Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Mini-Review Article

Roadmap to Pyruvate Kinase M2 Modulation - A Computational Chronicle

Author(s): Saumya Kapoor, Deep Rohan Chatterjee, Moumita Ghosh Chowdhury, Rudradip Das and Amit Shard*

Volume 24, Issue 6, 2023

Published on: 02 May, 2023

Page: [464 - 483] Pages: 20

DOI: 10.2174/1389450124666230330103126

Price: $65

Abstract

Pyruvate kinase M2 (PKM2) has surfaced as a potential target for anti-cancer therapy. PKM2 is known to be overexpressed in the tumor cells and is a critical metabolic conduit in supplying the augmented bioenergetic demands of the recalcitrant cancer cells. The presence of PKM2 in structurally diverse tetrameric as well as dimeric forms has opened new avenues to design novel modulators. It is also a truism to state that drug discovery has advanced significantly from various computational techniques like molecular docking, virtual screening, molecular dynamics, and pharmacophore mapping. The present review focuses on the role of computational tools in exploring novel modulators of PKM2. The structural features of various isoforms of PKM2 have been discussed along with reported modulators. An extensive analysis of the structure-based and ligand- based in silico methods aimed at PKM2 modulation has been conducted with an in-depth review of the literature. The role of advanced tools like QSAR and quantum mechanics has been established with a brief discussion of future perspectives.

Graphical Abstract

[1]
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci 2019; 9(1): 52.
[http://dx.doi.org/10.1186/s13578-019-0317-8] [PMID: 31391918]
[2]
Patel S, Das A, Meshram P, et al. Pyruvate kinase M2 in chronic inflammations: A potpourri of crucial protein–protein interactions. Cell Biol Toxicol 2021; 37(5): 653-78.
[http://dx.doi.org/10.1007/s10565-021-09605-0] [PMID: 33864549]
[3]
Mazurek S, Mazurek S. Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 2011; 43(7): 969-80.
[http://dx.doi.org/10.1016/j.biocel.2010.02.005] [PMID: 20156581]
[4]
Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 2005; 44(27): 9417-29.
[http://dx.doi.org/10.1021/bi0474923] [PMID: 15996096]
[5]
Israelsen WJ, Vander Heiden MG. Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol 2015; 43: 43-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.08.004] [PMID: 26277545]
[6]
Lang N, Wang C, Zhao J, Shi F, Wu T, Cao H. Long non-coding RNA BCYRN1 promotes glycolysis and tumor progression by regulating the miR-149/PKM2 axis in non-small-cell lung cancer. Mol Med Rep 2020; 21(3): 1509-16.
[http://dx.doi.org/10.3892/mmr.2020.10944] [PMID: 32016455]
[7]
Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 1998; 6(2): 195-210.
[http://dx.doi.org/10.1016/S0969-2126(98)00021-5] [PMID: 9519410]
[8]
Cardenas JM, Dyson RD. Mammalian pyruvate kinase hybrid isozymes: Tissue distribution and physiological significance. J Exp Zool 1978; 204(3): 361-7.
[http://dx.doi.org/10.1002/jez.1402040307] [PMID: 660140]
[9]
Zahra K, Dey T, Ashish , Mishra SP, Pandey U. Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Front Oncol 2020; 10: 159.
[http://dx.doi.org/10.3389/fonc.2020.00159] [PMID: 32195169]
[10]
Secrest MH, Storm M, Carrington C, et al. Prevalence of pyruvate kinase deficiency: A systematic literature review. Eur J Haematol 2020; 105(2): 173-84.
[http://dx.doi.org/10.1111/ejh.13424] [PMID: 32279356]
[11]
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The role of PKM2 in metabolic reprogramming: Insights into the regulatory roles of non-coding RNAs. Int J Mol Sci 2021; 22(3): 1171.
[http://dx.doi.org/10.3390/ijms22031171] [PMID: 33503959]
[12]
Tani K, Fujii H, Tsutsumi H, et al. Human liver type pyruvate kinase: cDNA cloning and chromosomal assignment. Biochem Biophys Res Commun 1987; 143(2): 431-8.
[http://dx.doi.org/10.1016/0006-291X(87)91372-6] [PMID: 3566732]
[13]
Kenzaburo T, Yoshida MC, Hitoshi S, et al. Human M2-type pyruvate kinase: cDNA cloning, chromosomal assignment and expression in hepatoma. Gene 1988; 73(2): 509-16.
[http://dx.doi.org/10.1016/0378-1119(88)90515-X] [PMID: 2854097]
[14]
Imamura K, Tanaka T. Multimolecular forms of pyruvate kinase from rat and other mammalian tissues. I. Electrophoretic studies. J Biochem 1972; 71(6): 1043-51.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a129852] [PMID: 4342282]
[15]
Liu Z, Le Y, Chen H, Zhu J, Lu D. Role of PKM2-mediated immunometabolic reprogramming on development of cytokine storm. Front Immunol 2021; 12: 748573.
[http://dx.doi.org/10.3389/fimmu.2021.748573] [PMID: 34759927]
[16]
Morgan HP, O’Reilly FJ, Wear MA, et al. M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc Natl Acad Sci USA 2013; 110(15): 5881-6.
[http://dx.doi.org/10.1073/pnas.1217157110] [PMID: 23530218]
[17]
Ikeda Y, Taniguchi N, Noguchi T. Dominant negative role of the glutamic acid residue conserved in the pyruvate kinase M(1) isozyme in the heterotropic allosteric effect involving fructose-1,6-bisphosphate. J Biol Chem 2000; 275(13): 9150-6.
[http://dx.doi.org/10.1074/jbc.275.13.9150] [PMID: 10734049]
[18]
Alfarouk KO. Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J Enzyme Inhib Med Chem 2016; 31(6): 859-66.
[http://dx.doi.org/10.3109/14756366.2016.1140753] [PMID: 26864256]
[19]
Batra S, Adekola KU, Rosen ST, Shanmugam M. Cancer metabolism as a therapeutic target. Oncology 2013; 27(5): 460-7.
[PMID: 25184270]
[20]
Arora S, Joshi G, Chaturvedi A, Heuser M, Patil S, Kumar R. A perspective on medicinal chemistry approaches for targeting pyruvate kinase M2. J Med Chem 2022; 65(2): 1171-205.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00981] [PMID: 34726055]
[21]
Rihan M, Nalla LV, Dharavath A, Shard A, Kalia K, Khairnar A. Pyruvate kinase M2: A metabolic bug in re-wiring the tumor Microenvironment. Cancer Microenviron 2019; 12(2-3): 149-67.
[http://dx.doi.org/10.1007/s12307-019-00226-0] [PMID: 31183810]
[22]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[23]
Rajala A, Soni K, Rajala RVS. Metabolic and non-metabolic roles of pyruvate kinase M2 isoform in diabetic retinopathy. Sci Rep 2020; 10(1): 7456.
[http://dx.doi.org/10.1038/s41598-020-64487-2] [PMID: 32366925]
[24]
Qi W, Keenan HA, Li Q, et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med 2017; 23(6): 753-62.
[http://dx.doi.org/10.1038/nm.4328] [PMID: 28436957]
[25]
Zanella A, Fermo E, Bianchi P, Valentini G. Red cell pyruvate kinase deficiency: molecular and clinical aspects. Br J Haematol 2005; 130(1): 11-25.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05527.x] [PMID: 15982340]
[26]
Rathod B, Chak S, Patel S, Shard A. Tumor pyruvate kinase M2 modulators: A comprehensive account of activators and inhibitors as anticancer agents. RSC Medicinal Chemistry 2021; 12(7): 1121-41.
[http://dx.doi.org/10.1039/D1MD00045D] [PMID: 34355179]
[27]
Kung C, Hixon J, Choe S, et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem Biol 2012; 19(9): 1187-98.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.021] [PMID: 22999886]
[28]
Anastasiou D, Yu Y, Israelsen WJ, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 2012; 8(10): 839-47.
[http://dx.doi.org/10.1038/nchembio.1060] [PMID: 22922757]
[29]
Sommakia S, Pathi S, Matsumura Y, et al. Abstract 606: Pkm2 activation modulates the tumor-immune microenvironment and enhances response to checkpoint inhibitors in preclinical solid tumor models. Cancer Res 2021; 81(13_Supplement): 606-6.
[http://dx.doi.org/10.1158/1538-7445.AM2021-606]
[30]
Hsieh IS, Gopula B, Chou CC, et al. Development of novel irreversible pyruvate kinase M2 inhibitors. J Med Chem 2019; 62(18): 8497-510.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00763] [PMID: 31465224]
[31]
Vander Heiden MG, Christofk HR, Schuman E, et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol 2010; 79(8): 1118-24.
[http://dx.doi.org/10.1016/j.bcp.2009.12.003] [PMID: 20005212]
[32]
Yu W, Jr ADM. Chapter 5 computer-aided drug design methods. Antibiotics: Methods and Protocols. 2017; 1520: pp. 85-106.
[http://dx.doi.org/10.1007/978-1-4939-6634-9]
[33]
Ferguson FM, Gray NS. Kinase inhibitors: The road ahead. Nat Rev Drug Discov 2018; 17(5): 353-77.
[http://dx.doi.org/10.1038/nrd.2018.21] [PMID: 29545548]
[34]
Sabe VT, Ntombela T, Jhamba LA, et al. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur J Med Chem 2021; 224: 113705.
[http://dx.doi.org/10.1016/j.ejmech.2021.113705] [PMID: 34303871]
[35]
Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K. In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem 2020; 7: 873.
[http://dx.doi.org/10.3389/fchem.2019.00873] [PMID: 31970149]
[36]
Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Computeraided Drug Des 2011; 7(2): 146-57.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[37]
Taylor RD, Jewsbury PJ, Essex JW. A review of protein-small molecule docking methods. J Comput Aided Mol Des 2002; 16(3): 151-66.
[http://dx.doi.org/10.1023/A:1020155510718] [PMID: 12363215]
[38]
Sousa SF, Fernandes PA, Ramos MJ. Protein-ligand docking: Current status and future challenges. Proteins 2006; 65(1): 15-26.
[http://dx.doi.org/10.1002/prot.21082] [PMID: 16862531]
[39]
Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci 2019; 20(18): 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[40]
Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulated annealing. Proteins 1990; 8(3): 195-202.
[http://dx.doi.org/10.1002/prot.340080302] [PMID: 2281083]
[41]
Halgren TA, Murphy RB, Friesner RA, et al. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004; 47(7): 1750-9.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[42]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J Mol Biol 1997; 267(3): 727-48.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[43]
Guo C, Linton A, Jalaie M, et al. Discovery of 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as novel PKM2 activators. Bioorg Med Chem Lett 2013; 23(11): 3358-63.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.090] [PMID: 23622982]
[44]
Martinez-Archundia M, Colin-Astudillo B, Gómez-Hernández L, Abarca-Rojano E, Correa-Basurto J. Docking analysis provide structural insights to design novel ligands that target PKM2 and HDAC8 with potential use for cancer therapy. Mol Simul 2019; 45(9): 685-93.
[http://dx.doi.org/10.1080/08927022.2019.1579326]
[45]
Shankar Babu M, Mahanta S, Lakhter AJ, Hato T, Paul S, Naidu SR. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS One 2018; 13(2): e0191419.
[http://dx.doi.org/10.1371/journal.pone.0191419] [PMID: 29394289]
[46]
Patel R, Raj AK, Lokhande KB, et al. Detection of nail oncometabolite SAICAR in oral cancer patients and its molecular interactions with PKM2 enzyme. Int J Environ Res Public Health 2021; 18(21): 11225.
[http://dx.doi.org/10.3390/ijerph182111225] [PMID: 34769743]
[47]
Das R, Kapoor S, Chowdhury MG, Shard A. Docking, ADMET and molecular dynamics studies of plant-based phenolics as tumor pyruvate kinase M2 modulators. Indian For 2022; 148(4): 368-80.
[http://dx.doi.org/10.36808/if/2022/v148i4/168345]
[48]
Bender BJ, Gahbauer S, Luttens A, et al. A practical guide to large-scale docking. Nat Protoc 2021; 16(10): 4799-832.
[http://dx.doi.org/10.1038/s41596-021-00597-z] [PMID: 34561691]
[49]
Crampon K, Giorkallos A, Deldossi M, Baud S, Steffenel LA. Machine-learning methods for ligand–protein molecular docking. Drug Discov Today 2022; 27(1): 151-64.
[http://dx.doi.org/10.1016/j.drudis.2021.09.007] [PMID: 34560276]
[50]
Walters WP, Wang R. New trends in virtual screening. J Chem Inf Model 2020; 60(9): 4109-11.
[http://dx.doi.org/10.1021/acs.jcim.0c01009] [PMID: 32981325]
[51]
Lionta E, Spyrou G, Vassilatis D, Cournia Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr Top Med Chem 2014; 14(16): 1923-38.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[52]
Chen C, Wang T, Wu F, et al. Combining structure-based pharmacophore modeling, virtual screening, and in silico ADMET analysis to discover novel tetrahydro-quinoline based pyruvate kinase isozyme M2 activators with antitumor activity. Drug Des Devel Ther 2014; 8: 1195-210.
[http://dx.doi.org/10.2147/DDDT.S62921] [PMID: 25214764]
[53]
Kim DJ, Park YS, Kim ND, et al. A novel pyruvate kinase M2 activator compound that suppresses lung cancer cell viability under hypoxia. Mol Cells 2015; 38(4): 373-9.
[http://dx.doi.org/10.14348/molcells.2015.2314] [PMID: 25813626]
[54]
Li Y, Bao M, Yang C, et al. Computer-aided identification of a novel pyruvate kinase M2 activator compound. Cell Prolif 2018; 51(6): e12509.
[http://dx.doi.org/10.1111/cpr.12509] [PMID: 30133040]
[55]
Li RZ, Fan XX, Shi DF, et al. Identification of a new pyruvate kinase M2 isoform (PKM2) activator for the treatment of non-small-cell lung cancer (NSCLC). Chem Biol Drug Des 2018; 92(5): 1851-8.
[http://dx.doi.org/10.1111/cbdd.13354] [PMID: 29931766]
[56]
Zhou Y, Huang Z, Su J, et al. Benserazide is a novel inhibitor targeting PKM2 for melanoma treatment. Int J Cancer 2020; 147(1): 139-51.
[http://dx.doi.org/10.1002/ijc.32756] [PMID: 31652354]
[57]
Kuznetsov A, Faustova I, Järv J. Computational simulation of ligand docking to L-type pyruvate kinase subunit. Comput Biol Chem 2014; 48: 40-4.
[http://dx.doi.org/10.1016/j.compbiolchem.2013.10.006] [PMID: 24316416]
[58]
Sun D, Zhao Y, Zhang S, Zhang L, Liu B, Ouyang L. Dual-target kinase drug design: Current strategies and future directions in cancer therapy. Eur J Med Chem 2020; 188: 112025.
[http://dx.doi.org/10.1016/j.ejmech.2019.112025] [PMID: 31931340]
[59]
Raghavendra NM, Pingili D, Kadasi S, Mettu A, Prasad SVUM. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur J Med Chem 2018; 143: 1277-300.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.021] [PMID: 29126724]
[60]
Zhao H, Caflisch A. Molecular dynamics in drug design. Eur J Med Chem 2015; 91: 4-14.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.004] [PMID: 25108504]
[61]
Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE. Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 2009; 19(2): 120-7.
[http://dx.doi.org/10.1016/j.sbi.2009.03.004] [PMID: 19361980]
[62]
Ganesan A, Coote ML, Barakat K. Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discov Today 2017; 22(2): 249-69.
[http://dx.doi.org/10.1016/j.drudis.2016.11.001] [PMID: 27890821]
[63]
Weiner PK, Kollman PA. AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. J Comput Chem 1981; 2(3): 287-303.
[http://dx.doi.org/10.1002/jcc.540020311]
[64]
Kalyaanamoorthy S, Chen YPP. Modelling and enhanced molecular dynamics to steer structure-based drug discovery. Prog Biophys Mol Biol 2014; 114(3): 123-36.
[http://dx.doi.org/10.1016/j.pbiomolbio.2013.06.004] [PMID: 23827463]
[65]
Kalaiarasan P, Subbarao N, Bamezai RNK. Molecular simulation of Tyr105 phosphorylated pyruvate kinase M2 to understand its structure and dynamics. J Mol Model 2014; 20(9): 2447.
[http://dx.doi.org/10.1007/s00894-014-2447-6] [PMID: 25208557]
[66]
Kalaiarasan P, Kumar B, Chopra R, Gupta V, Subbarao N, Bamezai RNK. in silico screening, genotyping, molecular dynamics simulation and activity studies of SNPs in pyruvate kinase M2. PLoS One 2015; 10(3): e0120469.
[http://dx.doi.org/10.1371/journal.pone.0120469] [PMID: 25768091]
[67]
Macpherson JA, Theisen A, Masino L, et al. Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation. eLife 2019; 8: e45068.
[http://dx.doi.org/10.7554/eLife.45068] [PMID: 31264961]
[68]
Johnson LE, Ginovska B, Fenton AW, Raugei S. Chokepoints in mechanical coupling associated with allosteric proteins: The pyruvate kinase example. Biophys J 2019; 116(9): 1598-608.
[http://dx.doi.org/10.1016/j.bpj.2019.03.026] [PMID: 31010662]
[69]
Patle R, Shinde S, Patel S, et al. Discovery of boronic acid-based potent activators of tumor pyruvate kinase M2 and development of gastroretentive nanoformulation for oral dosing. Bioorg Med Chem Lett 2021; 42: 128062.
[http://dx.doi.org/10.1016/j.bmcl.2021.128062] [PMID: 33901643]
[70]
Patel S, Globisch C, Pulugu P, Kumar P, Jain A, Shard A. Novel imidazopyrimidines-based molecules induce tetramerization of tumor pyruvate kinase M2 and exhibit potent antiproliferative profile. Eur J Pharm Sci 2022; 170: 106112.
[http://dx.doi.org/10.1016/j.ejps.2021.106112] [PMID: 34971746]
[71]
Gorostiola González M, Janssen APA, IJzerman AP, Heitman LH, van Westen GJP. Oncological drug discovery: AI meets structure-based computational research. Drug Discov Today 2022; 27(6): 1661-70.
[http://dx.doi.org/10.1016/j.drudis.2022.03.005] [PMID: 35301149]
[72]
Bacilieri M, Moro S. Ligand-based drug design methodologies in drug discovery process: An overview. Curr Drug Discov Technol 2006; 3(3): 155-65.
[http://dx.doi.org/10.2174/157016306780136781] [PMID: 17311561]
[73]
Acharya C, Coop A, Polli JE, Mackerell AD Jr. Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Computeraided Drug Des 2011; 7(1): 10-22.
[http://dx.doi.org/10.2174/157340911793743547] [PMID: 20807187]
[74]
Zhang L, Tsai KC, Du L, Fang H, Li M, Xu W. How to generate reliable and predictive CoMFA models. Curr Med Chem 2011; 18(6): 923-30.
[http://dx.doi.org/10.2174/092986711794927702] [PMID: 21182474]
[75]
Kusuma M, Arora S, Kalra S, Chaturvedi A, Heuser M, Kumar R. Rationalization of the activity Profile of Pyruvate Kinase Isozyme M2 (PKM2) Inhibitors using 3D QSAR. Curr Top Med Chem 2021; 21(25): 2258-71.
[http://dx.doi.org/10.2174/1568026621666210804124555] [PMID: 34348626]
[76]
Chen JJ, Schmucker LN, Visco DP Jr. Virtual high-throughput screens identifying hPK-M2 inhibitors: Exploration of model extrapolation. Comput Biol Chem 2019; 78: 317-29.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.12.006] [PMID: 30623877]
[77]
Cavasotto CN, Adler NS, Aucar MG. Quantum chemical approaches in structure-based virtual screening and lead optimization. Front Chem 2018; 6: 188.
[http://dx.doi.org/10.3389/fchem.2018.00188] [PMID: 29896472]
[78]
Barbault F, Maurel F. Simulation with quantum mechanics/molecular mechanics for drug discovery. Expert Opin Drug Discov 2015; 10(10): 1047-57.
[http://dx.doi.org/10.1517/17460441.2015.1076389] [PMID: 26289577]
[79]
Kar RK. Benefits of hybrid QM/MM over traditional classical mechanics in pharmaceutical systems. Drug Discov Today 2022; 103374
[http://dx.doi.org/10.1016/j.drudis.2022.103374] [PMID: 36174967]
[80]
Paligaspe P, Weerasinghe S, Dissanayake DP, Senthilnithy R. Identify the effect of As(III) on the structural stability of monomeric PKM2 and its carcinogenicity: A molecular dynamics and QM/MM based approach. J Mol Struct 2021; 1235: 130257.
[http://dx.doi.org/10.1016/j.molstruc.2021.130257]
[81]
Rasool N, Yasmin F, Sahai S, Hussain W, Inam H, Arshad A. Biological perspective of thiazolide derivatives against Mpro and MTase of SARS-CoV-2: Molecular docking, DFT and MD simulation investigations. Chem Phys Lett 2021; 771: 138463.
[http://dx.doi.org/10.1016/j.cplett.2021.138463] [PMID: 33716307]
[82]
Jadhav J, Das R, Kamble S, et al. Ferrocene-based modulators of cancer-associated tumor pyruvate kinase M2. J Organomet Chem 2022; 968-969: 122338.
[http://dx.doi.org/10.1016/j.jorganchem.2022.122338]
[83]
De Cesco S, Kurian J, Dufresne C, Mittermaier AK, Moitessier N. Covalent inhibitors design and discovery. Eur J Med Chem 2017; 138: 96-114.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.019] [PMID: 28651155]
[84]
Razzaqi M, Rasaee MJ, Paknejad M. A critical challenge in the development of antibody: Selecting the appropriate fragment of the target protein as an antigen based on various epitopes or similar structure. Mol Immunol 2019; 111: 128-35.
[http://dx.doi.org/10.1016/j.molimm.2019.04.018] [PMID: 31054406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy