Abstract
Background: Benzimidazole is a remarkable heterocyclic chemical compound in which the phenyl ring is fused with the imidazole ring at positions 4 and 5. Benzimidazole derivatives have lots of medicinal activity in the pharmaceutical industry. Therefore, the synthesis of benzimidazole derivatives is challenging in this scientific field.
Methods: In benzimidazole synthesis, simple nucleophilic substitution and condensation reactions involving carbonyl compounds and o-phenylenediamine have been used in previous times. Currently, green chemistry aspects such as solvent-free conditions, metal-free conditions, or using nanoparticle catalysts in various ways involving condensation, and cyclization are the methods of the new era.
Results: Green chemistry methods are used widely in various chemical reactions, such as it was observed that the use of solvent-free conditions, metal-free conditions, or using nanoparticle catalysts molecules is a more efficient way to synthesize benzimidazole derivative.
Conclusion: In this review, benzimidazole scaffold syntheses that have only recently been described in the literature through the end of 2021 are covered. Monosubstituted benzimidazoles (MSBs) and disubstituted-benzimidazoles (DSBs) are the primary targets of our research currently. Different ways have been found to make functionalized derivatives of benzimidazole, which are shown in this review as a powerful scaffold.
Graphical Abstract
[http://dx.doi.org/10.1021/cr60151a002] [PMID: 24541208]
[http://dx.doi.org/10.2174/1570179413666160818151932]
[http://dx.doi.org/10.1016/j.bmcl.2007.02.071] [PMID: 17368898]
[http://dx.doi.org/10.1111/j.1747-0285.2009.00850.x] [PMID: 19703032]
[http://dx.doi.org/10.1039/c2dt32391e] [PMID: 23389482]
[http://dx.doi.org/10.1039/C8DT03598A] [PMID: 30345451]
[http://dx.doi.org/10.1016/j.jelechem.2021.115695]
[http://dx.doi.org/10.1111/j.1747-0285.2008.00724.x] [PMID: 19090920]
[http://dx.doi.org/10.1016/j.bioorg.2014.12.003] [PMID: 25590381]
[http://dx.doi.org/10.1016/j.apsb.2015.05.003] [PMID: 26579464]
[http://dx.doi.org/10.1080/14756360802420831] [PMID: 18951286]
[http://dx.doi.org/10.3390/molecules26092684] [PMID: 34064312]
[http://dx.doi.org/10.1007/s12272-013-0153-z] [PMID: 23712380]
[http://dx.doi.org/10.1007/BF02993478] [PMID: 14976728]
[http://dx.doi.org/10.1016/j.arabjc.2015.02.002]
[http://dx.doi.org/10.1016/j.jscs.2011.03.005]
[http://dx.doi.org/10.1016/j.molstruc.2011.10.054]
[http://dx.doi.org/10.1016/j.ejmech.2013.03.010] [PMID: 23567959]
[http://dx.doi.org/10.1016/j.antiviral.2015.06.016] [PMID: 26116756]
[http://dx.doi.org/10.1016/j.bmcl.2012.06.050] [PMID: 22795629]
[http://dx.doi.org/10.1016/j.ejmech.2012.11.005] [PMID: 23220646]
[http://dx.doi.org/10.1002/cber.187500801209]
[http://dx.doi.org/10.1081/SCC-200039340]
[http://dx.doi.org/10.1016/j.molcata.2005.09.025]
[http://dx.doi.org/10.1021/jo8014984] [PMID: 18754576]
[http://dx.doi.org/10.1021/jo1021426] [PMID: 21175149]
[http://dx.doi.org/10.1016/S1872-2067(11)60338-0]
[http://dx.doi.org/10.1021/ja311780a] [PMID: 23249371]
[http://dx.doi.org/10.1039/C4QO00221K]
[http://dx.doi.org/10.1021/acs.joc.8b01316] [PMID: 29993244]
[http://dx.doi.org/10.3390/nano10122405] [PMID: 33271922]
[http://dx.doi.org/10.1021/ol302856w] [PMID: 23171411]
[http://dx.doi.org/10.1021/ol403672p] [PMID: 24479902]
[http://dx.doi.org/10.1039/C5RA08183A]
[http://dx.doi.org/10.1039/C6GC00902F]
[http://dx.doi.org/10.1007/s10562-017-2232-0]
[http://dx.doi.org/10.1016/j.tetlet.2019.03.028]
[http://dx.doi.org/10.1016/j.tet.2019.05.014]
[http://dx.doi.org/10.1021/acs.joc.0c01053] [PMID: 32786645]
[http://dx.doi.org/10.1007/s12039-010-0095-7]
[http://dx.doi.org/10.2298/JSC090901096A]
[http://dx.doi.org/10.3390/molecules171112506] [PMID: 23095894]
[http://dx.doi.org/10.1021/jo401445j] [PMID: 24134516]
[http://dx.doi.org/10.1039/c3gc41186a]
[http://dx.doi.org/10.56431/p-9vy9eu]
[http://dx.doi.org/10.1515/chempap-2016-0056]
[http://dx.doi.org/10.3390/molecules24162885] [PMID: 31398916]