Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Advances in the Multistep Continuous Preparation of APIs and Fine Chemicals

Author(s): Pedro P. de Castro*, Gabriel M.F. Batista, Giovanni W. Amarante, Timothy J. Brocksom and Kleber T. de Oliveira*

Volume 23, Issue 11, 2023

Published on: 27 April, 2023

Page: [970 - 989] Pages: 20

DOI: 10.2174/1568026623666230331083734

Price: $65

Abstract

Over the last two decades, with the advent of continuous flow technologies, continuous processes have emerged as a major area in organic synthesis. In this context, continuous flow processes have been increasing in the preparation of Active Pharmaceutical Ingredients (APIs) and fine chemicals, such as complex synthetic intermediates, agrochemicals, and fragrances. Thus, the development of multi-step protocols has attracted special interest from the academic and industrial chemistry communities. In addition to the beneficial aspects intrinsically associated with continuous processes (e.g., waste reduction, optimal heat transfer, improved safety, and the possibility to work under harsh reaction conditions and with more dangerous reagents), these protocols also allow a rapid increase in molecular complexity. Moreover, in telescoped multi-step processes, isolation and purification steps are generally avoided or, if necessary, carried out in-line, presenting an important economy of time, solvents, reagents, and labor. Last, important synthetic strategies such as photochemical and electrochemical reactions are compatible with flow processes and are delivering relevant advances to the synthetic approaches. In this review, a general overview of the fundamentals of continuous flow processes is presented. Recent examples of multi-step continuous processes for the preparation of fine chemicals, including telescoped and end-to-end processes, are discussed, pointing out the possible advantages and/or limitations of each of these methodologies.

« Previous
Graphical Abstract

[1]
Plutschack, M.B.; Pieber, B.; Gilmore, K.; Seeberger, P.H. The Hitchhiker’s guide to flow chemistry. Chem. Rev., 2017, 117(18), 11796-11893.
[http://dx.doi.org/10.1021/acs.chemrev.7b00183] [PMID: 28570059]
[2]
Jas, G.; Kirschning, A. Continuous flow techniques in organic synthesis. Chemistry, 2003, 9(23), 5708-5723.
[http://dx.doi.org/10.1002/chem.200305212] [PMID: 14673841]
[3]
Doyle, B.J.; Elsner, P.; Gutmann, B.; Hannaerts, O.; Aellig, C.; Macchi, A.; Roberge, D.M. Mini-monoplant technology for pharmaceutical manufacturing. Org. Process Res. Dev., 2020, 24(10), 2169-2182.
[http://dx.doi.org/10.1021/acs.oprd.0c00207]
[4]
Abele, S.; Höck, S.; Schmidt, G.; Funel, J.A.; Marti, R. High-temperature diels–alder reactions: Transfer from batch to continuous mode. Org. Process Res. Dev., 2012, 16(5), 1114-1120.
[http://dx.doi.org/10.1021/op200320w]
[5]
Sun, M.; Yang, J.; Fu, Y.; Liang, C.; Li, H.; Yan, G.; Yin, C.; Yu, W.; Ma, Y.; Cheng, R.; Ye, J. Continuous flow process for the synthesis of betahistine via aza-michael-type reaction in water. Org. Process Res. Dev., 2021, 25(5), 1160-1166.
[http://dx.doi.org/10.1021/acs.oprd.0c00543]
[6]
Lee, S.L.; O’Connor, T.F.; Yang, X.; Cruz, C.N.; Chatterjee, S.; Madurawe, R.D.; Moore, C.M.V.; Yu, L.X.; Woodcock, J. Modernizing pharmaceutical manufacturing: From batch to continuous production. J. Pharm. Innov., 2015, 10(3), 191-199.
[http://dx.doi.org/10.1007/s12247-015-9215-8]
[7]
Kang, J.H.; Ahn, G.N.; Lee, H.; Yim, S.J.; Lahore, S.; Lee, H.J.; Kim, H.; Kim, J.T.; Kim, D.P. Scalable subsecond synthesis of drug scaffolds via aryllithium intermediates by numbered-up 3d-printed metal microreactors. ACS Cent. Sci., 2022, 8(1), 43-50.
[http://dx.doi.org/10.1021/acscentsci.1c00972] [PMID: 35106371]
[8]
de Souza, J.M.; Brocksom, T.J.; McQuade, D.T.; de Oliveira, K.T. Continuous endoperoxidation of conjugated dienes and subsequent rearrangements leading to C–H oxidized synthons. J. Org. Chem., 2018, 83(15), 7574-7585.
[http://dx.doi.org/10.1021/acs.joc.8b01307] [PMID: 29860826]
[9]
Dallinger, D.; Kappe, C.O. Why flow means green – Evaluating the merits of continuous processing in the context of sustainability. Curr. Opin. Green Sustain. Chem., 2017, 7, 6-12.
[http://dx.doi.org/10.1016/j.cogsc.2017.06.003]
[10]
Rogers, L.; Jensen, K.F. Continuous manufacturing – the green chemistry promise? Green Chem., 2019, 21(13), 3481-3498.
[http://dx.doi.org/10.1039/C9GC00773C]
[11]
Anderson, N.G. Using continuous processes to increase production. Org. Process Res. Dev., 2012, 16(5), 852-869.
[http://dx.doi.org/10.1021/op200347k]
[12]
Snead, D.R.; Jamison, T.F. End-to-end continuous flow synthesis and purification of diphenhydramine hydrochloride featuring atom economy, in-line separation, and flow of molten ammonium salts. Chem. Sci., 2013, 4(7), 2822.
[http://dx.doi.org/10.1039/c3sc50859e]
[13]
Di Filippo, M.; Baumann, M. Continuous flow synthesis of anticancer drugs. Molecules, 2021, 26(22), 6992.
[http://dx.doi.org/10.3390/molecules26226992] [PMID: 34834084]
[14]
Baumann, M.; Baxendale, I.R. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J. Org. Chem., 2015, 11, 1194-1219.
[http://dx.doi.org/10.3762/bjoc.11.134] [PMID: 26425178]
[15]
Porta, R.; Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev., 2016, 20(1), 2-25.
[http://dx.doi.org/10.1021/acs.oprd.5b00325]
[16]
Gutmann, B.; Cantillo, D.; Kappe, C.O. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed., 2015, 54(23), 6688-6728.
[http://dx.doi.org/10.1002/anie.201409318] [PMID: 25989203]
[17]
Gutmann, B.; Cantillo, D.; Kappe, C.O. Continuous flow process: A tool for the safe synthesis of pharmaceutical substances. Angew. Chem., 2015, 127(23), 6788-6832.
[http://dx.doi.org/10.1002/ange.201409318]
[18]
Pieber, B.; Gilmore, K.; Seeberger, P.H. Integrated flow processing — challenges in continuous multistep synthesis. J. Flow Chem., 2017, 7(3-4), 129-136.
[http://dx.doi.org/10.1556/1846.2017.00016]
[19]
Britton, J.; Raston, C.L. Multi-step continuous-flow synthesis. Chem. Soc. Rev., 2017, 46(5), 1250-1271.
[http://dx.doi.org/10.1039/C6CS00830E] [PMID: 28106210]
[20]
Baumann, M.; Moody, T.S.; Smyth, M.; Wharry, S. Overcoming the hurdles and challenges associated with developing continuous industrial processes. Eur. J. Org. Chem., 2020, 2020(48), 7398-7406.
[http://dx.doi.org/10.1002/ejoc.202001278]
[21]
Zhou, S.; Hong, Q.; Mei, W.; He, Y.; Wu, C.; Sun, T. Scale-up of a continuous manufacturing process of edaravone. Org. Process Res. Dev., 2021, 25(9), 2146-2153.
[http://dx.doi.org/10.1021/acs.oprd.1c00228]
[22]
Adamo, A.; Beingessner, R.L.; Behnam, M.; Chen, J.; Jamison, T.F.; Jensen, K.F.; Monbaliu, J.C.M.; Myerson, A.S.; Revalor, E.M.; Snead, D.R.; Stelzer, T.; Weeranoppanant, N.; Wong, S.Y.; Zhang, P. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science, 2016, 352(6281), 61-67.
[http://dx.doi.org/10.1126/science.aaf1337] [PMID: 27034366]
[23]
Capellades, G.; Neurohr, C.; Briggs, N.; Rapp, K.; Hammersmith, G.; Brancazio, D.; Derksen, B.; Myerson, A.S. On-demand continuous manufacturing of ciprofloxacin in portable plug-and-play factories: Implementation and in situ control of downstream production. Org. Process Res. Dev., 2021, 25(7), 1534-1546.
[http://dx.doi.org/10.1021/acs.oprd.1c00117]
[24]
Rehm, T.H. Photochemical fluorination reactions - a promising research field for continuous-flow synthesis. Chem. Eng. Technol., 2016, 39(1), 66-80.
[http://dx.doi.org/10.1002/ceat.201500195]
[25]
Souza, J.M.D.; Galaverna, R.; Souza, A.A.N.D.; Brocksom, T.J.; Pastre, J.C.; Souza, R.O.M.A.D.; Oliveira, K.T.D. Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients. An. Acad. Bras. Cienc., 2018, 90(S2), 1131-1174.
[http://dx.doi.org/10.1590/0001-3765201820170778] [PMID: 29873673]
[26]
Souza, A.A.N.; Paez, E.B.A.; Assis, F.F.; Brocksom, T.J.; de Oliveira, K.T. Improved synthesis of bioactive molecules through flow chemistry.In: Topics in Medicinal Chemistry; Springer: Berlin, 2021, pp. 1-55.
[27]
Ötvös, S.B.; Llanes, P.; Pericàs, M.A.; Kappe, C.O. Telescoped continuous flow synthesis of optically active γ-nitrobutyric acids as key intermediates of baclofen, phenibut, and fluorophenibut. Org. Lett., 2020, 22(20), 8122-8126.
[http://dx.doi.org/10.1021/acs.orglett.0c03100] [PMID: 33026815]
[28]
Lim, J.J.; Arrington, K.; Dunn, A.L.; Leitch, D.C.; Andrews, I.; Curtis, N.R.; Hughes, M.J.; Tray, D.R.; Wade, C.E.; Whiting, M.P.; Goss, C.; Liu, Y.C.; Roesch, B.M. A flow process built upon a batch foundation—preparation of a key amino alcohol intermediate via multistage continuous synthesis. Org. Process Res. Dev., 2020, 24(10), 1927-1937.
[http://dx.doi.org/10.1021/acs.oprd.9b00478]
[29]
Chen, Y.; Shao, X.; Zhao, X.; Ji, Y.; Liu, X.; Li, P.; Zhang, M.; Wang, Q. Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms. Biomed. Pharmacother., 2021, 144, 112252.
[http://dx.doi.org/10.1016/j.biopha.2021.112252] [PMID: 34619493]
[30]
Jiang, M.; Liu, M.; Yu, C.; Cheng, D.; Chen, F. Fully continuous flow synthesis of 3-chloro-4-oxopentyl acetate: An important intermediate for vitamin B1. Org. Process Res. Dev., 2021, 25(9), 2020-2028.
[http://dx.doi.org/10.1021/acs.oprd.1c00065]
[31]
Jiang, M.; Liu, M.; Huang, H.; Chen, F. Fully continuous flow synthesis of 5-(Aminomethyl)-2-methylpyrimidin-4-amine: A key intermediate of vitamin B 1. Org. Process Res. Dev., 2021, 25(10), 2331-2337.
[http://dx.doi.org/10.1021/acs.oprd.1c00253]
[32]
Panagiotou, E.; Gomatou, G.; Trontzas, I.P.; Syrigos, N.; Kotteas, E. Cyclin-dependent kinase (CDK) inhibitors in solid tumors: A review of clinical trials. Clin. Transl. Oncol., 2022, 24(2), 161-192.
[http://dx.doi.org/10.1007/s12094-021-02688-5] [PMID: 34363593]
[33]
Duan, S.; Feng, X.; Gonzalez, M.; Bader, S.; Hayward, C.; Ljubicic, T.; Lu, J.; Mustakis, J.; Maloney, M.; Rainville, J.; Zhang, X. Developing a multistep continuous manufacturing process for (1 R, 2 R)-2-Amino-1-methylcyclopentan-1-ol. Org. Process Res. Dev., 2020, 24(11), 2734-2744.
[http://dx.doi.org/10.1021/acs.oprd.0c00405]
[34]
Mascia, S.; Heider, P.L.; Zhang, H.; Lakerveld, R.; Benyahia, B.; Barton, P.I.; Braatz, R.D.; Cooney, C.L.; Evans, J.M.B.; Jamison, T.F.; Jensen, K.F.; Myerson, A.S.; Trout, B.L. End-to-end continuous manufacturing of pharmaceuticals: Integrated synthesis, purification, and final dosage formation. Angew. Chem. Int. Ed., 2013, 52(47), 12359-12363.
[http://dx.doi.org/10.1002/anie.201305429] [PMID: 24115355]
[35]
Içten, E.; Maloney, A.J.; Beaver, M.G.; Shen, D.E.; Zhu, X.; Graham, L.R.; Robinson, J.A.; Huggins, S.; Allian, A.; Hart, R.; Walker, S.D.; Rolandi, P.; Braatz, R.D. A virtual plant for integrated continuous manufacturing of a carfilzomib drug substance intermediate, part 1: CDI-promoted amide bond formation. Org. Process Res. Dev., 2020, 24(10), 1861-1875.
[http://dx.doi.org/10.1021/acs.oprd.0c00187]
[36]
Içten, E.; Maloney, A.J.; Beaver, M.G.; Zhu, X.; Shen, D.E.; Robinson, J.A.; Parsons, A.T.; Allian, A.; Huggins, S.; Hart, R.; Rolandi, P.; Walker, S.D.; Braatz, R.D. A virtual plant for integrated continuous manufacturing of a carfilzomib drug substance intermediate, part 2: Enone synthesis via a barbier-type grignard process. Org. Process Res. Dev., 2020, 24(10), 1876-1890.
[http://dx.doi.org/10.1021/acs.oprd.0c00188]
[37]
Maloney, A.J.; Içten, E.; Capellades, G.; Beaver, M.G.; Zhu, X.; Graham, L.R.; Brown, D.B.; Griffin, D.J.; Sangodkar, R.; Allian, A.; Huggins, S.; Hart, R.; Rolandi, P.; Walker, S.D.; Braatz, R.D. A virtual plant for integrated continuous manufacturing of a carfilzomib drug substance intermediate, part 3: Manganese-catalyzed asymmetric epoxidation, crystallization, and filtration. Org. Process Res. Dev., 2020, 24(10), 1891-1908.
[http://dx.doi.org/10.1021/acs.oprd.0c00189]
[38]
Cole, K.P.; Reizman, B.J.; Hess, M.; Groh, J.M.; Laurila, M.E.; Cope, R.F.; Campbell, B.M.; Forst, M.B.; Burt, J.L.; Maloney, T.D.; Johnson, M.D.; Mitchell, D.; Polster, C.S.; Mitra, A.W.; Boukerche, M.; Conder, E.W.; Braden, T.M.; Miller, R.D.; Heller, M.R.; Phillips, J.L.; Howell, J.R. Small-volume continuous manufacturing of merestinib. part 1. Process development and demonstration. Org. Process Res. Dev., 2019, 23(5), 858-869.
[http://dx.doi.org/10.1021/acs.oprd.8b00441]
[39]
Reizman, B.J.; Cole, K.P.; Hess, M.; Burt, J.L.; Maloney, T.D.; Johnson, M.D.; Laurila, M.E.; Cope, R.F.; Luciani, C.V.; Buser, J.Y.; Campbell, B.M.; Forst, M.B.; Mitchell, D.; Braden, T.M.; Lippelt, C.K.; Boukerche, M.; Starkey, D.R.; Miller, R.D.; Chen, J.; Sun, B.; Kwok, M.; Zhang, X.; Tadayon, S.; Huang, P. Small-volume continuous manufacturing of merestinib. Part 2. Technology transfer and cGMP manufacturing. Org. Process Res. Dev., 2019, 23(5), 870-881.
[http://dx.doi.org/10.1021/acs.oprd.8b00442]
[40]
Tom, J.K.; Achmatowicz, M.M.; Beaver, M.G.; Colyer, J.; Ericson, A.; Hwang, T.L.; Jiao, N.; Langille, N.F.; Liu, M.; Lovette, M.A.; Sangodkar, R.P.; Sharvan Kumar, S.; Spada, S.; Perera, D.; Sheeran, J.; Campbell, K.; Doherty, T.; Ford, D.D.; Fang, Y.Q.; Rossi, E.; Santoni, G.; Cui, S.; Walker, S.D. Implementing continuous manufacturing for the final methylation step in the AMG 397 process to deliver key quality attributes. Org. Process Res. Dev., 2021, 25(3), 486-499.
[http://dx.doi.org/10.1021/acs.oprd.0c00440]
[41]
Cole, K.P.; Groh, J.M.; Johnson, M.D.; Burcham, C.L.; Campbell, B.M.; Diseroad, W.D.; Heller, M.R.; Howell, J.R.; Kallman, N.J.; Koenig, T.M.; May, S.A.; Miller, R.D.; Mitchell, D.; Myers, D.P.; Myers, S.S.; Phillips, J.L.; Polster, C.S.; White, T.D.; Cashman, J.; Hurley, D.; Moylan, R.; Sheehan, P.; Spencer, R.D.; Desmond, K.; Desmond, P.; Gowran, O. Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions. Science, 2017, 356(6343), 1144-1150.
[http://dx.doi.org/10.1126/science.aan0745] [PMID: 28619938]
[42]
Saito, Y.; Nishizawa, K.; Laroche, B.; Ishitani, H.; Kobayashi, S. Continuous‐flow synthesis of (R)‐Tamsulosin utilizing sequential heterogeneous catalysis. Angew. Chem. Int. Ed., 2022, 61(13), e202115643.
[http://dx.doi.org/10.1002/anie.202115643] [PMID: 35068027]
[43]
Mougeot, R.; Jubault, P.; Legros, J.; Poisson, T. Continuous flow synthesis of propofol. Molecules, 2021, 26(23), 7183.
[http://dx.doi.org/10.3390/molecules26237183] [PMID: 34885756]
[44]
Vinet, L.; Di Marco, L.; Kairouz, V.; Charette, A.B. Process intensive synthesis of propofol enabled by continuous flow chemistry. Org. Process Res. Dev., 2022, 26(8), 2330-2336.
[http://dx.doi.org/10.1021/acs.oprd.1c00416]
[45]
Martins, G.M.; Magalhães, M.F.A.; Brocksom, T.J.; Bagnato, V.S.; de Oliveira, K.T. Scaled up and telescoped synthesis of propofol under continuous-flow conditions. J. Flow Chem., 2022, 12(3), 371-379.
[http://dx.doi.org/10.1007/s41981-022-00234-0] [PMID: 35873601]
[46]
Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med., 2017, 7(3), 339-346.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]
[47]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med., 2017, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[48]
Carmona-Vargas, C.C. de C. Alves, L.; Brocksom, T.J; de Oliveira, K.T. Combining batch and continuous flow setups in the end-to-end synthesis of naturally occurring curcuminoids. React. Chem. Eng., 2017, 2, 366-374.
[http://dx.doi.org/10.1039/C6RE00207B]
[49]
Pastre, J.C.; Murray, P.R.D.; Browne, D.L.; Brancaglion, G.A.; Galaverna, R.S.; Pilli, R.A.; Ley, S.V. Integrated batch and continuous flow process for the synthesis of goniothalamin. ACS Omega, 2020, 5(29), 18472-18483.
[http://dx.doi.org/10.1021/acsomega.0c02390] [PMID: 32743225]
[50]
Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. iScience, 2020, 23(9), 101467.
[http://dx.doi.org/10.1016/j.isci.2020.101467] [PMID: 32891056]
[51]
Haider, K.; Shafeeque, M.; Yahya, S.; Yar, M.S. A comprehensive review on pyrazoline based heterocyclic hybrids as potent anticancer agents. Eur. J. Med. Chem. Rep., 2022, 5, 100042.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100042]
[52]
Ebenezer, O.; Shapi, M.; Tuszynski, J.A. A review of the recent development in the synthesis and biological evaluations of pyrazole derivatives. Biomedicines, 2022, 10(5), 1124.
[http://dx.doi.org/10.3390/biomedicines10051124] [PMID: 35625859]
[53]
Britton, J.; Jamison, T.F. A unified continuous flow assembly-line synthesis of highly substituted pyrazoles and pyrazolines. Angew. Chem. Int. Ed., 2017, 56(30), 8823-8827.
[http://dx.doi.org/10.1002/anie.201704529] [PMID: 28544160]
[54]
Britton, J.; Jamison, T.F. Synthesis of celecoxib, mavacoxib, SC-560, fluxapyroxad, and bixafen enabled by continuous flow reaction modules. Eur. J. Org. Chem., 2017, 2017(44), 6566-6574.
[http://dx.doi.org/10.1002/ejoc.201700992]
[55]
Song, D.; Zhao, X.; Wang, F.; Wang, G. A brief review of urate transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia and gout: Current therapeutic options and potential applications. Eur. J. Pharmacol., 2021, 907, 174291.
[http://dx.doi.org/10.1016/j.ejphar.2021.174291] [PMID: 34216576]
[56]
Damião, M.C.F.C.B.; Marçon, H.M.; Pastre, J.C. Continuous flow synthesis of the URAT1 inhibitor lesinurad. React. Chem. Eng., 2020, 5(5), 865-872.
[http://dx.doi.org/10.1039/C9RE00483A]
[57]
Miller, S.J.; Ishitani, H.; Furiya, Y.; Kobayashi, S. High-throughput synthesis of (S)-α-Phellandrene through three-step sequential continuous-flow reactions. Org. Process Res. Dev., 2021, 25(2), 192-198.
[http://dx.doi.org/10.1021/acs.oprd.0c00391]
[58]
Siqueira, H.D.A.S. Neto, B.S.; Sousa, D.P.; Gomes, B.S.; da Silva, F.V.; Cunha, F.V.M.; Wanderley, C.W.S.; Pinheiro, G.; Cândido, A.G.F.; Wong, D.V.T.; Ribeiro, R.A.; Lima-Júnior, R.C.P.; Oliveira, F.A. α-Phellandrene, a cyclic monoterpene, attenuates inflammatory response through neutrophil migration inhibition and mast cell degranulation. Life Sci., 2016, 160, 27-33.
[http://dx.doi.org/10.1016/j.lfs.2016.07.008] [PMID: 27449945]
[59]
Melchionna, M.; Fornasiero, P. Updates on the roadmap for photocatalysis. ACS Catal., 2020, 10(10), 5493-5501.
[http://dx.doi.org/10.1021/acscatal.0c01204]
[60]
Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S.D.A.; Noël, T. Technological innovations in photochemistry for organic synthesis: Flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem. Rev., 2022, 122(2), 2752-2906.
[http://dx.doi.org/10.1021/acs.chemrev.1c00332] [PMID: 34375082]
[61]
Costa e Silva, R.; Oliveira da Silva, L.; de Andrade, B.A.; Brocksom, T.J.; de Oliveira, K.T. Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches. Beilstein J. Org. Chem., 2020, 16, 917-955.
[http://dx.doi.org/10.3762/bjoc.16.83] [PMID: 32461773]
[62]
Aguillón, A.R.; Leão, R.A.C.; de Oliveira, K.T.; Brocksom, T.J.; Miranda, L.S.M.; de Souza, R.O.M.A. Process intensification for obtaining a cannabidiol intermediate by photo-oxygenation of limonene under continuous-flow conditions. Org. Process Res. Dev., 2020, 24(10), 2017-2024.
[http://dx.doi.org/10.1021/acs.oprd.0c00131]
[63]
Batista, G.M.F.; de Castro, P.P.; Dos Santos, H.F.; de Oliveira, K.T.; Amarante, G.W. Electron-donor–acceptor complex-enabled flow methodology for the hydrotrifluoromethylation of unsaturated β-keto esters. Org. Lett., 2020, 22(21), 8598-8602.
[http://dx.doi.org/10.1021/acs.orglett.0c03187] [PMID: 33086786]
[64]
Lévesque, F.; Seeberger, P.H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed., 2012, 51(7), 1706-1709.
[http://dx.doi.org/10.1002/anie.201107446] [PMID: 22250044]
[65]
Kopetzki, D.; Lévesque, F.; Seeberger, P.H. A continuous-flow process for the synthesis of artemisinin. Chemistry, 2013, 19(17), 5450-5456.
[http://dx.doi.org/10.1002/chem.201204558] [PMID: 23520059]
[66]
Burgard, A.; Gieshoff, T.; Peschl, A.; Hörstermann, D.; Keleschovsky, C.; Villa, R.; Michelis, S.; Feth, M.P. Optimisation of the photochemical oxidation step in the industrial synthesis of artemisinin. Chem. Eng. J., 2016, 294, 83-96.
[http://dx.doi.org/10.1016/j.cej.2016.02.085]
[67]
Turconi, J.; Griolet, F.; Guevel, R.; Oddon, G.; Villa, R.; Geatti, A.; Hvala, M.; Rossen, K.; Göller, R.; Burgard, A. Semisynthetic artemisinin, the chemical path to industrial production. Org. Process Res. Dev., 2014, 18(3), 417-422.
[http://dx.doi.org/10.1021/op4003196]
[68]
Herbrik, F.; Sanz, M.; Puglisi, A.; Rossi, S.; Benaglia, M. Enantioselective organophotocatalytic telescoped synthesis of a chiral privileged active pharmaceutical ingredient. Chemistry, 2022, 28(33), e202200164.
[http://dx.doi.org/10.1002/chem.202200164] [PMID: 35239197]
[69]
Bilgin, B. Sendur, M.A.N.; Şener Dede, D.; Akıncı, M.B.; Yalçın, B. A current and comprehensive review of cyclin-dependent kinase inhibitors for the treatment of metastatic breast cancer. Curr. Med. Res. Opin., 2017, 33(9), 1559-1569.
[http://dx.doi.org/10.1080/03007995.2017.1348344] [PMID: 28657360]
[70]
Heiser, U.; Niestroj, A. N-Pyridinyl carboxamides as cyclindependent kinase inhibitors useful in the treatment of diseases. Patent WO2011110612, 2011.
[71]
Quasdorf, K.; Murray, J.I.; Nguyen, H.; Silva Elipe, M.V.; Ericson, A.; Kircher, E.; Guan, L.; Caille, S. Development of a continuous photochemical bromination/alkylation sequence En Route to AMG 423. Org. Process Res. Dev., 2022, 26(2), 458-466.
[http://dx.doi.org/10.1021/acs.oprd.1c00469]
[72]
Caille, S.; Allgeier, A.M.; Bernard, C.; Correll, T.L.; Cosbie, A.; Crockett, R.D.; Cui, S.; Faul, M.M.; Hansen, K.B.; Huggins, S.; Langille, N.; Mennen, S.M.; Morgan, B.P.; Morrison, H.; Muci, A.; Nagapudi, K.; Quasdorf, K.; Ranganathan, K.; Roosen, P.; Shi, X.; Thiel, O.R.; Wang, F.; Tvetan, J.T.; Woo, J.C.S.; Wu, S.; Walker, S.D. Development of a factory process for omecamtiv mecarbil, a novel cardiac myosin activator. Org. Process Res. Dev., 2019, 23(8), 1558-1567.
[http://dx.doi.org/10.1021/acs.oprd.9b00200]
[73]
Murray, J.I.; Silva Elipe, M.V.; Cosbie, A.; Baucom, K.; Quasdorf, K.; Caille, S. Kinetic investigations to enable development of a robust radical benzylic bromination for commercial manufacturing of AMG 423 dihydrochloride hydrate. Org. Process Res. Dev., 2020, 24(8), 1523-1530.
[http://dx.doi.org/10.1021/acs.oprd.0c00256]
[74]
Fu, W.C.; Jamison, T.F. Modular continuous flow synthesis of imatinib and analogues. Org. Lett., 2019, 21(15), 6112-6116.
[http://dx.doi.org/10.1021/acs.orglett.9b02259] [PMID: 31314541]
[75]
Iqbal, N.; Iqbal, N. Imatinib: A breakthrough of targeted therapy in cancer. Chemother. Res. Pract., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/357027] [PMID: 24963404]
[76]
Jaman, Z.; Sobreira, T.J.P.; Mufti, A.; Ferreira, C.R.; Cooks, R.G.; Thompson, D.H. Rapid on-demand synthesis of lomustine under continuous flow conditions. Org. Process Res. Dev., 2019, 23(3), 334-341.
[http://dx.doi.org/10.1021/acs.oprd.8b00387]
[77]
Diab, S.; Raiyat, M.; Gerogiorgis, D.I. Flow synthesis kinetics for lomustine, an anti-cancer active pharmaceutical ingredient. React. Chem. Eng., 2021, 6(10), 1819-1828.
[http://dx.doi.org/10.1039/D1RE00184A]
[78]
Weller, M.; Le Rhun, E. How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat. Rev., 2020, 87, 102029.
[http://dx.doi.org/10.1016/j.ctrv.2020.102029] [PMID: 32408220]
[79]
Biyani, S.A.; Qi, Q.; Wu, J.; Moriuchi, Y.; Larocque, E.A.; Sintim, H.O.; Thompson, D.H. Use of high-throughput tools for telescoped continuous flow synthesis of an alkynylnaphthyridine anticancer agent, HSN608. Org. Process Res. Dev., 2020, 24(10), 2240-2251.
[http://dx.doi.org/10.1021/acs.oprd.0c00289]
[80]
Wang, M.; Naganna, N.; Sintim, H.O. Identification of nicotinamide aminonaphthyridine compounds as potent RET kinase inhibitors and antitumor activities against RET rearranged lung adenocarcinoma. Bioorg. Chem., 2019, 90, 103052.
[http://dx.doi.org/10.1016/j.bioorg.2019.103052] [PMID: 31226468]
[81]
Ley, S.V.; Chen, Y.; Robinson, A.; Otter, B.; Godineau, E.; Battilocchio, C. A comment on continuous flow technologies within the agrochemical industry. Org. Process Res. Dev., 2021, 25(4), 713-720.
[http://dx.doi.org/10.1021/acs.oprd.0c00534]
[82]
Ishitani, H.; Yu, Z.; Ichitsuka, T.; Koumura, N.; Onozawa, S.; Sato, K.; Kobayashi, S. Two‐step continuous‐flow synthesis of fungicide metalaxyl through catalytic C−N bond‐formation processes. Adv. Synth. Catal., 2022, 364(1), 18-23.
[http://dx.doi.org/10.1002/adsc.202100898]
[83]
Ma, X.; Chen, J.; Du, X. A continuous flow process for the synthesis of hymexazol. Org. Process Res. Dev., 2019, 23(6), 1152-1158.
[http://dx.doi.org/10.1021/acs.oprd.9b00047]
[84]
Jiang, Z.; Li, H.; Cao, X.; Du, P.; Shao, H.; Jin, F.; Jin, M.; Wang, J. Determination of hymexazol in 26 foods of plant origin by modified QuEChERS method and liquid chromatography tandem-mass spectrometry. Food Chem., 2017, 228, 411-419.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.014] [PMID: 28317742]
[85]
Wang, Z.Y.; Wei, N.C.; Dai, R.H.; Wang, J.G.; Yu, L.Y. Synthesis method of hymexazol. Patent CN106946809, 2017.
[86]
Gambacorta, G.; Sharley, J.S.; Baxendale, I.R. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J. Org. Chem., 2021, 17, 1181-1312.
[http://dx.doi.org/10.3762/bjoc.17.90] [PMID: 34136010]
[87]
Gumel, A.M.; Annuar, M.S.M. Thermomyces lanuginosus lipasecatalyzed synthesis of natural flavor esters in a continuous flow microreactor. 3 Biotech, 2016, 6, 24.
[http://dx.doi.org/10.1007/s13205-015-0355-9]
[88]
Wang, X.; Hong, P.; Kiss, A.A.; Wang, Q.; Li, L.; Wang, H.; Qiu, T. From batch to continuous sustainable production of 3-methyl-3-penten-2-one for synthetic ketone fragrances. ACS Sustain. Chem.& Eng., 2020, 8(46), 17201-17214.
[http://dx.doi.org/10.1021/acssuschemeng.0c05908]
[89]
Tentori, F.; Brenna, E.; Crotti, M.; Pedrocchi-Fantoni, G.; Ghezzi, M.C.; Tessaro, D. Continuous-flow biocatalytic process for the synthesis of the best stereoisomers of the commercial fragrances leather cyclohexanol (4-Isopropylcyclohexanol) and woody acetate (4-(Tert-Butyl)Cyclohexyl Acetate). Catalysts, 2020, 10(1), 102.
[http://dx.doi.org/10.3390/catal10010102]
[90]
Ouchi, T.; Mutton, R.J.; Rojas, V.; Fitzpatrick, D.E.; Cork, D.G.; Battilocchio, C.; Ley, S.V. Solvent-free continuous operations using small footprint reactors: A Key approach for process intensification. ACS Sustain. Chem.& Eng., 2016, 4(4), 1912-1916.
[http://dx.doi.org/10.1021/acssuschemeng.6b00287]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy