Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Complex Oligomers and their Bioactivity of Annonaceae Family

Author(s): Ling Chen, Youdi Ren, Wei-Feng Dai, Cheng Yuan and Mi Zhang*

Volume 26, Issue 14, 2023

Published on: 10 May, 2023

Page: [2424 - 2436] Pages: 13

DOI: 10.2174/1386207326666230329090413

Price: $65

Abstract

Background: A series of novel oligomers with various types and complex skeletons are isolated from Annonaceae plants, which displayed anti-inflammatory, antimalarial, antibacterial and other biological activities. Thus, their structures and functions have received more and more attention.

Aim and Objective: The purpose of this review is to provide a systematic reference for chemical structures and biological activities of oligomers and some clues for finding more analogues from Annonaceae.

Methods: Publications relevant to Annonaceae were retrieved from the Web of Science and SciFinder and surveyed for a literature review.

Results: This article summarized the chemical structures, the base source plants and the biofunctions of oligomers from Annonaceae.

Conclusion: The oligomers from Annonaceae have the characteristics of various connection modes and rich functional groups, which provides more possibilities for the discovery of lead compounds with new or higher biological activities.

Graphical Abstract

[1]
Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China; Science Press: Science Press, 1979, 30, p. (2)10.
[2]
Lei, J.; Liang, Z.; Zhang, H.; Li, Y.; Xue, B. Advances in exploitation and utilization of wild fruit resources of Annonaceae in China. Guoshu Xuebao, 2022, 1, 121-130.
[3]
Yang, H.; Zhang, N.; Zeng, Q.; Yu, Q. Progress of anti-tumor component: Annonaceous acetogenins. Chin. J. Sugr. Oncol., 2011, 3(2), 113-116.
[4]
Zhang, M.; Li, B. Research progress of alkaloids and their bioactivity of Annonaceae family. Nat. Prod. Res. Dev., 2014, 26, 787-799.
[5]
Hu, C.M.; Wu, J.H. Progress in study of flavonoids from Annonaceae and biological activities of these compounds. Zhongguo Zhongyao Zazhi, 2007, 32(9), 765-770.
[PMID: 17639969]
[6]
Wong, R.; Chang, W.L. Fast quantum algorithm for protein structure prediction in hydrophobic-hydrophilic model. J. Parallel Distrib. Comput., 2022, 164, 178-190.
[http://dx.doi.org/10.1016/j.jpdc.2022.03.011]
[7]
Chang, W.L.; Chung, W.Y.; Hsiao, C.Y.; Wong, R.; Chen, J.C.; Feng, M.; Vasilakos, A.V. Quantum speedup for inferring the value oenataf each bit of a solution state in unsorted databases using a bio-molecular algorithm on IBM quantum’s computers. IEEE Trans. Nanobiosci., 2022, 21(2), 286-293.
[http://dx.doi.org/10.1109/TNB.2021.3130811] [PMID: 34822331]
[8]
Chang, W.L.; Chen, J.C.; Chung, W.Y.; Hsiao, C.Y.; Wong, R.; Vasilakos, A.V. Quantum speedup and mathematical solutions from implementing bio-molecular solutions for the independent set problem on IBM’s quantum computers. IEEE Trans. Nanobiosci., 2021, 20(3), 354-376.
[http://dx.doi.org/10.1109/TNB.2021.3075733] [PMID: 33900920]
[9]
Wong, R.; Chang, W.L. Quantum speedup for protein structure prediction. IEEE Trans. Nanobiosci., 2021, 20(3), 323-330.
[http://dx.doi.org/10.1109/TNB.2021.3065051] [PMID: 33690123]
[10]
Nkunya, M.H.H.; Jonker, S.A.; de Gelder, R.; Wachira, S.W.; Kihampa, C. (±)-Schefflone: A trimeric monoterpenoid from the root bark of Uvaria scheffleri. Phytochemistry, 2004, 65(4), 399-404.
[http://dx.doi.org/10.1016/j.phytochem.2003.10.011] [PMID: 14759531]
[11]
Martins, D.; Osshiro, E.; Roque, N.F.; Marks, V.; Gottlieb, H.E. A sesquiterpene dimer from Xylopia aromatica. Phytochemistry, 1998, 48(4), 677-680.
[http://dx.doi.org/10.1016/S0031-9422(97)01048-0]
[12]
Kamperdick, C.; Phuong, N.M.; Van Sung, T.; Adam, G. Guaiane dimers from Xylopia vielana. Phytochemistry, 2001, 56(4), 335-340.
[http://dx.doi.org/10.1016/S0031-9422(00)00344-7] [PMID: 11249097]
[13]
Kamperdick, C.; Phuong, N.M.; Adam, G.; Van Sung, T. Guaiane dimers from Xylopia vielana. Phytochemistry, 2003, 64(4), 811-816.
[http://dx.doi.org/10.1016/j.phytochem.2003.08.003] [PMID: 14559273]
[14]
Xie, Y.G.; Wu, G.; Cheng, T.; Zhu, S.; Yan, S.; Jin, H.; Zhang, W. Vielopsides A-E, five new guaiane-type sesquiterpenoid dimers from Xylopia vielana. Fitoterapia, 2018, 130, 43-47.
[http://dx.doi.org/10.1016/j.fitote.2018.07.020] [PMID: 30076886]
[15]
Xie, Y.G.; Guo, Y.G.; Wu, G.J.; Zhu, S.L.; Cheng, T.F.; Zhang, Y.; Yan, S.K.; Jin, H.Z.; Zhang, W.D. Xylopsides A–D, four rare guaiane dimers with two unique bridged pentacyclic skeletons from Xylopia vielana. Org. Biomol. Chem., 2018, 16(37), 8408-8412.
[http://dx.doi.org/10.1039/C8OB01689E] [PMID: 30221279]
[16]
Xie, Y.G.; Zhang, W.; Zhu, S.; Cheng, T.; Wu, G.; Muhammad, I.; Yan, S.; Zhang, Y.; Jin, H.; Zhang, W. Xyloplains A–F, six new guaiane-type sesquiterpenoid dimers from Xylopia vielana. RSC Advances, 2018, 8(45), 25719-25724.
[http://dx.doi.org/10.1039/C8RA04356F] [PMID: 35539790]
[17]
Zhang, Y.L.; Zhou, X.W.; Wang, X.B.; Wu, L.; Yang, M.H.; Luo, J.; Yin, Y.; Luo, J.G.; Kong, L.Y. Xylopiana A, a dimeric guaiane with a case-shaped core from Xylopia vielana: structural elucidation and biomimetic conversion. Org. Lett., 2017, 19(11), 3013-3016.
[http://dx.doi.org/10.1021/acs.orglett.7b01276] [PMID: 28537400]
[18]
Zhang, Y.L.; Xu, Q.Q.; Zhou, X.W.; Wu, L.; Wang, X.B.; Yang, M.H.; Luo, J.; Luo, J.G.; Kong, L.Y. Rare dimeric guaianes from Xylopia vielana and their multidrug resistance reversal activity. Phytochemistry, 2019, 158, 26-34.
[http://dx.doi.org/10.1016/j.phytochem.2018.11.004] [PMID: 30448739]
[19]
Guo, Y.G.; Xie, Y.G.; Wu, G.J.; Cheng, T.F.; Zhu, S.L.; Yan, S.K.; Jin, H.Z.; Zhang, W.D. Xylopidimers A-E, five new guaiane dimers with various carbon skeletons from the roots of Xylopia vielana. ACS Omega, 2019, 4(1), 2047-2052.
[http://dx.doi.org/10.1021/acsomega.8b00828] [PMID: 31459455]
[20]
Xie, Y.G.; Yan, R.; Zhong, X.; Piao, H.; Muhammad, I.; Ke, X.; Yan, S.; Guo, Y.; Jin, H.Z.; Zhang, W.D. Xylopins A–F, six rare guaiane dimers with three different connecting modes from Xylopia vielana. RSC Advances, 2019, 9(16), 9235-9242.
[http://dx.doi.org/10.1039/C9RA00347A] [PMID: 35517671]
[21]
Xie, Y.; Zhong, X.; Xiao, Y.; Zhu, S.; Muhammad, I.; Yan, S.; Jin, H.; Zhang, W. Vieloplains A-G, seven new guaiane-type sesquiterpenoid dimers from Xylopia vielana. Bioorg. Chem., 2019, 88, 102891.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.065] [PMID: 30999244]
[22]
Xu, Q.Q.; Zhang, C.; Zhang, Y.L.; Lei, J.L.; Kong, L.Y.; Luo, J.G. Dimeric guaianes from leaves of Xylopia vielana as snail inhibitors identified by high content screening. Bioorg. Chem., 2021, 108, 104646.
[http://dx.doi.org/10.1016/j.bioorg.2021.104646] [PMID: 33484941]
[23]
Litaudon, M.; Bousserouel, H.; Awang, K.; Nosjean, O.; Martin, M.T.; Dau, M.E.T.H.; Hadi, H.A.; Boutin, J.A.; Sévenet, T.; Guéritte, F. A Dimeric sesquiterpenoid from a Malaysian Meiogyne as a new inhibitor of Bcl-xL/BakBH3 domain peptide interaction. J. Nat. Prod., 2009, 72(3), 480-483.
[http://dx.doi.org/10.1021/np8006292] [PMID: 19161318]
[24]
Chen, C.H.; Hsieh, T.J.; Liu, T.Z.; Chern, C.L.; Hsieh, P.Y.; Chen, C.Y. Annoglabayin, a novel dimeric kaurane diterpenoid, and apoptosis in Hep G2 cells of annomontacin from the fruits of Annona glabra. J. Nat. Prod., 2004, 67(11), 1942-1946.
[http://dx.doi.org/10.1021/np040078j] [PMID: 15568797]
[25]
Yang, N.Y.; Tian, L.J.; Meng, Z.M.; Han, Y. A new diterpenoid dimer from Annona Glabra. Chin. Chem. Lett., 2003, 14(1), 58-61.
[26]
Martins, D.; Hamerski, L.; Alvarenga, S.A.V.; Roque, N.F. Labdane dimers from Xylopia aromatica1Based on part of the Ph.D. Thesis. Universidade de São Paulo.1. Phytochemistry, 1999, 51(6), 813-817.
[http://dx.doi.org/10.1016/S0031-9422(99)00097-7]
[27]
Takahashi, J.A.; Boaventura, M.A.D.; de Carvalho Bayma, J.; Alaíde, B, O. Frutoic acid, a dimeric kaurane diterpene from Xylopia frutescens. Phytochemistry, 1995, 40(2), 607-609.
[http://dx.doi.org/10.1016/0031-9422(95)00264-8]
[28]
Kanokmedhakul, S.; Kanokmedhakul, K.; Yodbuddee, D.; Phonkerd, N. New antimalarial bis-dehydroaporphine alkaloids from Polyalthia debilis. J. Nat. Prod., 2003, 66(5), 616-619.
[http://dx.doi.org/10.1021/np020498d] [PMID: 12762793]
[29]
Kanokmedhakul, S.; Kanokmedhakul, K.; Lekphrom, R. Bioactive constituents of the roots of Polyalthia cerasoides. J. Nat. Prod., 2007, 70(9), 1536-1538.
[http://dx.doi.org/10.1021/np070293a] [PMID: 17845001]
[30]
Shono, T.; Ishikawa, N.; Toume, K.; Arai, M.A.; Masu, H.; Koyano, T.; Kowithayakorn, T.; Ishibashi, M. Cerasoidine, a bis-aporphine alkaloid isolated from Polyalthia cerasoides during screening for Wnt signal inhibitors. J. Nat. Prod., 2016, 79(8), 2083-2088.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00409] [PMID: 27490091]
[31]
Jossang, A.; Leboeuf, M.; Cavé, A.; Sévenet, T. Alcaloïdes des Annonacées, 65. alcaloïdes de Popowia pisocarpa, Première Partie: nouvelles bisbenzylisoquinoléines. J. Nat. Prod., 1986, 49(6), 1018-1027.
[http://dx.doi.org/10.1021/np50048a009]
[32]
Zaima, K.; Takeyama, Y.; Koga, I.; Saito, A.; Tamamoto, H.; Azziz, S.S.S.A.; Mukhtar, M.R.; Awang, K.; Hadi, A.H.A.; Morita, H. Vasorelaxant effect of isoquinoline derivatives from two species of Popowia perakensis and Phaeanthus crassipetalus on rat aortic artery. J. Nat. Med., 2012, 66(3), 421-427.
[http://dx.doi.org/10.1007/s11418-011-0600-4] [PMID: 22033647]
[33]
Jossang, A.; Leboeuf, M.; Cavé, A.; Sévenet, T. Alcaloïdes des Annonacées, 66: Alcaloïdes de Popowia pisocarpa, Deuxième Partie: nouveaux bisaporphinoïdes. J. Nat. Prod., 1986, 49(6), 1028-1035.
[http://dx.doi.org/10.1021/np50048a010]
[34]
Johns, S.R.; Lamberton, J.A.; Li, C.S.; Sioumis, A.A. New alkaloids from a Popowia species (Annonaceae). Aust. J. Chem., 1970, 23(2), 363-368.
[http://dx.doi.org/10.1071/CH9700363]
[35]
Nguemdjo Chimeze, V.W.; Zühlke, S.; Mbazoa Djama, C.; Eckelmann, D.; Wandji, J. Dimeric dehydroaporphinoids with antiplasmodial properties from the liana of Artabotrys aurantiacus (Annonaceae). Phytochem. Lett., 2020, 38, 150-154.
[http://dx.doi.org/10.1016/j.phytol.2020.06.009]
[36]
Sichaem, J.; Ruksilp, T.; Worawalai, W.; Siripong, P.; Khumkratok, S.; Tip-pyang, S. A new dimeric aporphine from the roots of Artabotrys spinosus. Fitoterapia, 2011, 82(3), 422-425.
[http://dx.doi.org/10.1016/j.fitote.2010.11.025] [PMID: 21130146]
[37]
Zuo, A.; Yang, Y.; Zhu, P.; Sun, B.; Rao, G. Recent progress on chemical constituents of Goniothalamus genus. Chin. J. Exp. Trad. Med. Form., 2014, 20(20), 237-242.
[38]
Hufford, C.D.; Oguntimein, B.O.; Shoolery, J.N. Angoluvarin, an antimicrobial dihydrochalcone from Uvaria angolensis. J. Org. Chem., 1987, 52(23), 5286-5288.
[http://dx.doi.org/10.1021/jo00232a045]
[39]
Moriyasu, M.; Nakatani, N.; Ichimaru, M.; Nishiyama, Y.; Kato, A.; Mathenge, S.G.; Juma, F.D.; Chalo Mutiso, P.B. Chemical studies on the roots of Uvaria welwitschii. J. Nat. Med., 2011, 65(2), 313-321.
[http://dx.doi.org/10.1007/s11418-010-0498-2] [PMID: 21234693]
[40]
Salae, A.W.; Chairerk, O.; Sukkoet, P.; Chairat, T.; Prawat, U.; Tuntiwachwuttikul, P.; Chalermglin, P.; Ruchirawat, S. Antiplasmodial dimeric chalcone derivatives from the roots of Uvaria siamensis. Phytochemistry, 2017, 135, 135-143.
[http://dx.doi.org/10.1016/j.phytochem.2016.12.009] [PMID: 27989370]
[41]
Rittiwong, T.; Mutarapat, T.; Ponglimanont, C.; Mahabusarakam, W.; Chakthong, S. Saiyutones A–D: Four new unusual biflavones from Desmos chinensis. Tetrahedron, 2011, 67(30), 5444-5449.
[http://dx.doi.org/10.1016/j.tet.2011.05.070]
[42]
Pham, G.N.; Nguyen-Ngoc, H. Fissistigma genus – a review on phytochemistry and pharmacological activities. Nat. Prod. Res., 2021, 35(23), 5209-5223.
[http://dx.doi.org/10.1080/14786419.2020.1758097] [PMID: 32352328]
[43]
Panthama, N.; Kanokmedhakul, S.; Kanokmedhakul, K. Polyacetylenes from the roots of Polyalthia debilis. J. Nat. Prod., 2010, 73(8), 1366-1369.
[http://dx.doi.org/10.1021/np1001913] [PMID: 20795741]
[44]
Rayanil, K.; Sutassanawichanna, W.; Suntornwat, O.; Tuntiwachwuttikul, P. A new dihydrobenzofuran lignan and potential α -glucosidase inhibitory activity of isolated compounds from Mitrephora teysmannii. Nat. Prod. Res., 2016, 30(23), 2675-2681.
[http://dx.doi.org/10.1080/14786419.2016.1143830] [PMID: 26857182]
[45]
Wongsomboon, P.; Rattanajak, R.; Kamchonwongpaisan, S.; Pyne, S.G.; Limtharakul, T. Unique polyacetylenic ester-neolignan derivatives from Mitrephora tomentosa and their antimalarial activities. Phytochemistry, 2021, 183, 112615.
[http://dx.doi.org/10.1016/j.phytochem.2020.112615] [PMID: 33341666]
[46]
Mu, Q.; He, N.; Tang, W.D.; Li, M.C.; Lou, L.G.; Sun, H.D.; Xu, B.; Yang, G.X.; Hu, C.Q. A styrylpyrone dimer from the bark of Goniothalamus leiocarpus. Chin. Chem. Lett., 2004, 15(002), 191-193.
[47]
Jiang, M.M.; Feng, Y.F.; Zhang, X. Chemical constituents from roots of Goniothalamus cheliensis (II). Chin. Tradit. Herbal Drugs, 2011, 42(12), 2386-2388.
[48]
Jiang, M.M.; Feng, Y.F.; Gao, H.; Zhang, X.; Tang, J.S.; Yao, X.S. Three new bis-styryllactones from Goniothalamus cheliensis. Fitoterapia, 2011, 82(4), 524-527.
[http://dx.doi.org/10.1016/j.fitote.2010.11.014] [PMID: 21075179]
[49]
Huong, D.T.; Van, N.T.H.; Kamperdick, C.; Kamperdick, C.; Anh, N.T.H.; Sung, T.V. Two new bis-styryl compounds from Miliusa balansae. Z. Naturforsch. B. J. Chem. Sci., 2008, 63(3), 335-338.
[http://dx.doi.org/10.1515/znb-2008-0318]
[50]
Wongsa, N.; Kanokmedhakul, K.; Boonmak, J.; Youngme, S.; Kanokmedhakul, S. Bicyclic lactones and racemic mixtures of dimeric styrylpyrones from the leaves of Miliusa velutina. RSC Advances, 2017, 7(41), 25285-25297.
[http://dx.doi.org/10.1039/C7RA01609C]
[51]
Chen, C.Y.; Chang, F.R.; Wu, Y.C. Cherinonaine, a novel dimeric amide from the stems of Annona cherimola. Tetrahedron Lett., 1998, 39(5-6), 407-410.
[http://dx.doi.org/10.1016/S0040-4039(97)10534-2]
[52]
Pootaeng-on, Y.; Charoensuksai, P.; Wongprayoon, P.; Jiajaroen, S.; Chainok, K.; Rayanil, K. Miliusins; cytotoxic neolignans from the leaves of Miliusa sessilis. Phytochemistry, 2020, 176, 112417.
[http://dx.doi.org/10.1016/j.phytochem.2020.112417] [PMID: 32473392]
[53]
Kawazoe, R.; Matsuo, Y.; Saito, Y.; Tanaka, T. Computationally assisted structural revision of flavoalkaloids with a seven-membered ring: Aquiledine, isoaquiledine, and cheliensisine. J. Nat. Prod., 2020, 83(11), 3347-3353.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00691] [PMID: 33081470]
[54]
Porzel, A.; Phuong Lien, T.; Schmidt, J.; Drosihn, S.; Wagner, C.; Merzweiler, K.; Van Sung, T.; Adam, G. Fissistigmatins A–D: novel type natural products with flavonoid-sesquiterpene hybrid structure from Fissistigma bracteolatum. Tetrahedron, 2000, 56(6), 865-872.
[http://dx.doi.org/10.1016/S0040-4020(99)01049-2]
[55]
Zhu, W.M.; Hong, X.; Shen, Y.M.; Zhao, B.T.; He, H.P.; Hao, X.J. A New benzosesquiterpenoid dimer from Polyalthia cheliensis Hu. Chin. Chem. Lett., 2001, (7), 617-618.
[56]
Weenen, H.; Nkunya, M.H.H.; Mgani, Q.A.; Posthumus, M.A.; Waibel, R.; Achenbach, H. Tanzanene, a spiro benzopyranyl sesquiterpene from Uvaria tanzaniae Verdc. J. Org. Chem., 1991, 56(20), 5865-5867.
[http://dx.doi.org/10.1021/jo00020a030]
[57]
Weenen, H.; Nkunya, M.H.H.; El-Fadl, A.A.; Harkema, S.; Zwanenburg, B. Lucidene, a bis(benzopyranyl) sesquiterpene from Uvaria lucida ssp. lucida. J. Org. Chem., 1990, 55(17), 5107-5109.
[http://dx.doi.org/10.1021/jo00304a023]
[58]
Hassan, S.S.; Zhang, W.D.; Jin, H.; Basha, S.H.; Priya, S.V.S.S. In-silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2. J. Biomol. Struct. Dyn., 2022, 40(1), 484-498.
[http://dx.doi.org/10.1080/07391102.2020.1815579] [PMID: 32876526]
[59]
Gu, G.Y.; Jiang, Y. Review of cytotoxic constituents from Annonaceae VI. Drugs Clin., 2006, (4), 144-151.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy