Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanotheranostics for Diagnosis and Treatment of Breast Cancer

Author(s): Parth Patel, Kishore Kumar, Vineet K. Jain, Harvinder Popli, Awesh K. Yadav and Keerti Jain*

Volume 29, Issue 10, 2023

Published on: 05 April, 2023

Page: [732 - 747] Pages: 16

DOI: 10.2174/1381612829666230329122911

Price: $65

Abstract

Recently, breast cancer has reached the highest incident rate amongst all the reported cancers, and one of its variants, known as triple-negative breast cancer (TNBC), is deadlier compared to the other types of breast cancer due to a lack of feasible diagnostic techniques. Advancements in nanotechnology have paved the way to formulate several nanocarriers with the ability to deliver anticancer drugs effectively and selectively to cancer cells with minimum side effects to non-cancerous cells. Nanotheranostics is a novel approach that can be used in the diagnosis of disease along with therapeutic effects. Currently, various imaging agents, such as organic dyes, radioactive agents, upconversion nanoparticles, various contrasting agents, quantum dots, etc., are being explored for the imaging of internal organs or to examine drug distribution. Furthermore, ligand-targeted nanocarriers, which have the potential to target cancer sites, are being used as advanced agents for cancer theranostic applications, including the identification of various metastatic sites of the cancerous tumor. This review article discusses the need for theranostic application in breast cancer with various imaging techniques, the latest nanotheranostic carriers in breast cancer, and related safety and toxicity issues, as well as highlights the importance of nanotheranostics in breast cancer, which could be helpful in deciphering questions related to nanotheranostic systems.

[1]
Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers 2019; 5(1): 66.
[http://dx.doi.org/10.1038/s41572-019-0111-2] [PMID: 31548545]
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchió C, Reis- Filho JS. Breast cancer precursors revisited: Molecular features and progression pathways. Histopathology 2010; 57(2): 171-92.
[http://dx.doi.org/10.1111/j.1365-2559.2010.03568.x] [PMID: 20500230]
[4]
Breast-conserving surgery (Lumpectomy) | Johns Hopkins medicine. Available from: https://www.hopkinsmedicine.org/ health/treatment-tests-and-therapies/breast-conserving-surgery
[5]
World Health Organization. Assessing national capacity for the prevention and control of noncommunicable diseases: Report of the 2019 global survey. 2020; 1-116.
[6]
Mehra NK, Jain K, Jain NK. Multifunctional carbon nanotubes in cancer therapy and imaging. In: Nanobiomat Med Imag Appl Nanobiomat. 2016; 8: pp. 421-53.
[http://dx.doi.org/10.1016/B978-0-323-41736-5.00014-5]
[7]
Bajwa N, Kumar Mehra N, Jain K, Kumar Jain N. Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots. Artif Cells Nanomed Biotechnol 2016; 44(7): 1774-82.
[http://dx.doi.org/10.3109/21691401.2015.1102740] [PMID: 26508412]
[8]
Jain K, Zhong J. Theranostic applications of nanomaterials. Curr Pharm Des 2022; 28(2): 77-7.
[http://dx.doi.org/10.2174/138161282802211223150153] [PMID: 35043759]
[9]
Ahmad J, Rizwanullah M, Suthar T, et al. Receptor-targeted surface-engineered nanomaterials for breast cancer imaging and theranostic applications. Crit Rev Ther Drug Carrier Syst 2022; 39(6): 1-44.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2022040686] [PMID: 35997100]
[10]
Chauhan S, Naqvi S, Jain K. Dendrimers and its theranostic applications in infectious diseases. In: Nanotheranostics for Treatment and Diagnosis of Infectious Diseases. Academic Press, Cambridge, Massachusetts: 2022; pp. 199-228.
[http://dx.doi.org/10.1016/B978-0-323-91201-3.00004-9]
[11]
Mehra N, Jain K, Jain N. Design of multifunctional nanocarriers for delivery of anti-cancer therapy. Curr Pharm Des 2015; 21(42): 6157-64.
[http://dx.doi.org/10.2174/1381612821666151027153106] [PMID: 26503145]
[12]
Rizwanullah M, Ahmad MZ, Ghoneim MM, et al. Receptor-mediated targeted delivery of surface-modifiednanomedicine in breast cancer: Recent update and challenges. Pharmaceutics 2021; 13(12): 2039.
[http://dx.doi.org/10.3390/pharmaceutics13122039] [PMID: 34959321]
[13]
Fan Z, Fu PP, Yu H, Ray PC. Theranostic nanomedicine for cancer detection and treatment. Yao Wu Shi Pin Fen Xi 2014; 22(1): 3-17.
[PMID: 24673900]
[14]
De Jong M, Essers J, Van Weerden WM. Imaging preclinical tumour models: Improving translational power. Nat Rev Cancer 2014; 14(7): 481-93.
[http://dx.doi.org/10.1038/nrc3751]
[15]
Arranja AG, Pathak V, Lammers T, Shi Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 2017; 115: 87-95.
[http://dx.doi.org/10.1016/j.phrs.2016.11.014] [PMID: 27865762]
[16]
Etrych T, Janoušková O, Chytil P. Fluorescence imaging as a tool in preclinical evaluation of polymer-based nano-DDS systems intended for cancer treatment. Pharmaceutics 2019; 11(9): 471.
[http://dx.doi.org/10.3390/pharmaceutics11090471] [PMID: 31547308]
[17]
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for theranostics: Recent advances and future challenges. Chem Rev 2015; 115(1): 327-94.
[http://dx.doi.org/10.1021/cr300213b] [PMID: 25423180]
[18]
Bam R, Laffey M, Nottberg K, Lown PS, Hackel BJ, Wilson KE. Affibody-indocyanine green based contrast agent for photoacoustic and fluorescence molecular imaging of B7–H3 expression in breast cancer. Bioconjug Chem 2019; 30(6): 1677-89.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00239] [PMID: 31082216]
[19]
Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D. Advances in highly doped upconversion nanoparticles. Nat Commun 2018; 9(1): 2415.
[http://dx.doi.org/10.1038/s41467-018-04813-5] [PMID: 29925838]
[20]
Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA. Upconverting nanoparticles: Assessing the toxicity. Chem Soc Rev 2015; 44(6): 1561-84.
[http://dx.doi.org/10.1039/C4CS00177J] [PMID: 25176037]
[21]
Li M, Fang H, Liu Q, et al. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomater Sci 2020; 8(7): 1802-14.
[http://dx.doi.org/10.1039/D0BM00029A] [PMID: 32163070]
[22]
Jun Y, Seo J, Cheon J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 2008; 41(2): 179-89.
[http://dx.doi.org/10.1021/ar700121f] [PMID: 18281944]
[23]
Bitonto V, Alberti D, Ruiu R, Aime S, Geninatti Crich S, Cutrin JC. L-ferritin: A theranostic agent of natural origin for MRI visualization and treatment of breast cancer. J Control Release 2020; 319: 300-10.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.051] [PMID: 31899271]
[24]
Bardhan R, Chen W, Perez-Torres C, et al. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv Funct Mater 2009; 19(24): 3901-9.
[http://dx.doi.org/10.1002/adfm.200901235]
[25]
Drukker K, Edwards A, Doyle C, Papaioannou J, Kulkarni K, Giger ML. Breast MRI radiomics for the pretreatment prediction of response to neoadjuvant chemotherapy in node-positive breast cancer patients. J Med Imaging 2019; 6(3): 1.
[http://dx.doi.org/10.1117/1.JMI.6.3.034502] [PMID: 31592438]
[26]
Schluep T, Hwang J, Hildebrandt IJ, et al. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc Natl Acad Sci USA 2009; 106(27): 11394-9.
[http://dx.doi.org/10.1073/pnas.0905487106] [PMID: 19564622]
[27]
Young C, Schluep T, Hwang J, Eliasof S. CRLX101 (formerly IT-101) – A novel nanopharmaceutical of camptothecin in clinical development. Curr Bioact Compd 2011; 7(1): 8-14.
[http://dx.doi.org/10.2174/157340711795163866] [PMID: 22081768]
[28]
Chen D, Yang D, Dougherty CA, et al. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal–organic frameworks nanomaterials. ACS Nano 2017; 11(4): 4315-27.
[http://dx.doi.org/10.1021/acsnano.7b01530] [PMID: 28345871]
[29]
Jeon M, Kim G, Lee W, Baek S, Jung HN, Im HJ. Development of theranostic dual-layered Au-liposome for effective tumor targeting and photothermal therapy. J Nanobiotechnology 2021; 19(1): 262.
[http://dx.doi.org/10.1186/s12951-021-01010-3] [PMID: 34481489]
[30]
Ultrasound. National Insititute of Biomedical Imaging and Bioengineering, 2016. Available from: https://www.nibib.nih.gov/science-education/science-topics/ultrasound
[31]
Zhang M, Fabiilli ML, Haworth KJ, et al. Initial investigation of acoustic droplet vaporization for occlusion in canine kidney. Ultrasound Med Biol 2010; 36(10): 1691-703.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.06.020] [PMID: 20800939]
[32]
Wang CH, Kang ST, Lee YH, Luo YL, Huang YF, Yeh CK. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials 2012; 33(6): 1939-47.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.036] [PMID: 22142768]
[33]
Bush N, Healey A, Shah A, et al. Theranostic attributes of acoustic cluster therapy and its use for enhancing the effectiveness of liposomal doxorubicin treatment of human triple negative breast cancer in mice. Front Pharmacol 2020; 11: 75.
[http://dx.doi.org/10.3389/fphar.2020.00075] [PMID: 32153400]
[34]
Reshma VG, Mohanan PV. Quantum dots: Applications and safety consequences. J Lumin 2019; 205: 287-98.
[http://dx.doi.org/10.1016/j.jlumin.2018.09.015]
[35]
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim HW, Mozafari M. Quantum dots: A review from concept to clinic. Biotechnol J 2020; 15(12): 2000117.
[http://dx.doi.org/10.1002/biot.202000117] [PMID: 32845071]
[36]
Kim MW, Jeong HY, Kang SJ, et al. Anti-EGF receptor aptamer-guided co-delivery of anti-cancer siRNAs and quantum dots for theranostics of triple-negative breast cancer. Theranostics 2019; 9(3): 837-52.
[http://dx.doi.org/10.7150/thno.30228] [PMID: 30809312]
[37]
Zavvar T, Babaei M, Abnous K, et al. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model. Int J Pharm 2020; 578: 119091.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119091] [PMID: 32007591]
[38]
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38(1): 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[39]
Li X, Zhang W, Liu L, et al. In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. Anal Chem 2014; 86(13): 6596-603.
[http://dx.doi.org/10.1021/ac501205q] [PMID: 24892693]
[40]
Li F, Zeng Z, Hamilton D, Zu Y, Li Z. EpCAM-targeting aptamer radiotracer for tumor-specific PET imaging. Bioconjug Chem 2021; 32(6): 1139-45.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00188] [PMID: 34014641]
[41]
Pereira PMR, Ragupathi A, Shmuel S, Mandleywala K, Viola NT, Lewis JS. HER2-targeted PET imaging and therapy of hyaluronan-masked HER2-overexpressing breast cancer. Mol Pharm 2020; 17(1): 327-37.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01091] [PMID: 31804840]
[42]
Chen JS, Chen J, Bhattacharjee S, et al. Functionalized nanoparticles with targeted antibody to enhance imaging of breast cancer in vivo. J Nanobiotechnology 2020; 18(1): 135.
[http://dx.doi.org/10.1186/s12951-020-00695-2] [PMID: 32948179]
[43]
Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012; 2(1): 3-44.
[http://dx.doi.org/10.7150/thno.3463] [PMID: 22272217]
[44]
Erdmann S, Niederstadt L, Koziolek EJ, et al. CMKLR1-targeting peptide tracers for PET/MR imaging of breast cancer. Theranostics 2019; 9(22): 6719-33.
[http://dx.doi.org/10.7150/thno.34857] [PMID: 31588246]
[45]
Song N, Zhao L, Zhu M, Zhao J. 99mTc-labeled LyP-1 for SPECT imaging of triple negative breast cancer. Contrast Media Mol Imaging 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/9502712] [PMID: 31598115]
[46]
Li J, Li M, Tian L, et al. Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int J Pharm 2020; 578: 119122.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119122] [PMID: 32035259]
[47]
Yang R, Lu M, Ming L, et al. 89Zr-labeled multifunctional liposomes conjugate chitosan for PET-trackable triple-negative breast cancer stem cell targeted therapy. Int J Nanomedicine 2020; 15: 9061-74.
[http://dx.doi.org/10.2147/IJN.S262786] [PMID: 33239874]
[48]
Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T. Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 2012; 53(3): 345-8.
[http://dx.doi.org/10.2967/jnumed.111.099754] [PMID: 22393225]
[49]
Prabhu P, Patravale V. The upcoming field of theranostic nanomedicine: An overview. J Biomed Nanotechnol 2012; 8(6): 859-82.
[http://dx.doi.org/10.1166/jbn.2012.1459] [PMID: 23029995]
[50]
Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res 2011; 44(10): 1029-38.
[http://dx.doi.org/10.1021/ar200019c]
[51]
Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014; 4(6): 660-77.
[http://dx.doi.org/10.7150/thno.8698] [PMID: 24723986]
[52]
Drummond DC, Noble CO, Guo Z, et al. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J Control Release 2010; 141(1): 13-21.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.006] [PMID: 19686789]
[53]
Phillips WT, Bao A, Sou K, Li S, Goins B. Radiolabeled liposomes as drug delivery nanotheranostics. In: Drug Delivery Applications of Noninvasive Imaging: Validation from Biodistribution to Sites of Action Wiley Online Library 2013; 11: 252-67.
[http://dx.doi.org/10.1002/9781118356845.ch11]
[54]
Kleiter MM, Yu D, Mohammadian LA, et al. A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clin Cancer Res 2006; 12(22): 6800-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0839] [PMID: 17121901]
[55]
Dai W, Yang F, Ma L, et al. Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer. Biomaterials 2014; 35(20): 5347-58.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.036] [PMID: 24726747]
[56]
Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 2015; 482(1-2): 2-10.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.045] [PMID: 25445515]
[57]
Shen J, Kim HC, Wolfram J, et al. A liposome encapsulated ruthenium polypyridine complex as a theranostic platform for triple-negative breast cancer. Nano Lett 2017; 17(5): 2913-20.
[http://dx.doi.org/10.1021/acs.nanolett.7b00132] [PMID: 28418672]
[58]
Sharma A, Jain N, Sareen R. Nanocarriers for diagnosis and targeting of breast cancer. BioMed Res Int 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/960821] [PMID: 23865076]
[59]
Dash TK, Patra D, Venu P, Das B, Bhattacharyya R, Shunmugam R. Hetero-trifunctional malonate-based nanotheranostic system for targeted breast cancer therapy. ACS Appl Biomat 2021; c4(6): 5251-65.
[http://dx.doi.org/10.1021/acsabm.1c00407]
[60]
Gregoriou Y, Gregoriou G, Yilmaz V, et al. Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells. Nanotheranostics 2021; 5(1): 113-24.
[http://dx.doi.org/10.7150/ntno.51955] [PMID: 33391978]
[61]
Singh J, Jain K, Mehra NK, Jain NK. Dendrimers in anticancer drug delivery: Mechanism of interaction of drug and dendrimers. Artif Cells Nanomed Biotechnol 2016; 44(7): 1626-34.
[http://dx.doi.org/10.3109/21691401.2015.1129625] [PMID: 26747336]
[62]
Fan Y, Zhang J, Shi M, et al. Poly (amidoamine) dendrimer-coordinated copper (II) complexes as a theranostic nanoplatform for the radiotherapy-enhanced magnetic resonance imaging and chemotherapy of tumors and tumor metastasis. Nano Lett 2019; 19(2): 1216-26.
[http://dx.doi.org/10.1021/acs.nanolett.8b04757] [PMID: 30698017]
[63]
Ghosh S, Ghosal K, Mohammad SA, Sarkar K. Dendrimer functionalized carbon quantum dot for selective detection of breast cancer and gene therapy. Chem Eng J 2019; 373: 468-84.
[http://dx.doi.org/10.1016/j.cej.2019.05.023]
[64]
Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006; 2(1): 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[65]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[66]
Dadras P, Atyabi F, Irani S, et al. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 2017; 97: 47-54.
[http://dx.doi.org/10.1016/j.ejps.2016.11.005] [PMID: 27825919]
[67]
Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine 2016; 12(2): 287-307.
[http://dx.doi.org/10.1016/j.nano.2015.10.019] [PMID: 26707817]
[68]
Choi J, Kim H, Choi Y. Theranostic nanoparticles for enzyme-activatable fluorescence imaging and photodynamic/chemo dual therapy of triple-negative breast cancer. Quant Imaging Med Surg 2015; 5(5): 656-64.
[PMID: 26682135]
[69]
You C, Wu H, Wang M, Gao Z, Sun B, Zhang X. Synthesis and biological evaluation of redox/NIR dual stimulus-responsive polymeric nanoparticles for targeted delivery of cisplatin. Mater Sci Eng C 2018; 92: 453-62.
[http://dx.doi.org/10.1016/j.msec.2018.06.044] [PMID: 30184771]
[70]
Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008; 41(12): 1578-86.
[http://dx.doi.org/10.1021/ar7002804] [PMID: 18447366]
[71]
Su XY, Liu PD, Wu H, Gu N. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med 2014; 11(2): 86-91.
[PMID: 25009750]
[72]
Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology 2010; 21(8): 085103.
[http://dx.doi.org/10.1088/0957-4484/21/8/085103] [PMID: 20101074]
[73]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti- cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[74]
Gautier J, Allard-Vannier E, Munnier E, Soucé M, Chourpa I. Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Release 2013; 169(1-2): 48-61.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.018] [PMID: 23567046]
[75]
Suarasan S, Focsan M, Potara M, et al. Doxorubicin-incorporated nanotherapeutic delivery system based on gelatin-coated gold nanoparticles: Formulation, drug release, and multimodal imaging of cellular internalization. ACS Appl Mater Interfaces 2016; 8(35): 22900-13.
[http://dx.doi.org/10.1021/acsami.6b07583] [PMID: 27537061]
[76]
Khandelia R, Bhandari S, Pan UN, Ghosh SS, Chattopadhyay A. Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small 2015; 11(33): 4075-81.
[http://dx.doi.org/10.1002/smll.201500216] [PMID: 25939342]
[77]
Zhang XD, Luo Z, Chen J, et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep 2015; 5(1): 8669.
[http://dx.doi.org/10.1038/srep08669] [PMID: 25727895]
[78]
Zhou F, Feng B, Yu H, et al. Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics 2016; 6(5): 679-87.
[http://dx.doi.org/10.7150/thno.14556] [PMID: 27022415]
[79]
Khodadadi E, Mahjoub S, Arabi MS, Najafzadehvarzi H, Nasirian V. Fabrication and evaluation of aptamer-conjugated paclitaxel-loaded magnetic nanoparticles for targeted therapy on breast cancer cells. Mol Biol Rep 2021; 48(3): 2105-16.
[http://dx.doi.org/10.1007/s11033-021-06199-y] [PMID: 33635469]
[80]
Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103: 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[81]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[82]
Fernandes RS, Silva JO, Mussi SV, et al. Nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid as a theranostic agent: Evaluation of biodistribution and antitumor activity in experimental model. Mol Imaging Biol 2018; 20(3): 437-47.
[http://dx.doi.org/10.1007/s11307-017-1133-3] [PMID: 29043471]
[83]
Chen D, Wang C, Nie X, et al. Photoacoustic imaging guided near-infrared photothermal therapy using highly water-dispersible single-walled carbon nanohorns as theranostic agents. Adv Funct Mater 2014; 24(42): 6621-8.
[http://dx.doi.org/10.1002/adfm.201401560]
[84]
Yue C, Liu P, Zheng M, et al. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials 2013; 34(28): 6853-61.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.071] [PMID: 23777910]
[85]
Li H, Wang K, Yang X, et al. Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: Anti-metastatic and photothermal anti-tumor therapy. Acta Biomater 2017; 53: 399-413.
[http://dx.doi.org/10.1016/j.actbio.2017.01.070] [PMID: 28159715]
[86]
Nishikawa M, Tan M, Liao W, Kusamori K. Nanostructured DNA for the delivery of therapeutic agents. Adv Drug Deliv Rev 2019; 147: pp. 29-36.
[87]
Liu X, Wu L, Wang L, Jiang W. A dual-targeting DNA tetrahedron nanocarrier for breast cancer cell imaging and drug delivery. Talanta 2018; 179: 356-63.
[http://dx.doi.org/10.1016/j.talanta.2017.11.034] [PMID: 29310244]
[88]
Kang B, Chang S, Dai Y, Yu D, Chen D. Cell response to carbon nanotubes: Size-dependent intracellular uptake mechanism and subcellular fate. Small 2010; 6(21): 2362-6.
[http://dx.doi.org/10.1002/smll.201001260] [PMID: 20878638]
[89]
Al Faraj A, Pasha Shaik A, Sultana Shaik A. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. Int J Nanomedicine 2014; 10: 157-68.
[http://dx.doi.org/10.2147/IJN.S75074] [PMID: 25565811]
[90]
Maughan J, Cleron J, Ma Z, Zhong Y, Du H. PEGylated carbon nanotubes with chlorin e6 as a theranostic agent for photodynamic therapy. Stanford University 2019; pp. 1-11.
[91]
opical fluorescent nanoparticles conjugated somatostatin analog for suppression and bioimaging breast cancer - tabular view. ClinicalTrialsgov 2019. Available from: Topical Fluorescent Nanoparticles Conjugated Somatostatin Analog for Suppression and Bioimaging Breast Cancer - Full Text View - ClinicalTrials.gov . 2019.
[92]
Clarity receives US FDA clearance of IND Application for its next-generation PSMA theranostic products. Clarity Pharmaceuticals 2021. Available from: https://www.prnewswire.com/news-releases/clarity-receives-us-fda-clearance-of-ind-application-for-its-next-generation-psma-theranostic-products-301282833.html
[93]
Chowdhury P, Ghosh U, Samanta K, Jaggi M, Chauhan SC, Yallapu MM. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact Mater 2021; 6(10): 3269-87.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.037] [PMID: 33778204]
[94]
Rubio-Perez C, Tamborero D, Schroeder MP, et al. in silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell 2015; 27(3): 382-96.
[http://dx.doi.org/10.1016/j.ccell.2015.02.007] [PMID: 25759023]
[95]
Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012; 148(6): 1293-307.
[http://dx.doi.org/10.1016/j.cell.2012.02.009] [PMID: 22424236]
[96]
Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science 2009; 323(5910): 133-8.
[http://dx.doi.org/10.1126/science.1162986] [PMID: 19023044]
[97]
Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR. Oxford nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 2015; 25(11): 1750-6.
[http://dx.doi.org/10.1101/gr.191395.115] [PMID: 26447147]
[98]
Di Ventra M, Taniguchi M. Decoding DNA, RNA and peptides with quantum tunnelling. Nat Nanotechnol 2016; 11(2): 117-26.
[http://dx.doi.org/10.1038/nnano.2015.320] [PMID: 26839257]
[99]
Lu H, Arshad M, Thornton A, et al. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic and molecular-phenotypes of epithelial ovarian cancer. Nat Commun 2019; 10(1): 764.
[http://dx.doi.org/10.1038/s41467-019-08718-9] [PMID: 30770825]
[100]
Arias JL. Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opin Drug Deliv 2011; 8(12): 1589-608.
[http://dx.doi.org/10.1517/17425247.2012.634794] [PMID: 22097904]
[101]
Yuan P, Hu X, Zhou Q. The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Nanotoxicology 2020; 14(8): 1137-55.
[http://dx.doi.org/10.1080/17435390.2020.1817598] [PMID: 32916084]
[102]
Yu J, Lin YH, Yang L, et al. Improved anticancer photothermal therapy using the bystander effect enhanced by antiarrhythmic peptide conjugated dopamine-modified reduced graphene oxide nanocomposite. Adv Healthc Mater 2017; 6(2): 1600804.
[http://dx.doi.org/10.1002/adhm.201600804] [PMID: 27860462]
[103]
Maynard AD, Warheit DB, Philbert MA. The new toxicology of sophisticated materials: Nanotoxicology and beyond. Toxicol Sci 2011; 120(Suppl 1) (Suppl. 1): S109-29.
[http://dx.doi.org/10.1093/toxsci/kfq372] [PMID: 21177774]
[104]
Wang B, Wang Z, Feng W, et al. New methods for nanotoxicology: Synchrotron radiation-based techniques. Anal Bioanal Chem 2010; 398(2): 667-76.
[http://dx.doi.org/10.1007/s00216-010-3752-2] [PMID: 20526771]
[105]
Pais-Silva C, de Melo-Diogo D, Correia IJ. IR780-loaded TPGS- TOS micelles for breast cancer photodynamic therapy. Eur J Pharm Biopharm 2017; 113: 108-17.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.002] [PMID: 28087376]
[106]
Matai I, Sachdev A, Gopinath P. Self-assembled hybrids of fluorescent carbon dots and PAMAM dendrimers for epirubicin delivery and intracellular imaging. ACS Appl Mater Interfaces 2015; 7(21): 11423-35.
[http://dx.doi.org/10.1021/acsami.5b02095] [PMID: 25946165]
[107]
Yildiz T, Gu R, Zauscher S, Betancourt T. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Int J Nanomedicine 2018; 13: 6961-86.
[http://dx.doi.org/10.2147/IJN.S174068] [PMID: 30464453]
[108]
Setyawati MI, Kutty RV, Leong DT. DNA nanostructures carrying stoichiometrically definable antibodies. Small 2016; 12(40): 5601-11.
[http://dx.doi.org/10.1002/smll.201601669] [PMID: 27571230]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy