Abstract
In the past few years, using microwave power to heat and wield chemical reactions has become a gradually more popular subject in the scientific community. Microwave-supported organic synthesis is confirmed to be involved in rapidly synthesizing novel compounds with selectivity and enhanced biological activities. Microwave flash heating for chemical synthesis is a spectacular reduction in reaction times, high yield and purity of the products, etc. A catalysis field wherein small organic molecules like L-Proline efficiently and selectively catalyzes organic transformations. Microwave-assisted L-Proline catalyzed reactions are valuable tools for making different acyclic, heterocycles, and carbocyclic scaffolds that signify the main framework of most bioactive compounds. In synthetic organic chemistry, microwave irradiation speedily discarded the conventional heating methods in the world of multicomponent and step-wise synthetic chemistry. This review discusses only L-Proline Catalyzed Organic Reactions under microwave activation using modern organic transformations, including condensation, addition, asymmetric, multi-components, and other modular reactions.
Graphical Abstract
[http://dx.doi.org/10.1002/9783527611003]
[http://dx.doi.org/10.1016/j.tet.2007.06.024]
[http://dx.doi.org/10.1016/0040-4020(95)00662-R];
(b) Varma, R.S. Solvent-free organic synthesis. Using supported reagents and microwave irradiation. Green Chem., 1999, 1, 43-55.
[http://dx.doi.org/10.1039/a808223e];
(c) Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 2001, 57(45), 9199-9223.
[http://dx.doi.org/10.1016/S0040-4020(01)00905-X];
(d) Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—a review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1];
(e) Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680];
(f) Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[http://dx.doi.org/10.1002/9783527651313]
[http://dx.doi.org/10.7439/ijpc.v1i1.130]
[http://dx.doi.org/10.1021/ol061410g] [PMID: 16898820]
[http://dx.doi.org/10.1021/jo0624187] [PMID: 17288387]
[http://dx.doi.org/10.1021/jo060064d] [PMID: 16555849]
[http://dx.doi.org/10.1021/ol0614727] [PMID: 16869664]
[http://dx.doi.org/10.1039/b906835j] [PMID: 19503923]
[http://dx.doi.org/10.1007/s10562-009-0102-0]
[http://dx.doi.org/10.1055/s-0030-1258126]
[http://dx.doi.org/10.1039/c2gc36040c]
(b) Singh, S.K.; Reddy, P.G.; Rao, K.S.; Lohray, B.B.; Misra, P.; Rajjak, S.A.; Rao, Y.K.; Venkateswarlu, A. Polar substitutions in the benzenesulfonamide ring of celecoxib afford a potent 1,5-diarylpyrazole class of COX-2 inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(2), 499-504.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.027] [PMID: 14698190]
[http://dx.doi.org/10.1161/01.CIR.0000055737.15443.F8] [PMID: 12578869]
[http://dx.doi.org/10.1007/s13277-016-5018-x] [PMID: 27020593]
[http://dx.doi.org/10.1021/jm00295a048] [PMID: 4312677]
(b) Smirnoff, P.; Crenshaw, R. R. Stimulation of interferon production in mice and in mouse spleen leukocytes by analogues of BL- 20803 Antimicrob. Agents Chemother., 1977, 11, 571-573.
[http://dx.doi.org/10.1002/jhet.5570280523]
[http://dx.doi.org/10.1039/C6RA22429F]
[http://dx.doi.org/10.1080/00397911.2013.808348]
[http://dx.doi.org/10.17344/acsi.2014.755] [PMID: 25830965]
[http://dx.doi.org/10.3184/174751916X14787124908891]
[http://dx.doi.org/10.1002/cmdc.201800253] [PMID: 29863292];
(b) Chandarlapaty, S.; Sawai, A.; Ye, Q.; Scott, A.; Silinski, M.; Huang, K.; Fadden, P.; Partdrige, J.; Hall, S.; Steed, P.; Norton, L.; Rosen, N.; Solit, D.B. SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin. Cancer Res., 2008, 14(1), 240-248.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1667] [PMID: 18172276]
b) Strakova, I.; Turks, M.; Strakovs, A. Synthesis of triazole- functionalized tetrahydroindazolones by 1,3-dipolar cycloadditions between azides and alkynes. Tetrahedron Letters., 2009, 50(25), 3046-3049.
[http://dx.doi.org/10.1016/j.bmc.2007.03.006];
Chem. Lett., 1997, 7(19), 2551-2556.
[http://dx.doi.org/10.1016/S0960-894X(97)10016-6]
[http://dx.doi.org/10.1021/jm900230j] [PMID: 19552433]
[http://dx.doi.org/10.1016/j.bmcl.2008.05.023] [PMID: 18511277]
[http://dx.doi.org/10.1080/00397911.2019.1614628]
[http://dx.doi.org/10.1016/j.bmcl.2005.02.025] [PMID: 15780616]
[http://dx.doi.org/10.1016/j.bmc.2005.07.066] [PMID: 16154749]
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.019] [PMID: 23500666 ];
(b) Petersen, E.; Schmidt, D.R. Sulfadiazine and pyrimethamine in the postnatal treatment of congenital toxoplasmosis: what are the options? Expert Rev. Anti Infect. Ther., 2003, 1(1), 175-182.
[http://dx.doi.org/10.1586/14787210.1.1.175] [PMID: 15482110]
[http://dx.doi.org/10.1111/j.1368-5031.2004.00173.x] [PMID: 15206509];
Lawson, J.H.; Whiting,, J.F.; Hu, B.; Meyers, C.M.; Kusek,, J.W.; Feldman, H. Effect of dipyridamole plus aspirin on hemodialysis graft patency N. Engl. J. Med, 2009, 360(21), 2191-2201.
[http://dx.doi.org/10.1056/NEJMoa0805840 ] [PMID: 19458364]
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222];
(b) Oliver Kappe, C.; Fabian, W.M.F.; Semones, M.A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, 1997, 53(8), 2803-2816.
[http://dx.doi.org/10.1016/S0040-4020(97)00022-7]
[http://dx.doi.org/10.1007/s11030-008-9086-8] [PMID: 18780153];
(b) Sun, C.; Ji, S.J.; Liu, Y. A novel, simple and efficient synthesis of 3-amino-benzo[ d]imidazo[2,1- b]thiazole derivatives via a multicomponent procedure. J. Chin. Chem. Soc., 2008, 55(2), 292-296.
[http://dx.doi.org/10.1002/jccs.200800043];
(c) Shah, N.K.; Patel, M.P.; Patel, R.G. One-Pot, multicomponent condensation reaction in neutral conditions: synthesis, characterization, and biological studies of fused Thiazolo[2,3-b]quinazolinone Derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(10), 2704-2719.
[http://dx.doi.org/10.1080/10426500802583504]
[http://dx.doi.org/ 10.1016/j.tet.2010.03.006];
(b) Gilchrist, T.L. Heterocyclic Chemistry; John Wiley& Sons, 1997.
[http://dx.doi.org/10.1021/jo00406a058];
(b) Wiley, R.H.; Smith, N.R. Organic Syntheses; Collect; New YorkJohn Wiley & Sons, 1963. ;
(c) Pechmann, H.V. Untersuchungen über die Spaltungsproducte von α-Oxysäuren: Erste Abhandlung. Justus Liebigs Ann. Chem., 1891, 264, 261-309.
[http://dx.doi.org/10.1002/jlac.18912610204];
(d) Ashworth, I.W.; Bowden, M.C.; Dembofsky, B.; Levin, D.; Moss, W.; Robinson, E.; Szczur, N.; Virica, J. A New Route for Manufacture of 3-Cyano-1-naphthalenecarboxylic Acid. Org. Process Res. Dev., 2003, 7(1), 74-81.
[http://dx.doi.org/10.1021/op025571l]
[http://dx.doi.org/10.1039/C8RA07517D] [PMID: 35518091]
[http://dx.doi.org/10.1002/jhet.4447]
[http://dx.doi.org/10.1039/C6RA06831F]
[http://dx.doi.org/10.15226/sojmse.2015.00128]
[http://dx.doi.org/10.2174/1570178616666190618153721]
[http://dx.doi.org/10.3390/catal12030249]
[http://dx.doi.org/10.1007/s00706-019-02479-3]
[http://dx.doi.org/10.1002/slct.201702075]