]
[16]
Hartmann, K.; Sepulveda-Falla, D.; Rose, I.V.L.; Madore, C.; Muth, C.; Matschke, J.; Butovsky, O.; Liddelow, S.; Glatzel, M.; Krasemann, S. Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol. Commun., 2019, 7(1), 83.
[http://dx.doi.org/10.1186/s40478-019-0735-1] [PMID: 31118110]
[17]
Dirzius, E.; Balnyte, R.; Steibliene, V.; Gleizniene, R.; Gudinaviciene, I.; Radziunas, A.; Petrikonis, K. Sporadic Creutzfeldt-Jakob disease with unusual initial presentation as posterior reversible encephalopathy syndrome: A case report. BMC Neurol., 2016, 16(1), 234.
[http://dx.doi.org/10.1186/s12883-016-0751-8] [PMID: 27876002]
[18]
Bernardi, L.; Bruni, A.C. Mutations in prion protein gene: Pathogenic mechanisms in c-terminal vs. n-terminal domain, a review. Int. J. Mol. Sci., 2019, 20(14), 3606.
[http://dx.doi.org/10.3390/ijms20143606] [PMID: 31340582]
[19]
Asante, E.A.; Linehan, J.M.; Tomlinson, A.; Jakubcova, T.; Hamdan, S.; Grimshaw, A.; Smidak, M.; Jeelani, A.; Nihat, A.; Mead, S.; Brandner, S.; Wadsworth, J.D.F.; Collinge, J. Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS. PLoS Biol., 2020, 18(6), e3000725.
[http://dx.doi.org/10.1371/journal.pbio.3000725] [PMID: 32516343]
[20]
Brown, P.; Brandel, J.P.; Sato, T.; Nakamura, Y.; MacKenzie, J.; Will, R.G.; Ladogana, A.; Pocchiari, M.; Leschek, E.W.; Schonberger, L.B. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg. Infect. Dis., 2012, 18(6), 901-907.
[http://dx.doi.org/10.3201/eid1806.120116] [PMID: 22607808]
[21]
Llorens, F.; Villar-Piqué, A.; Hermann, P.; Schmitz, M.; Calero, O.; Stehmann, C.; Sarros, S.; Moda, F.; Ferrer, I.; Poleggi, A.; Pocchiari, M.; Catania, M.; Klotz, S.; O’Regan, C.; Brett, F.; Heffernan, J.; Ladogana, A.; Collins, S.J.; Calero, M.; Kovacs, G.G.; Zerr, I. Diagnostic accuracy of prion disease biomarkers in iatrogenic creutzfeldt-jakob disease. Biomolecules, 2020, 10(2), 290.
[http://dx.doi.org/10.3390/biom10020290] [PMID: 32059611]
[22]
Watson, N.; Brandel, J.P.; Green, A.; Hermann, P.; Ladogana, A.; Lindsay, T.; Mackenzie, J.; Pocchiari, M.; Smith, C.; Zerr, I.; Pal, S. The importance of ongoing international surveillance for Creutzfeldt–Jakob disease. Nat. Rev. Neurol., 2021, 17(6), 362-379.
[http://dx.doi.org/10.1038/s41582-021-00488-7] [PMID: 33972773]
[23]
Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; Fleischmann-Struzek, C.; Machado, F.R.; Reinhart, K.K.; Rowan, K.; Seymour, C.W.; Watson, R.S.; West, T.E.; Marinho, F.; Hay, S.I.; Lozano, R.; Lopez, A.D.; Angus, D.C.; Murray, C.J.L.; Naghavi, M. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219), 200-211.
[http://dx.doi.org/10.1016/S0140-6736(19)32989-7] [PMID: 31954465]
[24]
Hermann, P.; Appleby, B.; Brandel, J.P.; Caughey, B.; Collins, S.; Geschwind, M.D.; Green, A.; Haïk, S.; Kovacs, G.G.; Ladogana, A.; Llorens, F.; Mead, S.; Nishida, N.; Pal, S.; Parchi, P.; Pocchiari, M.; Satoh, K.; Zanusso, G.; Zerr, I. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol., 2021, 20(3), 235-246.
[http://dx.doi.org/10.1016/S1474-4422(20)30477-4] [PMID: 33609480]
[25]
Li, B.; Chen, M.; Zhu, C. Neuroinflammation in prion disease. Int. J. Mol. Sci., 2021, 22(4), 2196.
[http://dx.doi.org/10.3390/ijms22042196] [PMID: 33672129]
[26]
Ragagnin, A.M.G.; Shadfar, S.; Vidal, M.; Jamali, M.S.; Atkin, J.D. Motor neuron susceptibility in ALS/FTD. Front. Neurosci., 2019, 13, 532.
[http://dx.doi.org/10.3389/fnins.2019.00532] [PMID: 31316328]
[27]
De Marchi, F.; Carrarini, C.; De Martino, A.; Diamanti, L.; Fasano, A.; Lupica, A.; Russo, M.; Salemme, S.; Spinelli, E.G.; Bombaci, A. Cognitive dysfunction in amyotrophic lateral sclerosis: Can we predict it? Neurol. Sci., 2021, 42(6), 2211-2222.
[http://dx.doi.org/10.1007/s10072-021-05188-0] [PMID: 33772353]
[28]
Benbrika, S.; Desgranges, B.; Eustache, F.; Viader, F. Cognitive, emotional and psychological manifestations in amyotrophic lateral sclerosis at baseline and overtime: A review. Front. Neurosci., 2019, 13, 951.
[http://dx.doi.org/10.3389/fnins.2019.00951] [PMID: 31551700]
[29]
Potter, H.; Chial, H.J.; Caneus, J.; Elos, M.; Elder, N.; Borysov, S.; Granic, A. Chromosome instability and mosaic aneuploidy in neurodegenerative and neurodevelopmental disorders. Front. Genet., 2019, 10, 1092.
[http://dx.doi.org/10.3389/fgene.2019.01092] [PMID: 31788001]
[30]
Shin, J.W.; Kim, K.H.; Chao, M.J.; Atwal, R.S.; Gillis, T.; MacDonald, M.E.; Gusella, J.F.; Lee, J.M. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet., 2016, 25(20), ddw286.
[http://dx.doi.org/10.1093/hmg/ddw286] [PMID: 28172889]
[31]
Nopoulos, P.C. Huntington disease: A single-gene degenerative disorder of the striatum. Dialogues Clin. Neurosci., 2016, 18(1), 91-98.
[http://dx.doi.org/10.31887/DCNS.2016.18.1/pnopoulos] [PMID: 27069383]
[32]
Delatycki, M.B.; Bandmann, O. Huntington disease. Neurology, 2016, 87(3), 247-248.
[http://dx.doi.org/10.1212/WNL.0000000000002874] [PMID: 27335111]
[33]
Caron, N.S.; Wright, G.E.B.; Hayden, M.R.; Frcp, C. Huntington Disease Summary Suggestive Findings; GeneReviews, 2019, pp. 1-34.
[34]
Ready, R.E.; Boileau, N.R.; Barton, S.K.; Lai, J.S.; McCormack, M.K.; Cella, D.; Fritz, N.E.; Paulsen, J.S.; Carlozzi, N.E. Positive affect and well-being in Huntington’s disease moderates the association between functional impairment and HRQOL outcomes. J. Huntingtons Dis., 2019, 8(2), 221-232.
[http://dx.doi.org/10.3233/JHD-180341] [PMID: 31045519]
[35]
Irfan, Z.; Khanam, S.; Karmakar, V.; Firdous, S.M.; El Khier, B.S.I.A.; Khan, I.; Rehman, M.U.; Khan, A. Pathogenesis of Huntington’s disease: An emphasis on molecular pathways and prevention by natural remedies. Brain Sci., 2022, 12(10), 1389.
[http://dx.doi.org/10.3390/brainsci12101389] [PMID: 36291322]
[36]
Feustel, A.C.; MacPherson, A.; Fergusson, D.A.; Kieburtz, K.; Kimmelman, J. Risks and benefits of unapproved disease-modifying treatments for neurodegenerative disease. Neurology, 2020, 94(1), e1-e14.
[http://dx.doi.org/10.1212/WNL.0000000000008699] [PMID: 31792092]
[37]
Cummings, J.; Ritter, A.; Zhong, K. Clinical trials for disease-modifying therapies in Alzheimer’s disease: A primer, lessons learned, and a blueprint for the future. J. Alzheimers Dis., 2018, 64(s1), S3-S22.
[http://dx.doi.org/10.3233/JAD-179901] [PMID: 29562511]
[38]
Ellerby, L.M. Repeat expansion disorders: Mechanisms and therapeutics. Neurotherapeutics, 2019, 16(4), 924-927.
[http://dx.doi.org/10.1007/s13311-019-00823-3] [PMID: 31907874]
[39]
Park, J.Y.; Joo, K.; Woo, S.J. Ophthalmic manifestations and genetics of the polyglutamine autosomal dominant spinocerebellar ataxias: A review. Front. Neurosci., 2020, 14, 892.
[http://dx.doi.org/10.3389/fnins.2020.00892] [PMID: 32973440]
[40]
Storey, E. Spinocerebellar Ataxia Type 15 Summary Genetic Counseling Clinical Diagnosis; GeneReviews, 2019, pp. 1-12.
[41]
Perlman, S. Hereditary Ataxia Overview 1; Clinical Characteristics of Primary Hereditary Ataxia, 2022, pp. 1-20.
[42]
Anon. Inheriting Genetic Conditions. Me, Help Genetics, Understand Services, Human; , 2012, pp. 10-11.
[43]
Matsuura, T.; Ashizawa, T. Spinocerebellar Ataxia Type 10 Summary Genetic Counseling Suggestive Findings; GeneReviews, 2019, pp. 1-20.
[44]
Chintalaphani, S.R.; Pineda, S.S.; Deveson, I.W.; Kumar, K.R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun., 2021, 9(1), 98.
[http://dx.doi.org/10.1186/s40478-021-01201-x] [PMID: 34034831]
[45]
Tisdale, S.; Pellizzoni, L. Disease mechanisms and therapeutic approaches in spinal muscular atrophy. J. Neurosci., 2015, 35(23), 8691-8700.
[http://dx.doi.org/10.1523/JNEUROSCI.0417-15.2015] [PMID: 26063904]
[46]
Tisdale, S.; Pellizzoni, L. Spinal muscular atrophy: Mutations, testing, and clinical relekeinath, Melissa C. prior, devivance. Appl. Clin. Genet., 2021, 14, 11-25.
[http://dx.doi.org/10.2147/TACG.S239603]
[47]
Keinath, M.C.; Prior, D.E.; Prior, T.W. Spinal muscular atrophy: Mutations, testing, and clinical relevance. Appl. Clin. Genet., 2021, 14, 11-25.
[http://dx.doi.org/10.2147/TACG.S239603] [PMID: 33531827]
[48]
Butchbach, M.E.R. Copy number variations in the survival motor neuron genes: Implications for spinal muscular atrophy and other neurodegenerative diseases. Front. Mol. Biosci., 2016, 3, 7.
[http://dx.doi.org/10.3389/fmolb.2016.00007] [PMID: 27014701]
[49]
Kraszewski, J.N.; Kay, D.M.; Stevens, C.F.; Koval, C.; Haser, B.; Ortiz, V.; Albertorio, A.; Cohen, L.L.; Jain, R.; Andrew, S.P.; Young, S.D.; LaMarca, N.M.; De Vivo, D.C.; Caggana, M.; Chung, W.K. Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genet. Med., 2018, 20(6), 608-613.
[http://dx.doi.org/10.1038/gim.2017.152] [PMID: 29758563]
[50]
Vijzelaar, R.; Snetselaar, R.; Clausen, M.; Mason, A.G.; Rinsma, M.; Zegers, M.; Molleman, N.; Boschloo, R.; Yilmaz, R.; Kuilboer, R.; Lens, S.; Sulchan, S.; Schouten, J. The frequency of SMN gene variants lacking exon 7 and 8 is highly population dependent. PLoS One, 2019, 14(7), e0220211.
[http://dx.doi.org/10.1371/journal.pone.0220211] [PMID: 31339938]
[51]
Niba, E.T.E.; Ar Rochmah, M.; Harahap, N.I.F.; Awano, H.; Morioka, I.; Iijima, K.; Saito, T.; Saito, K.; Takeuchi, A.; Lai, P.S.; Bouike, Y.; Nishio, H.; Shinohara, M. SMA diagnosis: Detection of SMN1 deletion with real-time mCOP-PCR system using fresh blood DNA. Kobe J. Med. Sci., 2017, 63(3), E80-E83.
[PMID: 29434179]
[52]
Pellecchia, M.T.; Stankovic, I.; Fanciulli, A.; Krismer, F.; Meissner, W.G.; Palma, J.A.; Panicker, J.N.; Seppi, K.; Wenning, G.K.; Barone, P.; Kostic, V.; Sabanovic, M.; Bajaj, S.; Kaufmann, H.; Quinn, N.; Antonini, A.; Bang, J.; Pantelyat, A.; Berardelli, A.; Berg, D.; Biaggioni, I.; Bloem, B.; Brooks, D.J.; Calandra-Buonaura, G.; Cortelli, P.; Colosimo, C.; Ferreira, J.; Fox, S.; Frauscher, B.; Freeman, R.; Fung, V.; Gasser, T.; Gerhard, A.; Goldstein, D.; Hallett, M.; Halliday, G.; Höglinger, G.U.; Holton, J.L.; Houlden, H.; Iodice, V.; Klockgether, T.; Lang, A.; Ling, H.; Low, P.; Litvan, I.; Miki, Y.; Nomura, T.; Orimo, S.; Ozawa, T.; Postuma, R.; Rascol, O.; Robertson, D.; Sakakibara, R.; Sampaio, C.; Schmahmann, J.D.; Scholz, S.; Senard, J-M.; Sharma, M.; Singer, W.; Stamelou, M.; Takeda, A.; Tolosa, E.; Tsuji, S.; Vignatelli, L.; Walter, U.; Watanabe, H.; Weintraub, D.; Siebert, U.; Poewe, W. Can autonomic testing and imaging contribute to the early diagnosis of multiple system atrophy? a systematic review and recommendations by the movement disorder society multiple system atrophy study group. Mov. Disord. Clin. Pract., 2020, 7(7), 750-762.
[http://dx.doi.org/10.1002/mdc3.13052] [PMID: 33043073]
[53]
Jellinger, K.A. Multiple system atrophy: An oligodendroglioneural synucleinopathy1. J. Alzheimers Dis., 2018, 62(3), 1141-1179.
[http://dx.doi.org/10.3233/JAD-170397] [PMID: 28984582]
[54]
Kim, H.J.; Jeon, B.; Fung, V.S.C. Role of magnetic resonance imaging in the diagnosis of multiple system atrophy. Mov. Disord. Clin. Pract., 2017, 4(1), 12-20.
[http://dx.doi.org/10.1002/mdc3.12404] [PMID: 30363358]
[55]
Blesa, J.; Trigo-Damas, I.; Dileone, M.; del Rey, N.L.G.; Hernandez, L.F.; Obeso, J.A. Compensatory mechanisms in Parkinson’s disease: Circuits adaptations and role in disease modification. Exp. Neurol., 2017, 298(Pt B), 148-161.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.002] [PMID: 28987461]
[56]
Kim, M.; Ahn, J.H.; Cho, Y.; Kim, J.S.; Youn, J.; Cho, J.W. Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci. Rep., 2019, 9(1), 17329.
[http://dx.doi.org/10.1038/s41598-019-53980-y] [PMID: 31758059]
[57]
Chen, H.J.; Gao, Y.Q.; Che, C.H.; Lin, H.; Ruan, X.L. Diffusion tensor imaging with tract-based spatial statistics reveals white matter abnormalities in patients with vascular cognitive impairment. Front. Neuroanat., 2018, 12, 53.
[http://dx.doi.org/10.3389/fnana.2018.00053] [PMID: 29997482]
[58]
Zhang, Y.; Burock, M.A. Corrigendum: Diffusion tensor imaging in Parkinson’s disease and parkinsonian syndrome: A systematic review. Front. Neurol., 2020, 11, 612069.
[http://dx.doi.org/10.3389/fneur.2020.612069]
[59]
Cao, Z.; Wu, Y.; Liu, G.; Jiang, Y.; Wang, X.; Wang, Z.; Feng, T. Differential diagnosis of multiple system atrophy-parkinsonism and Parkinson’s disease using α-synuclein and external anal sphincter electromyography. Front. Neurol., 2020, 11, 1043.
[http://dx.doi.org/10.3389/fneur.2020.01043] [PMID: 33041984]
[60]
Compagnoni, G.M.; Di Fonzo, A. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol. Commun., 2019, 7(1), 113.
[http://dx.doi.org/10.1186/s40478-019-0730-6] [PMID: 31300049]
[61]
Lechtzin, N. Predicting respiratory failure in amyotrophic lateral sclerosis: recruiting a few good pulmonologists. Eur. Respir. J., 2019, 53(4), 1900360.
[http://dx.doi.org/10.1183/13993003.00360-2019] [PMID: 31000666]
[62]
Soiza, R.L.; Donaldson, A.I.C.; Myint, P.K. Vaccine against arteriosclerosis: An update. Ther. Adv. Vaccines, 2018, 9, 259-261.
[63]
Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929.
[http://dx.doi.org/10.1111/ene.14393] [PMID: 32526057]
[64]
Re, D.B.; Yan, B.; Calderón-Garcidueñas, L.; Andrew, A.S.; Tischbein, M.; Stommel, E.W. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: Identifying exposures determining higher ALS risk. J. Neurol., 2022, 269(5), 2359-2377.
[http://dx.doi.org/10.1007/s00415-021-10928-5] [PMID: 34973105]
[65]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 16(3), 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[66]
Bonanni, L.; Franciotti, R.; Pizzi, S.D.; Thomas, A.; Onofrj, M. Lewy Body Dementia. NeurodegeneratIve Diseases: Clinical Aspects; Molecular Genetics and Biomarkers, 2018, pp. 297-312.
[http://dx.doi.org/10.1007/978-3-319-72938-1_14]
[67]
Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W.; Unit, M.D.; Service, N.; Barcelona, U.; De Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol, 2022, 20, 385-397.
[68]
Outeiro, T.F.; Koss, D.J.; Erskine, D.; Walker, L.; Kurzawa-Akanbi, M.; Burn, D.; Donaghy, P.; Morris, C.; Taylor, J.P.; Thomas, A.; Attems, J.; McKeith, I. Dementia with Lewy bodies: An update and outlook. Mol. Neurodegener., 2019, 14(1), 5.
[http://dx.doi.org/10.1186/s13024-019-0306-8] [PMID: 30665447]
[69]
2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 2021, 17(3), 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[70]
Jellinger, K.A.; Korczyn, A.D. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease? BMC Med., 2018, 16(1), 34.
[http://dx.doi.org/10.1186/s12916-018-1016-8] [PMID: 29510692]
[71]
Capouch, S.D.; Farlow, M.R.; Brosch, J.R. A review of dementia with Lewy bodies’ impact, diagnostic criteria and treatment. Neurol. Ther., 2018, 7(2), 249-263.
[http://dx.doi.org/10.1007/s40120-018-0104-1] [PMID: 29987534]
[72]
Ruangritchankul, S.; Gray, L.C. Adverse drug reactions of acetylcholinesterase inhibitors in older people living with dementia : A comprehensive literature review. Ther Clin Risk Manag, 2021, 17, 927-949.
[http://dx.doi.org/10.2147/TCRM.S323387]
[73]
Parra, H.H.; Cortés, H.; Arturo, J.; Fuentes, A.; Del, M.; Audelo, P.; Florán, B.; Gómez, G.L.; Rad, J.S.; Cho, W.C. Repositioning of drugs for Parkinson’s disease and pharmaceutical nanotechnology tools for their optimization. J. Nanobiotechnology, 2022, 20(1), 413.
[74]
Budayr, A.; Tan, T.C.; Lo, J.C.; Zaroff, J.G.; Tabada, G.H.; Yang, J.; Go, A.S. Cardiac valvular abnormalities associated with use and cumulative exposure of cabergoline for hyperprolactinemia: The CATCH study. BMC Endocr Disord, 2020, 20(1), 25.
[75]
Cepeda, C.; Murphy, K.P.S.; Parent, M.; Levine, M.S.; Disabilities, D.; Behavior, H.; Keynes, M.; City, Q. The role of dopamine in Huntington’s disease. Prog Brain Res, 2015, 211, 235-254.
[http://dx.doi.org/10.1016/B978-0-444-63425-2.00010-6] [PMID: 24968783]
[76]
Sellner, J.; Hauer, L.; Illes, Z.; Warnke, C.; Laurent, S.; Levy, M. Immunological aspects of approved MS therapeutics. Front. Immunol., 2019, 10, 1-24.
[77]
Cong, W.; Bai, R.; Li, Y.F.; Wang, L.; Chen, C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl. Mater. Interfaces, 2019, 11(38), 34725-34735.
[http://dx.doi.org/10.1021/acsami.9b12319] [PMID: 31479233]
[78]
Monge-Fuentes, V.; Biolchi Mayer, A.; Lima, M.R.; Geraldes, L.R.; Zanotto, L.N.; Moreira, K.G.; Martins, O.P.; Piva, H.L.; Felipe, M.S.S.; Amaral, A.C.; Bocca, A.L.; Tedesco, A.C.; Mortari, M.R. Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s disease. Sci. Rep., 2021, 11(1), 15185.
[http://dx.doi.org/10.1038/s41598-021-94175-8] [PMID: 34312413]
[79]
Díaz-García, D.; Ferrer-Donato, Á.; Méndez-Arriaga, J.M.; Cabrera-Pinto, M.; Díaz-Sánchez, M.; Prashar, S.; Fernandez-Martos, C.M.; Gómez-Ruiz, S. Design of mesoporous silica nanoparticles for the treatment of amyotrophic lateral sclerosis (ALS) with a therapeutic cocktail based on leptin and pioglitazone. ACS Biomater. Sci. Eng., 2022, 8(11), 4838-4849.
[http://dx.doi.org/10.1021/acsbiomaterials.2c00865] [PMID: 36240025]
[80]
Wang, Z.; Cheng, Y.; Zhao, D.; Pliss, A.; Liu, J.; Luan, P. Synergic treatment of Alzheimer’s disease with brain targeted nanoparticles incorporating NgR-siRNA and brain derived neurotrophic factor. Smart Materials in Medicine, 2020, 1, 125-130.
[http://dx.doi.org/10.1016/j.smaim.2020.08.001]
[81]
Bhattacharya, T.; Soares, G.A.B.; Chopra, H.; Rahman, M.M.; Hasan, Z.; Swain, S.S.; Cavalu, S. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials, 2022, 15(3), 804.
[http://dx.doi.org/10.3390/ma15030804] [PMID: 35160749]
[82]
Pinheiro, R.G.R.; Coutinho, A.J.; Pinheiro, M.; Neves, A.R. Nanoparticles for targeted brain drug delivery: What do we know? Int. J. Mol. Sci., 2021, 22(21), 11654.
[http://dx.doi.org/10.3390/ijms222111654] [PMID: 34769082]
[83]
Satapathy, M.K.; Yen, T.L.; Jan, J.S.; Tang, R.D.; Wang, J.Y.; Taliyan, R.; Yang, C.H. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics, 2021, 13(8), 1183.
[http://dx.doi.org/10.3390/pharmaceutics13081183] [PMID: 34452143]
[84]
Bellettato, C.M.; Scarpa, M. Possible strategies to cross the blood–brain barrier. Ital. J. Pediatr., 2018, 44(S2), 131.
[http://dx.doi.org/10.1186/s13052-018-0563-0] [PMID: 30442184]
[85]
Niu, X.; Chen, J.; Gao, J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm. Sci., 2019, 14(5), 480-496.
[http://dx.doi.org/10.1016/j.ajps.2018.09.005] [PMID: 32104476]
[86]
Delello, L.; Filippo, D.; Duarte, J.L.; Luiz, M.T.; Thayanne, J.; Araújo, C.; De; Chorilli, M. Drug delivery nanosystems in glioblastoma multiforme treatment: Current state of the art. Curr. Neuropharmacol, 2021, 19(6), 787-812.
[87]
Acidic, G.F. Drug Delivery Nanosystems in Glioblastoma Multiforme Treatment: Current state of the Art.M Curr Neuropharmacol, 2021, 19(6), 787-812.
[88]
Krzyzowska, M.; Janicka, M.; Tomaszewska, E.; Ranoszek-soliwoda, K.; Celichowski, G.; Grobelny, J.; Szymanski, P. Lactoferrin-conjugated nanoparticles as new antivirals. Pharmaceutics., 2022, 14(9), 1862.
[http://dx.doi.org/10.3390/pharmaceutics14091862]
[89]
Haney, M.J.; Zhao, Y.; Fay, J.; Duhyeong, H.; Wang, M.; Wang, H.; Li, Z.; Lee, Y.Z.; Karuppan, M.K.; El-Hage, N.; Kabanov, A.V.; Batrakova, E.V. Genetically modified macrophages accomplish targeted gene delivery to the inflamed brain in transgenic Parkin Q311X(A) mice: Importance of administration routes. Sci. Rep., 2020, 10(1), 11818.
[http://dx.doi.org/10.1038/s41598-020-68874-7] [PMID: 32678262]
[90]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[91]
Khan, N.H.; Mir, M.; Ngowi, E.E.; Zafar, U.; Khakwani, M.M.A.K.; Khattak, S.; Zhai, Y.K.; Jiang, E.S.; Zheng, M.; Duan, S.F.; Wei, J.S.; Wu, D.D.; Ji, X.Y. Nanomedicine: A promising way to manage alzheimer’s disease. Front. Bioeng. Biotechnol., 2021, 9, 630055.
[http://dx.doi.org/10.3389/fbioe.2021.630055] [PMID: 33996777]
[92]
Wang, W.W.; Zhang, X.R.; Lin, J.Y.; Zhang, Z.R.; Wang, Z.; Chen, S.Y.; Xie, C.L. Levodopa/benserazide PLGA microsphere prevents l-dopa–induced dyskinesia via lower β-arrestin2 in 6-hydroxydopamine Parkinson’s rats. Front. Pharmacol., 2019, 10, 660.
[http://dx.doi.org/10.3389/fphar.2019.00660] [PMID: 31275144]
[93]
Rahman, M.M.; Lendel, C. Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol. Neurodegener., 2021, 16(1), 59.
[http://dx.doi.org/10.1186/s13024-021-00465-0] [PMID: 34454574]
[94]
Miculas, D.C.; Negru, P.A.; Bungau, S.G.; Behl, T.; Hassan, S.S.; Tit, D.M. Pharmacotherapy evolution in Alzheimer’s disease: Current framework and relevant directions. Cells, 2022, 12(1), 131.
[http://dx.doi.org/10.3390/cells12010131] [PMID: 36611925]
[95]
Visanji, N.P.; Lang, A.E.; Kovacs, G.G. Beyond the synucleinopathies: Alpha synuclein as a driving force in neurodegenerative comorbidities. Transl. Neurodegener., 2019, 8(1), 28.
[http://dx.doi.org/10.1186/s40035-019-0172-x] [PMID: 31508228]
[96]
Mar, H.; Widman, E.; Johansson, A. Personalized medicine approach in treating Parkinson’s disease, using oral administration of levodopa/carbidopa microtablets in clinical practice. J. Pers. Med., 2021, 11(8), 720.
[97]
Mahul-Mellier, A.L.; Burtscher, J.; Maharjan, N.; Weerens, L.; Croisier, M.; Kuttler, F.; Leleu, M.; Knott, G.W.; Lashuel, H.A. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci., 2020, 117(9), 4971-4982.
[http://dx.doi.org/10.1073/pnas.1913904117] [PMID: 32075919]
[98]
Taylor, J.P.; McKeith, I.G.; Burn, D.J.; Boeve, B.F.; Weintraub, D.; Bamford, C.; Allan, L.M.; Thomas, A.J.; O’Brien, J.T. New evidence on the management of Lewy body dementia. Lancet Neurol., 2020, 19(2), 157-169.
[http://dx.doi.org/10.1016/S1474-4422(19)30153-X] [PMID: 31519472]
[99]
Lee, H.J.; Ricarte, D.; Ortiz, D.; Lee, S.J. Models of multiple system atrophy. Exp. Mol. Med., 2019, 51(11), 1-10.
[PMID: 31740682]
[100]
Ortiz, J.F.; Betté, S.; Tambo, W.; Tao, F.; Cozar, J.C.; Isaacson, S. Multiple system atrophy – cerebellar type: clinical picture and treatment of an often-overlooked disorder. Cureus, 2020, 12.
[http://dx.doi.org/10.7759/cureus.10741]
[101]
Hickman, R.A.; Faust, P.L.; Marder, K.; Yamamoto, A.; Vonsattel, J.P. The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade. Acta Neuropathol. Commun., 2022, 10(1), 55.
[http://dx.doi.org/10.1186/s40478-022-01364-1] [PMID: 35440014]
[102]
Claassen, D.O.; Ayyagari, R.; Garcia-Horton, V.; Zhang, S.; Alexander, J.; Leo, S. Real-world adherence to tetrabenazine or deutetrabenazine among patients with Huntington’s disease: A retrospective database analysis. Neurol. Ther., 2022, 11(1), 435-448.
[http://dx.doi.org/10.1007/s40120-021-00309-5] [PMID: 34905160]
[103]
Suk, T.R.; Rousseaux, M.W.C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener., 2020, 15(1), 45.
[http://dx.doi.org/10.1186/s13024-020-00397-1] [PMID: 32799899]
[104]
Xu, X.; Shen, D.; Gao, Y.; Zhou, Q.; Ni, Y.; Meng, H.; Shi, H.; Le, W.; Chen, S.; Chen, S. A perspective on therapies for amyotrophic lateral sclerosis: Can disease progression be curbed? Transl. Neurodegener., 2021, 10(1), 29.
[http://dx.doi.org/10.1186/s40035-021-00250-5] [PMID: 34372914]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy